Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

The computation of the envelope spectrum of vibration signals is a crucial aspect of vibration analysis and machinery diagnostics, enabling engineers to extract valuable information about the dynamic behavior of mechanical systems. This study provides an overview of various methods and techniques employed to compute the envelope spectrum, including the Hilbert transform, analytic signal processing, and demodulation techniques. The Hilbert transform is a powerful mathematical tool that produces the analytic representation of a signal, allowing for the extraction of the instantaneous amplitude envelope. Analytic signal processing techniques leverage the Hilbert transform to compute the analytic signal, which provides a complex-valued representation of the original signal, facilitating envelope extraction. Demodulation techniques involve the multiplication of the vibration signal by a high-pass filtered version of itself to suppress high-frequency components, leaving behind only the slowly varying envelope. By employing these methods and techniques, engineers can effectively analyze vibration signals, identify amplitude modulations, detect modulation sidebands, and diagnose faults in machinery and structural components. This study aims to provide a comprehensive understanding of envelope spectrum computation methods, offering insights into their theoretical foundations, practical applications, and prospects in vibration analysis and machinery diagnostics.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279326563240725095526
2024-08-15
2025-09-14
Loading full text...

Full text loading...

References

  1. KhaoulaR.S. GhemariZ. BenslimaneT. Extraction of the relative sensitivity model and improvement of the piezoelectric accelerometer performances2018 International Conference on Signal, Image, Vision and their Applications (SIVA)Guelma, Algeria2018
    [Google Scholar]
  2. GhemariZ. SaadS. ’The use of mechanical sensitivity model to enhance capacitive sensor characteristics.Analog Integr Circuits Sign. Proc.201999349357
    [Google Scholar]
  3. GhemariZ Enhancement of capacitive accelerometer operation by parameters improvement.Int J Numer Model Electron Netw Dev Fields20193222e2568
    [Google Scholar]
  4. GhemariZ. Appropriate choice of damping rate and frequency margin for improvement of the piezoelectric sensor measurement accuracy.J Adv Manuf Syst2021203537548
    [Google Scholar]
  5. BychkovA. BychkovaI. SlavutskiiL. Active ultrasonic vibration control of electrical equipment: Correlation signal processing.2019 International Ural Conference on Electrical Power Engineering (UralCon)Chelyabinsk, Russia201924424810.1109/URALCON.2019.8877666
    [Google Scholar]
  6. WangX. WangP. LiQ. WangH. XiaM. WangR. Vibration signal processing method of GIS equipment based on wavelet analysis and spectrum analysis.Electronic and Automation Control Conference (ITNEC)Chengdu, China20191215121910.1109/ITNEC.2019.8729207
    [Google Scholar]
  7. ChaoJ. RuihongJ. WenH. JianiH. Comparative experiments of optical fiber sensor and piezoelectric sensor based on vibration detection.2020 IEEE 4th International Conference on Frontiers of Sensors Technologies (ICFST)06-09 November 2020Shanghai, China202010.1109/ICFST51577.2020.9294766
    [Google Scholar]
  8. KulaçS. A signal processing approach for the failure analysis of rolling-element bearing of vehicle brake tester used at a vehicle inspection station.2019 IEEE East-West Design & Test Symposium (EWDTS)13-16 September 2019Batumi, Georgia201910.1109/EWDTS.2019.8884463
    [Google Scholar]
  9. KoeneI. HaikonenS. TiainenT. Keski-RahkonenJ. ManngårdM. ViitalaR. On-shaft wireless vibration measurement unit and signal processing method for torsional and lateral vibration.Transac Mechatron20222765857586810.1109/TMECH.2022.3189954
    [Google Scholar]
  10. GhemariZ. SaadS. Parameters improvement and suggestion of new design of capacitive accelerometer.Analog Integr Circuits Sign. Proc.201792443451
