Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Pharmaceutical analysis is critical in ensuring the quality and safety of drug substances and formulations. High-performance thin-layer Chromatography (HPTLC) has emerged as a powerful analytical technique in the pharmaceutical industry due to its numerous advantages, including high separation efficiency, cost-effectiveness, and ease of sample preparation. One of its variants, Reversed-Phase High-Performance Thin-Layer Chromatography (RP-HPTLC), has gained immense popularity for analyzing nonpolar and slightly polar compounds, including drugs and their metabolites. This review paper draws attention to history and the recent developments in RP-HPTLC for pharmaceutical analysis. It highlights the advantages and limitations of RP-HPTLC, discussing its applications in drug analysis, impurity determination, stability-indicating assays, and more. In this study, recent advances in RP-HPTLC instrumentation and techniques were reviewed, including hyphenated methods, such as Reversed-Phase High-Performance Thin-Layer Chromatography coupled with Mass Spectrometry and Reversed-Phase High-Performance Thin-Layer Chromatography coupled with Nuclear Magnetic Resonance. Through this comprehensive analysis, the authors aim to underscore the potential of RP-HPTLC as a reliable and efficient analytical technique in the pharmaceutical industry and shed light on future trends in this field.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110320008240628090739
2024-07-07
2025-10-12
Loading full text...

Full text loading...

References

  1. PatelF. KotadiyaR. PatelR. PatelM. Development and validation of a new reversed phase HPLC method for the quantitation of azithromycin and rifampicin in a capsule formulation.J. Chromatogr. Sci.202415bmae00610.1093/chromsci/bmae006
    [Google Scholar]
  2. SonawaneD. SahuA.K. JadavT. TekadeR.K. SenguptaP. Innovation in strategies for sensitivity improvement of chromatography and mass spectrometry based analytical techniques.Crit. Rev. Anal. Chem.202353365567110.1080/10408347.2021.1969887 34435920
    [Google Scholar]
  3. ShermaJ. FriedB. Handbook of thin-layer chromatography.Boca Raton, FloridaCRC press200310.1201/9780203912430
    [Google Scholar]
  4. JanderaP. Stationary and mobile phases in hydrophilic interaction chromatography: A review.Anal. Chim. Acta20116921-212510.1016/j.aca.2011.02.047 21501708
    [Google Scholar]
  5. JevrićL.R. Podunavac-KuzmanovićS.O. Švarc-GajićJ.V. KovačevićS.Z. JovanovićB.Ž. RP-HPTLC retention data in correlation with the in-silico ADME properties of a series of s-triazine derivatives.Iran. J. Pharm. Res.201413412031211 25587308
    [Google Scholar]
  6. Abdel-KaderM.S. AlamP. SolimanG.A. Al-ShdefatR. AfzalO. Eco-friendly stability-indicating RP-HPTLC method for sildenafil analysis, characterization and biological evaluation of its oxidized stress degradation product.Sci. Rep.20211111535810.1038/s41598‑021‑94854‑6 34321578
    [Google Scholar]
  7. KotadiyaR.M. PatelF.N. Analytical methods practiced to quantitation of rifampicin: A captious survey.Curr. Pharm. Anal.202117898399910.2174/1573412916999200704144231
    [Google Scholar]
  8. ShahJ. KotadiyaR. PatelR. Analytical quality by design-based robust rp-hplc method for quantitative estimation of pregabalin and etoricoxib in fixed-dose combination tablet formulation.J. AOAC Int.202210561536154710.1093/jaoacint/qsac082 35766798
    [Google Scholar]
