Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

Background

Unmanned Aerial Vehicles (UAVs) pose significant security risks to critical infrastructures, potentially leading to accidents, attacks, or illicit surveillance. Robust prevention measures are essential around strategic facilities. The navigation and control of UAV systems fundamentally depend on the Global Positioning System (GPS). Consequently, jamming or spoofing the GPS navigation system can significantly hinder the control and direct UAVs to their specified destinations. This paper introduces a novel hybrid spoofing/spot jamming system aimed at fortifying security against UAV threats.

Objectives

This study aims to propose and evaluate the efficiency of a hybrid spoofing/spot-jamming system to bolster security against UAVs.

Methods

Leveraging a Software-Defined Radio (SDR) and complementary software tools, we generated spoofing and jamming signals targeting the civilian-use signals of GPS satellites at the L1 frequency (1575.42 MHz), incorporating the Coarse Acquisition (C/A) code. The system enables flexible timing adjustments within the navigation message to simulate fictitious locations.

Results

Through comprehensive testing involving multiple commercial UAVs across three distinct scenarios—reactive spoofing, proactive spoofing, and spot jamming followed by spoofing—the experiments demonstrated superior efficacy in proactive spoofing and spot jamming followed by GPS spoofing, compared to reactive spoofing alone.

Conclusion

Proactive spoofing and spot jamming, followed by GPS spoofing, emerge as more effective strategies for countering UAV threats, offering enhanced security measures for critical infrastructures vulnerable to UAV intrusions. This hybrid approach holds promise in augmenting existing defense mechanisms against evolving UAV-based security risks.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279318064240708102401
2024-07-26
2025-09-13
Loading full text...

Full text loading...