    [Google Scholar]
  11. GhemariZ. SaadS. AmroucheA. LakehalA. New model of piezoelectric accelerometer relative movement modulus.Transac Inst Measurement Cont2015378932941
    [Google Scholar]
  12. GhemariZ. Modeling and enhancement of mechanical sensitivity of vibration sensor.J Vibrat Cont2013201422342240
    [Google Scholar]
  13. GhemariZ. New formula for the piezoresistive accelerometer motion acceleration and experimental validation.J Adv Manuf Syst20171615765
    [Google Scholar]
  14. GhemariZ. Minimisation of resonance phenomena effect of piezoresistive accelerometer.2015 4th International Conference on Systems and Control (ICSC)28-30 April 2015Sousse, Tunisia2015243246
    [Google Scholar]
  15. GhemariZ. SaadS. Improvement of piezoresistive accelerometer performance.3rd International Conference on Systems and Control29-31 October 2013Algiers, Algeria2013759762
    [Google Scholar]
  16. KhablovD. Signal processing of doppler microwave vibration sensors with quadrature transformation.2021 23rd International Conference on Digital Signal Processing and its Applications (DSPA)24-26 March 2021Moscow, Russian Federation202110.1109/DSPA51283.2021.9535807
    [Google Scholar]
  17. SahooT.S. KushwahK. SunaniyaA.K. Health monitoring of wind turbine blades through vibration signal using advanced signal processing techniques.2020 Advanced Communication Technologies and Signal Processing.Silchar, India202016
    [Google Scholar]
  18. BolshakovaA.V. BoronakhinA.M. KlionskyD.M. LarionovD.Y. TkachenkoA.N. ShalymovR.V. Peculiarities of vibration signal processing techniques application to inertial way diagnostics.2023 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS)Petrozavodsk, Russian Federation2023515510.1109/ITQMTIS58985.2023.10346425
    [Google Scholar]
  19. LiC. TangZ.H. TangY. A signal processing method for extracting shaft speed information from vibration signal.2021 Global Reliability and Prognostics and Health Management.15-17 October 2021Nanjing, China202116
    [Google Scholar]
  20. GhemariZ. Analysis and optimization of vibration sensor.2018 IEEE International Conference on Smart Materials and Spectroscopy (SMS)12-15 October 2018Hammamet, Tunisia2018
    [Google Scholar]
  21. GhemariZ. Upgrading of piezoresistive accelerometer response.Int Conf Model, Identificat. Cont.2016201654454910.1109/ICMIC.2016.7804172
    [Google Scholar]
  22. GhemariZ. SaadS. Reducing the measurement error to optimize the sensitivity of the vibration sensor.IEEE Sensors J201414515271532
    [Google Scholar]
  23. GhemariZ. SaadS. Defects diagnosis by vibration analysis and improvement of vibration sensor measurement accuracy.Sens. Lett.2019178608613
    [Google Scholar]
  24. GhemariZ. Decrease of the resonance phenomenon effect and progress of the piezoelectric sensor correctness2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)Algiers, Algeria201810.1109/CISTEM.2018.8613612
    [Google Scholar]
  25. GhemariZ. SaadS. Simulation and experimental validation of new model for the piezoresistive accelerometer displacement.Sens. Lett.201715213213610.1166/sl.2017.3792
    [Google Scholar]
  26. LakehalA GhemariZ Suggestion for a new design of the piezoresistive accelerometer.Ferroelectrics2015493193102
    [Google Scholar]
  27. SaadS GhemariZ HerousL HadjadjOE Transducer (Accelerometer) modeling and simulation.Asian J Inf Technol2007615457
    [Google Scholar]
  28. ChengL. LiS. LuJ. YangW. Research on multiple cross correlation fusion method of fault vibration signal.2021 Global Reliability and Prognostics and Health Management.15-17 October 2021Nanjing, China202116
    [Google Scholar]
  29. XingZ. GaoW. ChuaiG. Research on sleeping position recognition algorithm based on human body vibration signal.2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA)21-23 January 2022Shenyang, China202210.1109/ICPECA53709.2022.9719095
    [Google Scholar]