  9. Abou Al-AlameinA.M. Abd El-RahmanM.K. Abdel-MoetyE.M. FawazE.M. Green HPTLC-densitometric approach for simultaneous determination and impurity- profiling of ebastine and phenylephrine hydrochloride.Microchem. J.20191471097110210.1016/j.microc.2019.04.043
    [Google Scholar]
  10. DongS. HeJ. HouH. ShuaiY. WangQ. YangW. SunZ. LiQ. BiK. LiuR. Quality assessment of Herba Leonuri based on the analysis of multiple components using normal- and reversed-phase chromatographic methods.J. Sep. Sci.201740234482449410.1002/jssc.201700728 28960719
    [Google Scholar]
  11. EmamA.A. Canagliflozin stability study and ecofriendly chromatographic determination of its degradation product: A comparative study.J. Sep. Sci.201841482283010.1002/jssc.201700976 29165869
    [Google Scholar]
  12. RezkM.R. MonirH.H. MarzoukH.M. Novel determination of a new antiviral combination; sofosbuvir and velpatasvir by high performance thin layer chromatographic method; application to real human samples.Microchem. J.201914682883410.1016/j.microc.2019.02.012
    [Google Scholar]
  13. Djaković SekulićT. SmolińskiA. RP-HPTLC data in correlation studies of a 5-arylidene-2,4-thiazolidinedione derivatives.J. Chromatogr. Sci.2017555564570
    [Google Scholar]
  14. SkibińskiR. KomstaŁ. Validation of NP-HPTLC and RP-HPTLC methods with videodensitometric detection for analysis of ziprasidone in pharmaceutical formulations.J. Planar Chromatogr. Mod. TLC2010231232710.1556/JPC.23.2010.1.4
    [Google Scholar]
  15. AlamP. EzzeldinE. IqbalM. MostafaG.A.E. AnwerM.K. AlqarniM.H. FoudahA.I. ShakeelF. Determination of delafloxacin in pharmaceutical formulations using a green RP-HPTLC and NP-HPTLC methods: A comparative study.Antibiotics20209635910.3390/antibiotics9060359 32630451
    [Google Scholar]
  16. PaghadarC. VadiaN.H. Development and validation of stability indicating RP-HPLC and HPTLC for determination of Niclosamide in bulk and in synthetic mixture.Arab. J. Chem.20191281803181410.1016/j.arabjc.2014.11.064
    [Google Scholar]
  17. RajputD.K. ShirkhedkarA.A. RajputJ.K. PatelH.M. SuranaS.J. Stability studies of thiocolchicoside in bulk and capsules using RP-HPTLC/densitometry.J. Anal. Methods Chem.201320131710.1155/2013/14262824109541
    [Google Scholar]
  18. WixomR.L. The beginnings of chromatography — The pioneers (1900–1960).J Chromatogr Lib200164138
    [Google Scholar]
  19. AliA. H. High-performance liquid chromatography (HPLC): A review.Ann. Adv. Chem20226010020
    [Google Scholar]
  20. DaleyR.J. GrayC.B.J. BrownS.R. Reversed-phase thin-layer chromatography of chlorophyll derivatives.J. Chromatogr. A197376117518310.1016/S0021‑9673(01)97789‑1 4686934
    [Google Scholar]
  21. KaiserR.E. RiederR. C8 and C18 reversed-phase high-performance thin-layer chromatography on chemically bonded layers for environmental trace analysis and for optimization of high-performance liquid chromatography.J. Chromatogr. A197714241142010.1016/S0021‑9673(01)92054‑0
    [Google Scholar]
  22. ShermaJ. LattaM. Reversed-phase thin-layer chromatography of chloroplast pigments on chemically bonded C18 plates.J. Chromatogr. A19781541687210.1016/S0021‑9673(00)88482‑4
    [Google Scholar]
  23. CollinsM.D. ShahH.N. MinnikinD.E. A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography.J. Appl. Bacteriol.198048227728210.1111/j.1365‑2672.1980.tb01227.x 7462123
    [Google Scholar]
  24. RenbergL. SundströmG. Sundh-NygårdK. Partition coefficients of organic chemicals derived from reversed phase thin layer chromatography.Chemosphere198091168369110.1016/0045‑6535(80)90120‑4