References

  1. ColominaI. MolinaP. Unmanned aerial systems for photogrammetry and remote sensing: A review.ISPRS J. Photogramm. Remote Sens.201492799710.1016/j.isprsjprs.2014.02.013
    [Google Scholar]
  2. ZhangL. WangY. HanZ. Safeguarding UAV-enabled wireless power transfer against aerial eavesdropper: A colonel blotto game.IEEE Wirel. Commun. Lett.202211350350710.1109/LWC.2021.3133891
    [Google Scholar]
  3. GarcíaB. OlaldeK. SecoA. Moreno-Fernández-de-LecetaA. López-GuedeJ. Applications for combinations of sensors and UAVs.Int. J. Sensors Wirel. Commun. Control201542778710.2174/221032790402150514155257
    [Google Scholar]
  4. ShinH. ChoiK. ParkY. ChoiJ. KimY. Security analysis of FHSS-type drone controller.Lect. Notes Comput. Sci.20169503224025310.1007/978‑3‑319‑31875‑2_20
    [Google Scholar]
  5. ValenteJ CardenasAA Understanding security threats in consumer drones through the lens of the discovery quadcopter family.IoTS&P '17: Proceedings of the 2017 Workshop on Internet of Things Security and Privacy2017313610.1145/3139937.3139943
    [Google Scholar]
  6. Leela KrishnaC.G. RobinR.M. A review on cybersecurity vulnerabilities for unmanned aerial vehicles.2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR),Shanghai, China, 2017, pp. 194-199.10.1109/SSRR.2017.8088163
    [Google Scholar]
  7. DeyV. PudiV. ChattopadhyayA. EloviciY. Security vulnerabilities of unmanned aerial vehicles and countermeasures: An experimental study.Proc. IEEE Int. Conf. VLSI. Des.201839840310.1109/VLSID.2018.97
    [Google Scholar]
  8. MohsanS.A.H. OthmanN.Q.H. LiY. AlsharifM.H. KhanM.A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends.Intell. Serv. Robot.202316110913710.1007/s11370‑022‑00452‑436687780
    [Google Scholar]
  9. ZhangL. WangZ. ZhangH. MinM. WangC. NiyatoD. HanZ. Anti-jamming colonel blotto game for underwater acoustic backscatter communication.IEEE Trans. Vehicular Technol.2024202411510.1109/TVT.2024.3367935
    [Google Scholar]
  10. HuttunenM. Civil unmanned aircraft systems and security: The European approach.J. Transp. Secur.2019123-48310110.1007/s12198‑019‑00203‑0
    [Google Scholar]
  11. KimK. LeeC. KimH. ParkK. KimK. Variation in the polarization loss factor in an unmanned aerial vehicle jamming link due to the attitude change.Appl. Sci.202111221072510.3390/app112210725
    [Google Scholar]
  12. ArafatM.Y. AlamM.M. MohS. Vision-based navigation techniques for unmanned aerial vehicles: Review and challenges.Drones2023728910.3390/drones7020089
    [Google Scholar]
  13. SathyamoorthyD. Evaluation of the vulnerabilities of unmanned aerial vehicles (UAVs) to global positioning (GPS) jamming and spoofing.Defence S and T Tech Bull2020132333343
    [Google Scholar]
  14. VajraveluA. Security threats of unmanned aerial vehicles.Wireless Networks: Cyber Security Threats and Countermeasures.ChamSpringer Int Publ202313316410.1007/978‑3‑031‑33631‑7_5
    [Google Scholar]
  15. ZhangL. WangY. MinM. GuoC. SharmaV. HanZ. Privacy-aware laser wireless power transfer for aerial multi-access edge computing: A colonel blotto game approach.IEEE Internet Things J.20231075923593910.1109/JIOT.2022.3167052
    [Google Scholar]
  16. LuJ. ShenH. ZhangX. TianB. ZongQ. Autonomous flight for Multi-UAV in GPS-denied environment.In: Springer Tracts in Advanced Robotics Robotics ResearchSpringer International Publishing202264966610.1007/978‑981‑19‑3998‑3_85
    [Google Scholar]
  17. von Eichel-StreiberJ. WeberC. AltenburgJ. Design and Implementation of an Autopilot for an UAV.17th Int Conf, Las Palmas de Gran Canaria,Spain, Feb 17–22, 2019, pp.3-10.10.1007/978‑3‑030‑45093‑9_1
    [Google Scholar]
  18. PoiselR. Modern Communications Jamming Principles and Techniques.Artech House2011
    [Google Scholar]
  19. AlmasoudA. Jamming-aware optimization for UAV trajectory design and internet of things devices clustering.Compl. Intell. Syst.2023944571459010.1007/s40747‑023‑00970‑3
    [Google Scholar]