  30. SunC. ChengG. Discussion on the difference in the effect of multiple processing methods of vibration signals of hydropower units.2023 14th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)26-28 May 2023Cape Town, South Africa202310.1109/ICMIMT59138.2023.10200037
    [Google Scholar]
  31. SunH. ZhangZ. Sparse representation of vibration signals of rolling bearing based on K-SVD combined with DCT.2021 40th Chinese Control Conference (CCC)26-28 July 2021Shanghai, China202110.23919/CCC52363.2021.9550352
    [Google Scholar]
  32. LopesW.N. Monitoring of self-excited vibration in grinding process using time-frequency analysis of acceleration signals.2018 13th IEEE International Conference on Industry Applications (INDUSCON)12-14 November 2018Sao Paulo, Brazil201810.1109/INDUSCON.2018.8627198
    [Google Scholar]
  33. GhemariZ. LakehalA. Vibration sensor mechanical sensitivity improvement.2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)03-06 November 2014Tunis, Tunisia2014
    [Google Scholar]
  34. GhemariZ. Modélisation, simulation et analyse expérimentale du capteur de vibration (accéléromètre).Thèse de doctorat, Université de M’sila2013
    [Google Scholar]
  35. GhemariZ BelkhiriS SaadS Improvement of the relative sensitivity for obtaining a high performance piezoelectric sensor.IEEE Instrument Measure Magaz20232644956
    [Google Scholar]
  36. LakehalA. ‘’ Proposition d’une nouvelle formule d’accélération du mouvement pour l’accéléromètre” 3ème Conférence Internationale sur la Maintenance et la Sécurité Industrielle.AlgérieSkikda2015
    [Google Scholar]
  37. LiJ. SuiX. XuX. LiG. ZhengN. WangZ. Measurement and frequency characteristics analysis of 500 kv transformer surface vibration signals.2023 8th Asia Conference on Power and Electrical Engineering (ACPEE)14-16 April 2023Tianjin, China202310.1109/ACPEE56931.2023.10135602
    [Google Scholar]
  38. MaoK. Reactor vibration signal processing method based on isolated forest and fuzzy C-means algorithm.2023 5th International Conference on System Reliability and Safety Engineering (SRSE)Beijing, China202355355810.1109/SRSE59585.2023.10336095
    [Google Scholar]
  39. KosakaD. KumakuraY. KojimaF. YamasakiH. New eddy current probe for vibration signal suppression.IEEE Trans. Magn.20225821510.1109/TMAG.2021.3081441
    [Google Scholar]
  40. YuL. GuoH. Laser doppler vibration signal demodulation algorithm and fpga implementation.2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP)19-21 May 2023Chengdu, China202310.1109/ICMSP58539.2023.10171029
    [Google Scholar]
  41. GhemariZ. BelkhiriS. Capacitive Sensor accuracy optimisation by the frequency range appropriate choice.Res. Sq.202110.21203/rs.3.rs‑863179/v1
    [Google Scholar]
  42. GhemariZ. Enhancement of the vibratory analysis technique by the accelerometer characteristics evolution.The 7th International Conference on Control Engineering & Information TechnologyTetouan – Morocco2019
    [Google Scholar]
  43. GhemariZ. BelkhiriS. SaadS. A capacitive sensor with high measurement accuracy and low electrical energy consumption.Appl Phys A202312958
    [Google Scholar]
  44. GhemariZ. Improvement of the vibration analysis technique by optimizing the parameters of the piezoelectric accelerometer.2022 IEEE 21st international Conference on Sciences and Techniques of Automatic Control and Computer Engineering.Sousse, Tunisia2022183186
    [Google Scholar]
  45. GhemariZ. A piezoelectric sensor with high accuracy and reduced measurement error.Res Sq.2023
    [Google Scholar]
  46. LiaoZ. ChenP. A vibration signal filtering method based on KL divergence genetic algorithm – with application to low speed bearing fault diagnosis.2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)19-21 November 2018Shanghai, China201810.1109/ICDSP.2018.8631550
    [Google Scholar]
  47. ZhangK. GuX. Rolling bearing vibration signal feature extraction based on SVD and mathematical morphological fractal dimension spectrum.2022 5th International Conference on Information Communication and Signal Processing (ICICSP)Shenzhen, China2022757910.1109/ICICSP55539.2022.10050578