    [Google Scholar]
  25. De SchuterJ.A. van der WekenG. van den BosscheW. de MoerlooseP. Reversed-phase high-performance thin-layer chromatography of mebeverine hydrochlordie and related compounds.J. Chromatogr. A198535013514410.1016/S0021‑9673(01)93513‑7
    [Google Scholar]
  26. SuzukiN. SaitohK. SugiyamaY. Reversed-phase high-performance thin-layer chromatography of hematoporphyrin and its nickel, copper and zinc complexes.Chromatographia198621950951210.1007/BF02310537
    [Google Scholar]
  27. SuzukiN. SaitohK. Adachi, Reversed-phase high-performance thin-layer chromatography and column liquid chromatography of chlorophylls and their derivatives.J. Chromatogr. A198740818119010.1016/S0021‑9673(01)81800‑8
    [Google Scholar]
  28. BhatH.K. AnsariG.A.S. Improved separation of lipid esters by thin-layer chromatography.J. Chromatogr. A198948336937810.1016/S0021‑9673(01)93136‑X 2625440
    [Google Scholar]
  29. BieganowskaM. SoczewińskiE. JanowskaM. Structural effects and retention in reversed-phase ion-pair chromatography of 2-benzoylbenzoic acid derivatives.Chromatographia19841829910210.1007/BF02268466
    [Google Scholar]
  30. BrinkmanU.A.T. De VriesG. Use of chemically bonded stationary phases in high-performance thin-layer chromatography. II.J. Chromatogr. A1980192233134010.1016/S0021‑9673(80)80008‑2
    [Google Scholar]
  31. EricssonM. BlombergL.G. Modification of HPTLC-plates by in situ chemical bonding with non-polar and polar organosilanes.J. High Resolut. Chromatogr.19803734535010.1002/jhrc.1240030707
    [Google Scholar]
  32. GattavecchiaE. TonelliD. BrecciaA. Determination of metronidazole, misonidazole and its metabolite in serum and urine on RP-18 high-performance thin-layer chromatographic plates.J. Chromatogr. Biomed. Appl.1981224346547110.1016/S0378‑4347(00)80220‑0
    [Google Scholar]
  33. JostW. HauckH.E. EisenbeißF. Possibilities and limitation of transfer of TLC separation systems to HLPC.Fresenius Z. Anal. Chem.19843183-430030110.1007/BF00528619
    [Google Scholar]
  34. OkaH. IkaiY. KawamuraN. UnoK. YamadaM. HaradaK.I. UchiyamaM. AsukabeH. SuzukiM. Improvement of chemical analysis of antibiotics.J. Chromatogr. A1987393228529610.1016/S0021‑9673(01)94225‑6 3597604
    [Google Scholar]
  35. WakuiY. SaitohK. SuzukiN. Non-aqueous, reversed-phase, high-performance, thin-layer chromatography and column liquid chromatography of metal complexes of porphine.Chromatographia1986221-616016410.1007/BF02257319
    [Google Scholar]
  36. Grassini-StrazzaG. CristalliM. Comparison of Cn bonded silica gel thin-layer chromatographic plates: Conditions for use and separations of some barbiturates.J. Chromatogr. A1981214220921610.1016/S0021‑9673(00)98526‑1
    [Google Scholar]
  37. BrinkmanU.A.T. de VriesG. Chemically bonded stationary phases in (HP)TLC.Drug Determination in Therapeutic and Forensic Contexts.Berlin, HeidelbergSpringerLink19849910010.1007/978‑1‑4613‑2397‑6_12
    [Google Scholar]
  38. Del BubbaM. ChecchiniL. CincinelliA. LepriL. Enantioseparations by thin-layer chromatography.Methods Mol. Biol.20139702943
    [Google Scholar]
  39. JanickaM. Perišić-JanjićN. RóżyłoJ. Thin-layer and overpressured-layer chromatography for evaluation of the hydrophobicity of s -triazine derivatives.J. Planar Chromatogr. Mod. TLC20041710046847510.1556/JPC.17.2004.6.14
    [Google Scholar]