  20. Dang-NgocH. NguyenD.N. Ho-VanK. HoangD.T. DutkiewiczE. PhamQ.V. HwangW.J. Secure swarm UAV-assisted communications with cooperative friendly jamming.IEEE Internet Things J.2022924255962561110.1109/JIOT.2022.3197975
    [Google Scholar]
  21. BanuA.S. PadmavathiG. Taxonomy of UAVs GPS spoofing and jamming attack detection methods.Computational Intelligence for Unmanned Aerial Vehicles Communication Networks.ChamSpringer Int Publ202216720110.1007/978‑3‑030‑97113‑7_10
    [Google Scholar]
  22. FerreiraR. GasparJ. SebastiãoP. SoutoN. A software defined radio based anti-UAV mobile system with jamming and spoofing capabilities.Sensors2022224148710.3390/s2204148735214388
    [Google Scholar]
  23. FerreiraR. GasparJ. SebastiãoP. SoutoN. Effective GPS jamming techniques for UAVs using low-cost SDR platforms.Wirel. Pers. Commun.202011542705272710.1007/s11277‑020‑07212‑6
    [Google Scholar]
  24. PärlinK. RiihonenT. TurunenM. Sweep jamming mitigation using adaptive filtering for detecting frequency agile systems.In: 2019 International Conference on Military Communications and Information Systems (ICMCIS),Budva, Montenegro, 2019, pp. 1-6.10.1109/ICMCIS.2019.8842761
    [Google Scholar]
  25. ŠimonO. GötthansT. A survey on the use of deep learning techniques for UAV jamming and deception.Electronics20221119302510.3390/electronics11193025
    [Google Scholar]
  26. MatriceD.J.I. 300 RTK : Industrial grade mapping inspection drones.DJI Enterprise2024116
    [Google Scholar]
  27. ReddyG.P.O. Global Positioning System: Principles and Applications.Geospatial Technologies in Land Resources Mapping, Monitoring and Management.Springer2018637410.1007/978‑3‑319‑78711‑4_4
    [Google Scholar]
  28. El-RabbanyA. Introduction to GPS: The Global Positioning System.2nd edArtech House2006120
    [Google Scholar]
  29. KaplanE. HegartyC. Understanding GPS: Principles and Applications.2nd edArtech House2005117
    [Google Scholar]
  30. MengL. YangL. YangW. ZhangL. A survey of GNSS spoofing and anti-spoofing technology.Remote Sens.20221419482610.3390/rs14194826
    [Google Scholar]
  31. ZhuC. ZhangJ. ZhangY. YangX. HuangH. Global navigation satellite system terminal spoofing and defense techniques.4th Int Conf Neural Networks, Information and Communication (NNICE)20241118112710.1109/NNICE61279.2024.10498825
    [Google Scholar]
  32. CuntzM. KonovaltsevA. DreherA. MeurerM. Jamming and spoofing in GPS/GNSS based applications and services : Threats and countermeasures. AschenbruckN. MartiniP. MeierM. Future Security. Communications in Computer and Information ScienceSpringerBerlin, Heidelberg201231819619910.1007/978‑3‑642‑33161‑9_29
    [Google Scholar]
  33. KhanafsehS. RoshanN. LangelS. ChanF.C. JoergerM. PervanB. GPS spoofing detection using RAIM with INS coupling.2014 IEEE/ION Position, Location and Navigation Symposium : PLANS 2014,Monterey, CA, USA, 2014, pp. 1232-1239.10.1109/PLANS.2014.6851498
    [Google Scholar]
  34. HuangL. GongH. ZhuX. WangF. Research of re-radiating spoofing technique to GNSS timing receiver.J. Natl. Univ. Defense. Technol.20133549396
    [Google Scholar]
  35. EngelF. HeiserG. MumfordP. ParkinsonK. RizosC. An open GNSS receiver platform architecture.J. Glob. Position. Syst.200431&2636910.5081/jgps.3.1.63
    [Google Scholar]
  36. PinellC. ProlF.S. BhuiyanM.Z.H. PraksJ. Receiver architectures for positioning with low earth orbit satellite signals: A survey.EURASIP J. Adv. Signal Process.2023202316010.1186/s13634‑023‑01022‑1
    [Google Scholar]
  37. YaoZ. LuM. Performance evaluation theory for satellite navigation signals.In: Next-Generation GNSS Signal Design.Theories, Principles and Technologies202116320410.1007/978‑981‑15‑5799‑6_5
    [Google Scholar]
  38. Vervisch-PicoisA. SamamaN. Taillandier-LoizeT. Influence of GNSS spoofing on drone in automatic flight mode.ITSNT 2017: 4th International Symposium of Navigation and Timing. Ecole nationale de l’aviation civile201719
    [Google Scholar]
  39. TingH.E. Improvement of the method of GNSS retransmission deception interference mode.Bull Surv Mapping2019471