    [Google Scholar]
  48. HeB. MengX. GuJ. LiW. YuJ. HHT for vibration signal analysis in tower bolt looseness detection.2020 International Conference on Wireless Communications and Smart Grid (ICWCSG)Qingdao, China2020283110.1109/ICWCSG50807.2020.00015
    [Google Scholar]
  49. HaoZ. LiuT. SunJ. Dual-Channel High Frequency Vibration Compensation Processing for Terahertz SAR Imaging2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)17-19 October 2020Chengdu, China202010.1109/CISP‑BMEI51763.2020.9263527
    [Google Scholar]
  50. GhemariZ. Appropriate choice of Capacitive sensor bandwidth.Res. Sq.2023
    [Google Scholar]
  51. BelkhiriSalah GhemariZine SaadSalah Reduction of measurement error of the piezoelectric sensor.Séminaire International en Génie Industriel et Mathématiques Appliquées (SIGIMA’2022)Skikda, Algeria2022
    [Google Scholar]
  52. SunB. ZhouS. WangC. Application of wavelet soft threshold denoising algorithm based on emd decomposition in vibration signals.2019 6th International Conference on Systems and Informatics (ICSAI)02-04 November 2019Shanghai, China201910.1109/ICSAI48974.2019.9010456
    [Google Scholar]
  53. GuoW. Early detection of signal transients using a hybrid signal processing method for gearbox fault diagnosis.2018 IEEE International Conference on Prognostics and Health Management (ICPHM)Seattle, WA, USA20181610.1109/ICPHM.2018.8448614
    [Google Scholar]
  54. TanguduR. SahuP.K. Dynamic range improvement of backscattered optical signals using signal processing techniques.2020 IEEE Applied Signal Processing Conference (ASPCON)Kolkata, India2020666910.1109/ASPCON49795.2020.9276692
    [Google Scholar]
  55. ZhangL. LinY. TaoH. LiY. ShengW. WangY. Micro-vibration Signal Extraction for Radar Based on Additive Constant in Low SNR2021 CIE International Conference on Radar (Radar)Haikou, Hainan, China202146847110.1109/Radar53847.2021.10027945
    [Google Scholar]
  56. KrishnakumarS. Digital signal processing on 3-axis accelerometer.2023 International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS)Coimbatore, India2023317321
    [Google Scholar]
  57. GhemariZ. The accelerometer characteristics improvement.The 7th International Conference on Control Engineering & Information Technology24-26 October 2019Tetouan – Morocco2019
    [Google Scholar]
  58. Morakchi MR, Ghemari Z, Defdaf M, Guezi A, Djeffal Selman, Khebal Merwane “MEMS accelerometer and gyroscope in navigation technology”3rd International Conference on Applied Engineering and Natural SciencesKonya, Turkey, July 20-23, 2022
    [Google Scholar]
  59. MorakchiM.R. The best choice of the capacitive accelerometer damping rate for reduction of the measurement error.La 1ere Conférence Internationale d’Electrotechnique et Technologies Modernes CIETM’22Souk Ahras2022
    [Google Scholar]
  60. MorakchiR. GhemariZ. DefdafM. The optimal accelerometer parameter integrated into the mathematical model for avoiding detection errors.1st International Conference on Engineering and Applied Natural Sciences10-13 May in 2022Konya/Turkey2022
    [Google Scholar]
  61. GhemariZ. SaadS. The use of mechanical sensitivity model to enhance capacitive sensor characteristics.Analog Integr Circuits Sign. Proc.2019992349357
    [Google Scholar]
  62. GhemariZ. Improvement of the piezoelectric sensor by the progress of the measurement accuracy.IEEE International Conference on Smart Materials and Spectroscopy (SMS’2018)Yassmine Hammamet (Tunisia)IEEE2018
    [Google Scholar]
  63. GhemariZ. BelkhiriS. BezafY. HamachA. SaadS. Application of the FMECA method for optimizing the reliability of the 1600T press.J. Adv. Manuf. Syst.2024112410.1142/S0219686724500288
    [Google Scholar]
  64. GhemariZine Navigating fatigue analysis with rain flow counting: A practical overview.Nov J Appl Sci Res20241116
    [Google Scholar]
  65. AbboudD. AntoniJ. Sieg-ZiebaS. EltabachM. Envelope analysis of rotating machine vibrations in variable speed conditions: A comprehensive treatment.Mechan Syst Sign Process.201784Part A200226