  40. Perišić-JanjićN. JovanovićB. JanjićN. RajkovićO. AntonovićD. Study of the retention behavior of newly synthesized s -triazine derivatives in RP TLC systems, and the lipophilicity of the compounds.J. Planar Chromatogr. Mod. TLC200316642543210.1556/JPC.16.2003.6.4
    [Google Scholar]
  41. Pyka-PająkA. ParysW. DołowyM. Comparison of the utility of RP-TLC technique and different computational methods to assess the lipophilicity of selected antiparasitic, antihypertensive, and anti-inflammatory drugs.Molecules20192417318710.3390/molecules24173187 31480762
    [Google Scholar]
  42. SchwackW. PellissierE. MorlockG. Analysis of unauthorized Sudan dyes in food by high-performance thin-layer chromatography.Anal. Bioanal. Chem.2018410225641565110.1007/s00216‑018‑0945‑6 29516134
    [Google Scholar]
  43. SajewiczM. StaszekD. NaticM. KowalskaT. Waksmundzka-HajnosM. TLC-MS versus TLC-LC-MS fingerprints of herbal extracts.J. Chromatogr. Sci.2011497560567
    [Google Scholar]
  44. RabttiE.H.M.A. NaticM.M. Milojkovic-OpsenicaD.M. TrifkovicJ.Ð. VuckovicI.M. VajsV.E. TešicŽ.L. RP TLC-based lipophilicity assessment of some natural and synthetic coumarins.J. Braz. Chem. Soc.201220122310.1590/S0103‑50532012000300020
    [Google Scholar]
  45. SharmaN. SinghH. SharmaA. Application of High-Performance Thin Layer Chromatography Mass spectrometry (HPTLC MS) in foodomics authenticity.Talanta Open202496100315
    [Google Scholar]
  46. MeyerT. KnittelfelderO. SmolnigM. RockenfellerP. Quantifying yeast lipidomics by high-performance thin-layer chromatography (HPTLC) and comparison to mass spectrometry-based shotgun lipidomics.Microb. Cell202411576810.15698/mic2024.02.815 38384676
    [Google Scholar]
  47. VlassaM. FilipM. ComanV. RP-HPTLC‒UV/VIS and RP-HPLC‒DAD determination of eight synthetic food dyes in alcoholic and soft drinks from the Romanian market.J. Planar Chromatogr. Mod. TLC202336644145410.1007/s00764‑023‑00281‑w
    [Google Scholar]
  48. YinD. GuanY. GuH. JiaY. zhangQ. Polymerized high internal phase emulsion monolithic material: A novel stationary phase of thin layer chromatography.RSC Adv.20177127303730910.1039/C6RA27609A
    [Google Scholar]
  49. FoudahA.I. AlamP. AnwerM.K. YusufogluH.S. Abdel-KaderM.S. ShakeelF. A Green RP-HPTLC-densitometry method for the determination of diosmin in pharmaceutical formulations.Processes20208781710.3390/pr8070817
    [Google Scholar]
  50. AlamP. ShakeelF. AlshehriS. IqbalM. FoudahA.I. AlqarniM.H. AljarbaT.M. AlhaitiA. Abdel BarF. Comparing the greenness and validation metrics of traditional and eco-friendly stability-indicating HPTLC methods for ertugliflozin determination.ACS Omega2024921230012301210.1021/acsomega.4c02399 38826538
    [Google Scholar]
  51. AlamP. ShakeelF. IqbalM. FoudahA.I. AlqarniM.H. AljarbaT.M. Abdel BarF. AlshehriS. Quantification of pomalidomide using conventional and eco-friendly stability-indicating HPTLC assays: A contrast of validation parameters.ACS Omega2023833306553066410.1021/acsomega.3c04382 37636909
    [Google Scholar]
  52. BangP.P. BhattH.G. Development of green RP- and green NP-HPTLC Methods for estimation of lenvatinib and comparative evaluation by AGREE.ACS Sustain. Chem. Eng.20231162249226310.1021/acssuschemeng.2c05767
    [Google Scholar]
  53. ShakeelF. AlamP. AlqarniM.H. IqbalM. Khalid AnwerM. AlshehriS. A greener RP-HPTLC-densitometry method for the quantification of apremilast in nanoformulations and commercial tablets: Greenness assessment by analytical eco-scale, ChlorTox, and AGREE methods.Arab. J. Chem.202417210557110.1016/j.arabjc.2023.105571
    [Google Scholar]
  54. AlamP. AlajmiM.F. ArbabA.H. ParvezM.K. SiddiquiN.A. AlqasoumiS.I. Al-RehailyA.J. Al-DosariM.S. BasudanO.A. Comparative study of antioxidant activity and validated RP-HPTLC analysis of rutin in the leaves of different Acacia species grown in Saudi Arabia.Saudi Pharm. J.201725571572310.1016/j.jsps.2016.10.010 28725144
    [Google Scholar]
  55. ShakeelF. AlqasoumiS.I. Eco-friendly RP-HPTLC method for determination of valerenic acid in methanolic extract of Valeriana officinalis and commercial herbal products.Lat. Am. J. Pharm.2020392420424
    [Google Scholar]
  56. AnastasP.T. WarnerJ.C. Principles of green chemistry. In Green chemistry.Theory Pract.1998291482114842
    [Google Scholar]
  57. López-LorenteÁ.I. Pena-PereiraF. Pedersen-BjergaardS. ZuinV.G. OzkanS.A. PsillakisE. The ten principles of green sample preparation.Trends Analyt. Chem.202214811653010.1016/j.trac.2022.116530
    [Google Scholar]
  58. ShahJ. KotadiyaR. A critical review on analytical methods for recently approved FDC drugs: Pregabalin and Etoricoxib.Crit. Rev. Anal. Chem.20225251048106810.1080/10408347.2020.1855411 33307732
    [Google Scholar]
  59. El-WaeyA.A. Abdel-SalamR.A. HadadG.M. El-GindyA. Eco friendly stability indicating HPTLC method for simultaneous determination of sofosbuvir and ledipasvir in pharmaceutical tablets and HPTLC-MS characterization of their degradation products.Microchem. J.202318610832410.1016/j.microc.2022.108324
    [Google Scholar]
  60. Poukens RenwartP. TitsM. WautersJ. AngenotL. >Reversed-phase HPTLC densitometric evaluation of fraxin inFraxinus Excelsior Leaves.J. Pharm. Biomed. Anal.19921010-121089109110.1016/0731‑7085(91)80126‑T
    [Google Scholar]
  61. NorfolkE. KhanS.H. FriedB. ShermaJ. Comparison of amino acid separations on high performance silica gel, cellulose, and C-18 reversed phase layers and application of HPTLC to the determination of amino acids in Biomphalaria glabrata snails.J. Liq. Chromatogr.19941761317132610.1080/10826079408013765
    [Google Scholar]
  62. BieganowskaM. PetruczynikA. ZobelA. Retention parameters of coumarins and flavonoids in binary reversed-phase HPTLC systems.J. Planar Chromatogr. Mod. TLC199694273279
    [Google Scholar]
  63. McCarthyK.E. WangQ. TsaiE.W. GilbertR.E. IpD.P. BrooksM.A. Determination of losartan and its degradates in COZAAR® tablets by reversed-phase high-performance thin-layer chromatography.J. Pharm. Biomed. Anal.1998174-567167710.1016/S0731‑7085(97)00251‑3 9682150
    [Google Scholar]
  64. WestgateE. ShermaJ. Determination of the sunscreen oxybenzone in lotions by reversed-phase HPTLC with ultraviolet absorption densitometry.J. Liq. Chromatogr. Relat. Technol.200023460961510.1081/JLC‑100101477
    [Google Scholar]
  65. NowakowskaJ. HalkiewiczJ. LukasiakJ.W. TLC determination of selected macrocyclic antibiotics using normal and reversed phases.Chromatographia2002565-636737310.1007/BF02491947
    [Google Scholar]
  66. Djaković-SekulićT. SârbuC. Perišić-JanjićN. A comparative study of the lipophilicity of benzimidazole and benztriazole derivatives by RPTLC.J. Planar Chromatogr. Mod. TLC20051810643243610.1556/JPC.18.2005.6.6
    [Google Scholar]
  67. BoberK. GarusM. RP-HPTLC application in the investigation of solubility in water of long-chain fatty acids.J. Liq. Chromatogr. Relat. Technol.200629192787279410.1080/10826070601001476
    [Google Scholar]