    [Google Scholar]
  66. MalikS. GuptaK. GuptaD. SinghA. IbrahimM. Ortega-MansillaA. GoyalN. HamamH. Intelligent load-balancing framework for fog-enabled communication in healthcare.Electronics (Basel)202211456610.3390/electronics11040566
    [Google Scholar]
  67. KakkarL. GuptaD. TanwarS. SaxenaS. AlsubhiK. AnandD. Delgado NoyaI. GoyalN. A secure and efficient signature scheme for iot in healthcare.Comput. Mater. Continua20227336151616810.32604/cmc.2022.023769
    [Google Scholar]
  68. KhullarV. SinghH.P. MiroY. AnandD. MohamedH.G. GuptaD. KumarN. GoyalN. IoT fog-enabled multi-node centralized ecosystem for real time screening and monitoring of health information.Appl. Sci. (Basel)20221219984510.3390/app12199845
    [Google Scholar]
  69. HarliantoP.A. SetiawanN.A. AdjiT.B. Combining Support Vector Machine – Fast Fourier Transform (SVM – FFT) for improving accuracy on broken bearing diagnosis. 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)08-09 December 2022Yogyakarta, Indonesia202210.1109/ISRITI56927.2022.10052801
    [Google Scholar]
  70. Rota-RodrigoS. López-AldabaA. Pérez-HerreraR.A. del Carmen López BautistaM. EstebanÓ. López-AmoM. Simultaneous measurement of humidity and vibration based on a microwire sensor system using fast fourier transform technique.J Lightwave Technol201634194525453010.1109/JLT.2016.2580003
    [Google Scholar]
  71. LinL. GuanD. ZhangD. FengJ. XuL. Refined analysis of heart sound based on Hilbert-Huang transform.2012 IEEE International Conference on Information and Automation06-08 June 2012Shenyang, China201210010510.1109/ICInfA.2012.6246790
    [Google Scholar]
  72. MahbubT.N. HossainS.S. AkashR.A. RezaS.M.S. TasnimZ. Implementing Fuzzy Analytical Hierarchy Process (FAHP) To measure malicious behaviour of codes in smart meter.2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST)05-07 January 2021Dhaka, Bangladesh202110.1109/ICREST51555.2021.9331027
    [Google Scholar]
  73. DžafićD. DžafićI. Computation of discrete-time analytic signals.2023 XXIX International Conference on Information, Communication and Automation Technologies (ICAT)11-14 June 2023Sarajevo, Bosnia202316
    [Google Scholar]
  74. WuC. LinY. YeS. ZhangG. MaH. JinZ. Synchronous digital quadrature demodulation technique for resonant optic gyroscopes.2018 Asia Communications and Photonics Conference (ACP)26–29 October 2018Hangzhou, China20181310.1109/ACP.2018.8596301
    [Google Scholar]
  75. SerovA.N. ShatokhinA.A. AntipovG.V. Method to reduce the measurement error of the spectrum by the demodulation technique.2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)15-18 May 20Moscow, Russia20181510.1109/ICIEAM.2018.8728608
    [Google Scholar]
  76. MiticheL. Houda Adamou-MiticheA.B. NaimiH. Medical image denoising using dual tree complex thresholding wavelet transform.2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT)03-05 December 2013Amman, Jordan20131510.1109/AEECT.2013.6716477
    [Google Scholar]
  77. RohmahY.S. DinataI. NurmantrisD.A. Performance comparison of Orthogonal Wavelet Division Multiplexing (OWDM) system using discrete wavelet transform and wavelet packet transform on Rayleigh channel.2016 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob)13-15 September 2016Bandung, Indonesia201610410810.1109/APWiMob.2016.7811431
    [Google Scholar]
  78. DeepaV. SangeethaS.K.B. Detection of lung cancer disease using optimized long short-term memory based on improved gray wolf optimization.Int J Intell Syst Appl Eng202412327322744
    [Google Scholar]
  79. SangeethaS.K.B. MathivananS.K. KarthikeyanP. RajaduraiH. ShivahareB.D. MallikS. QinH. An enhanced multimodal fusion deep learning neural network for lung cancer classification.Syst Soft Comput20236200068
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279326563240725095526
Loading
/content/journals/swcc/10.2174/0122103279326563240725095526
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test