  68. MishraN. GuptaA.P. SinghB. KaulV.K. AhujaP.S. A rapid determination of podophyllotoxin in Podophyllum hexandrum by reverse phase high performance thin layer chromatography.J. Liq. Chromatogr. Relat. Technol.200528567769110.1081/JLC‑200048886
    [Google Scholar]
  69. BhandariP. KumarN. GuptaA.P. SinghB. KaulV.K. A rapid RP-HPTLC densitometry method for simultaneous determination of major flavonoids in important medicinal plants.J. Sep. Sci.200730132092209610.1002/jssc.200700066 17654615
    [Google Scholar]
  70. SkibińskiR. KomstaŁ. KosztyłaI. Comparative validation of quetiapine Determination in tablets by NP-HPTLC and RP-HPTLC with densitometric and videodensitometric detection.J. Planar Chromatogr. Mod. TLC200821428929410.1556/JPC.21.2008.4.12
    [Google Scholar]
  71. BriciuR.D. Kot-WasikA. WasikA. NamieśnikJ. SârbuC. The lipophilicity of artificial and natural sweeteners estimated by reversed-phase thin-layer chromatography and computed by various methods.J. Chromatogr. A20101217233702370610.1016/j.chroma.2010.03.057 20430396
    [Google Scholar]
  72. GandhiD. MehtaP. Simultaneous RP-HPTLC method for determination of levodopa, carbidopa, and entacapone in combined tablet dosage form.J. Planar Chromatogr. Mod. TLC201124323624110.1556/JPC.24.2011.3.12
    [Google Scholar]
  73. KaurP. ChaudharyA. SinghB. Gopichand, Simultaneous quantification of flavonoids and biflavonoids in Ginkgo biloba using RP-HPTLC densitometry method.J. Planar Chromatogr. Mod. TLC201124650751210.1556/JPC.24.2011.6.10
    [Google Scholar]
  74. CozmaA. VlaseL. IgnatA. ZahariaV. GocanS. GrinbergN. Prediction of the lipophilicity of eight newp-toluenesulfonyl-hydrazinothiazole and hydrazine-bis-thiazole derivatives: A comparison between Rp-Hptlc and Rp-Hplc.J. Liq. Chromatogr. Relat. Technol.201235459060110.1080/10826076.2011.631658
    [Google Scholar]
  75. ShewiyoD.H. KaaleE. RishaP.G. DejaegherB. Smeyers-VerbekeJ. Vander HeydenY. Optimization of a reversed-phase-high-performance thin-layer chromatography method for the separation of isoniazid, ethambutol, rifampicin and pyrazinamide in fixed-dose combination antituberculosis tablets.J. Chromatogr. A2012126023223810.1016/j.chroma.2012.08.044 22981506
    [Google Scholar]
  76. KaurP. ChaudharyA. KatiyarA. SinghB. Rapid validated RP-HPTLC method for the quantification of major bioactive constituents of Crataegus oxyacantha L.J. Planar Chromatogr. Mod. TLC201225541541910.1556/JPC.25.2012.5.5
    [Google Scholar]
  77. NagarajuP.M. SanganalmathP.U. KemparajuK. MohanB.M. Evaluation of separation parameters for selected organophosphorus fungicides of forensic importance by RP-HPTLC.Acta Chromatogr.201224225326210.1556/AChrom.24.2012.2.8
    [Google Scholar]
  78. RautG.S. ShirkhedkarA.A. UgaleV.G. SuranaS.J. Simultaneous determination of prednisolone acetate and moxifloxacin hydrochloride in bulk and in eye drop using Rp–Hptlc.J. Liq. Chromatogr. Relat. Technol.201437452853710.1080/10826076.2012.749495
    [Google Scholar]
  79. VijayP. JineetG. Statistical evaluation of NP-HPTLC and RPHPTLC method for the simultaneous estimation of cinitapride and pantoprazole in bulk and in capsule formulation.Indian J. Res.201335231234
    [Google Scholar]
  80. MieszkowskiD. SrokaW.D. MarszałłM.P. Influence of the anionic part of 1-alkyl-3-methylimidazolium-based ionic liquids on the chromatographic behavior of perazine in RP-HPTLC.J. Liq. Chromatogr. Relat. Technol.201538151499150610.1080/10826076.2015.1063508
    [Google Scholar]
  81. KumarD. KumarR. SinghB. AhujaP.S. Reproducible reversed-phase high-performance thin-layer chromatography-based quality-control method for the endangered medicinal plant Picrorhiza kurroa Royle ex Benth.J. Planar Chromatogr. Mod. TLC201528325626110.1556/1006.2015.28.3.11
    [Google Scholar]
  82. AlAjmiM.F. AlamP. SiddiquiN.A. BasudanO.A. HussainA. Quantitative analysis of biomarker rutin in different species of genus Ficus by validated NP and RP-HPTLC methods.Pak. J. Pharm. Sci.2015286Suppl.22132220 26687740
    [Google Scholar]
  83. DuraipandiS. SelvakumarV. ErN.Y. Reverse engineering of Ayurvedic lipid based formulation, ghrita by combined column chromatography, normal and reverse phase HPTLC analysis.BMC Complement. Altern. Med.20151516210.1186/s12906‑015‑0568‑9 25885542
    [Google Scholar]
  84. ChassetT. HäbeT.T. RistivojevicP. MorlockG.E. Profiling and classification of French propolis by combined multivariate data analysis of planar chromatograms and scanning direct analysis in real time mass spectra.J. Chromatogr. A2016146519720410.1016/j.chroma.2016.08.045 27599799
    [Google Scholar]
  85. JainM.W. ShirkhedkarA.A. SuranaS.J. RP-HPTLC method for determination of Voriconazole in bulk and in cream formulation.Arab. J. Chem.201710S355S36010.1016/j.arabjc.2012.09.006
    [Google Scholar]
  86. AlamP. FoudahA.I. ZaatoutH.H. KamalY.T. Abdel-KaderM.S. Quantification of glycyrrhizin biomarker in glycyrrhiza glabra rhizome and baby herbal formulations by validated RP-HPTLC methods.Afr. J. Tradit. Complement. Altern. Med.201714219820510.21010/ajtcam.v14i2.21 28573236
    [Google Scholar]
  87. AlamP. ParvezM.K. ArbabA.H. Al-DosariM.S. Quantitative analysis of rutin, quercetin, naringenin, and gallic acid by validated RP- and NP-HPTLC methods for quality control of anti-HBV active extract of Guiera senegalensis.Pharm. Biol.20175511317132310.1080/13880209.2017.1300175 28283004
    [Google Scholar]
  88. RathodR.H. PatilA.S. ShirkhedkarA.A. Novel NP and RP-HPTLC in praxis for simultaneous estimation of chlorthalidone and cilnidipine in bulk and pharmaceutical formulation.Anal. Chem. Lett.20188686287110.1080/22297928.2018.1527252
    [Google Scholar]
  89. FoudahA.I. AlamP. AlqarniM.H. SalkiniM.A.A. Abdel-KaderM.S. Development of a reversed-phase high-performance thin-layer chromatography method for the simultaneous determination of trigonelline and diosgenin biomarkers in Trigonella foenum-graecum L. seeds grown in variable environment.J. Planar Chromatogr. Mod. TLC201932537938410.1556/1006.2019.32.5.5
    [Google Scholar]
  90. FoudahA.I. ShakeelF. AlqarniM.H. YusufogluH.S. SalkiniM.A. AlamP. Determination of trans-anethole in essential oil, methanolic extract and commercial formulations of Foeniculum vulgare mill using a green RP-HPTLC-densitometry method.Separations2020745110.3390/separations7040051
    [Google Scholar]
  91. AlamP. HaqN. AlqarniM.H. ShakeelF. Quantitative analysis of emtricitabine in dosage forms using green RP-HPTLC and routine NP-HPTLC methods—A contrast of validation parameters.ACS Omega2020551334703347710.1021/acsomega.0c05537 33403309
    [Google Scholar]
  92. FoudahA.I. ShakeelF. AlqarniM.H. AlamP. A rapid and sensitive stability-indicating green RP-HPTLC method for the quantitation of flibanserin compared to green NP-HPTLC method: Validation studies and greenness assessment.Microchem. J.202116410596010.1016/j.microc.2021.105960
    [Google Scholar]
  93. FoudahA.I. ShakeelF. AlamP. AlqarniM.H. Abdel-KaderM.S. AlshehriS. A sustainable reversed-phase hptlc method for the quantitative estimation of hesperidin in traditional and ultrasound-assisted extracts of different varieties of citrus fruit peels and commercial tablets.Agronomy2021119174410.3390/agronomy11091744
    [Google Scholar]
  94. AlqarniM.H. AlamP. FoudahA.I. MuharramM.M. ShakeelF. Combining normal/reversed-phase HPTLC with univariate calibration for the piperine quantification with traditional and ultrasound-assisted extracts of various food spices of Piper nigrum L. under green analytical chemistry viewpoint.Molecules202126373210.3390/molecules26030732 33572524
    [Google Scholar]
  95. PatilM.R. GanorkarS.B. PatilA.S. ShirkhedkarA.A. SuranaS.J. A converged pharmaceutical analysis supported with hydrotropy & DoE with dual HPTLC and stress studies for estimation of tolvaptan.Microchem. J.202116710632810.1016/j.microc.2021.106328
    [Google Scholar]
  96. AlqarniM.H. AlamP. ShakeelF. FoudahA.I. AlshehriS. Highly sensitive and ecologically sustainable reversed-phase HPTLC method for the determination of hydroquinone in commercial whitening creams.Processes202199163110.3390/pr9091631
    [Google Scholar]
  97. AlamP. ShakeelF. AlqarniM.H. FoudahA.I. GhoneimM.M. AlshehriS. Rapid, highly-sensitive and ecologically greener reversed-phase/normal-phase HPTLC technique with univariate calibration for the determination of trans-resveratrol.Separations202181018410.3390/separations8100184
    [Google Scholar]
  98. AlamP. Salem-BekhitM.M. Al-JoufiF.A. AlqarniM.H. ShakeelF. Quantitative analysis of cabozantinib in pharmaceutical dosage forms using green RP-HPTLC and green NP-HPTLC methods: A comparative evaluation.Sustain. Chem. Pharm.20212110041310.1016/j.scp.2021.100413
    [Google Scholar]
  99. AlamP. ShakeelF. AlqarniM.H. FoudahA.I. FaiyazuddinM. AlshehriS. Rapid, sensitive, and sustainable reversed-phase HPTLC method in comparison to the normal-phase HPTLC for the determination of pterostilbene in capsule dosage form.Processes202198130510.3390/pr9081305
    [Google Scholar]
  100. FoudahA.I. ShakeelF. AlqarniM.H. RossS.A. SalkiniM.A. AlamP. Green NP-HPTLC and green RP-HPTLC methods for the determination of thymoquinone: A contrast of validation parameters and greenness assessment.Phytochem. Anal.202233218419310.1002/pca.3078 34227167
    [Google Scholar]
  101. AlamP. ShakeelF. AliA. AlqarniM.H. FoudahA.I. AljarbaT.M. AlkholifiF.K. AlshehriS. GhoneimM.M. AliA. Simultaneous determination of caffeine and paracetamol in commercial formulations using greener normal-phase and reversed-phase HPTLC methods: A contrast of validation parameters.Molecules202227240510.3390/molecules27020405 35056720
    [Google Scholar]
  102. Abdel-KaderM.S. AlqarniM.H. BaykanS. OztürkB. SalkiniM.A.A. YusufogluH.S. AlamP. FoudahA.I. Ecofriendly validated RP-HPTLC method for simultaneous determination of the bioactive sesquiterpene coumarins feselol and samarcandin in five ferula species using green solvents.Separations20229820610.3390/separations9080206
    [Google Scholar]
  103. PatilA.S. MundadaA.B. ShravaneR.S. MundadaP.A. SuranaS.J. Normal- and reversed-phase high-performance thin-layer chromatography methods for the simultaneous determination of remogliflozin etabonate and metformin hydrochloride antidiabetic drugs in bulk and tablet formulation.J. Planar Chromatogr. Mod. TLC2023361899710.1007/s00764‑023‑00229‑0
    [Google Scholar]
/content/journals/cac/10.2174/0115734110320008240628090739
Loading
/content/journals/cac/10.2174/0115734110320008240628090739
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test