    [Google Scholar]
  40. MitolaJ. Software radios: Survey, critical evaluation and future directions.IEEE Aerosp. Electron. Syst. Mag.199384253610.1109/62.210638
    [Google Scholar]
  41. MoriS. MizutaniK. HaradaH. Software-defined radio-based 5G physical layer experimental platform for highly mobile environments.IEEE Open J. Veh. Technol.2023423024010.1109/OJVT.2023.3237390
    [Google Scholar]
  42. DillingerM. MadaniK. AlonistiotiN. Software defined radio: Architectures, systems and functions.John Wiley & Sons20051454
    [Google Scholar]
  43. HrúzM. BugajM. NovákA. KanderaB. BadánikB. The use of UAV with infrared camera and RFID for airframe condition monitoring.Appl. Sci.2021119373710.3390/app11093737
    [Google Scholar]
  44. KakkavasG. TsitseklisK. KaryotisV. PapavassiliouS. A software defined radio cross-layer resource allocation approach for cognitive radio networks: From theory to practice.IEEE Trans. Cogn. Commun. Netw.20206274075510.1109/TCCN.2019.2963869
    [Google Scholar]
  45. BargaraiF.A.M. AbdulazeezA.M. TiryakiV.M. ZeebareeD.Q. Management of wireless communication systems using artificial intelligence-based software defined radio.Int. J. Interac. Mob. Technol.2020141310713310.3991/ijim.v14i13.14211
    [Google Scholar]
  46. FlakP. Drone detection sensor with continuous 2.4 GHz ISM band coverage based on cost-effective SDR platform.IEEE Access2021991110.1109/ACCESS.2021.3104738
    [Google Scholar]
  47. AboelazmM.A. Design and implementation of analog modulated signals radio monitoring receiver based on SDR technology.J. Inf. Hid. Mult. Sig. Proc.2022136477
    [Google Scholar]
  48. WohM. LinY. SeoS. MahlkeS. MudgeT. ChakrabartiC. BruceR. KershawD. ReidA. WilderM. From SODA to scotch: The evolution of a wireless baseband processor.2008 41st IEEE/ACM International Symposium on Microarchitecture,Como, Italy, 2008, pp. 152-163.10.1109/MICRO.2008.4771787
    [Google Scholar]
  49. ZhangZ. ZhanX. XuH. Development and validation of a low-cost GPS spoofing simulator.J Aeronaut Astronaut Aviat201446788610.6125/13‑0407‑737
    [Google Scholar]
  50. NovákA. KováčikováK. KanderaB. SedláčkováA.N. Global navigation satellite systems signal vulnerabilities in unmanned aerial vehicle operations: impact of affordable software-defined radio.Drones20248310910.3390/drones8030109
    [Google Scholar]
  51. GadgetsGS HackRF One-Great Scott Gadgets.2023Available from: greatscottgadgets.com/hackrf/one
  52. FengW. FriedtJ.M. Goavec-MerouG. MeyerF. Software-defined radio implemented GPS spoofing and its computationally efficient detection and suppression.IEEE Aerosp. Electron. Syst. Mag.2021363365210.1109/MAES.2020.3040491
    [Google Scholar]
  53. DJI. Matrice 600 Pro. Productz.Available from: productz.com/en/dji-matrice-600-pro/p/zWgL
  54. ZhouM. LiH. LuM. Calculation of the lower limit of the spoofing-signal ratio for a GNSS receiver-spoofer.EURASIP J. Wirel. Commun. Netw.2018201814410.1186/s13638‑018‑1048‑y
    [Google Scholar]
  55. SemanjskiS. SemanjskiI. De WildeW. MulsA. Use of supervised machine learning for GNSS signal spoofing detection with validation on real-world meaconing and spoofing data—Part I.Sensors2020204117110.3390/s2004117132093342
    [Google Scholar]
  56. EleziE. ÇankayaG. BoyacıA. YarkanS. The effect of electronic jammers on GPS signals.In: 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD),Istanbul, Turkey, 2019, pp. 652-656.10.1109/SSD.2019.8893239
    [Google Scholar]
  57. HaiwangZ. Design and implementation of anti-UAV system based on satellite navigation interference.IEEE 6th Inf. Technol. Mechatronics. Eng. Conf.IEEE20221226123010.1109/ITOEC53115.2022.9734358
    [Google Scholar]
  58. JasimK.S. Ali AlheetiK.M. Najem AlaloosyA.K. Intelligent detection system for spoofing and jamming attacks in UAVs. Abd El-LatifA.A. MalehY. MazurczykW. ELAffendiM. Advances in Cybersecurity, Cybercrimes, and Smart Emerging Technologies. CCSET 2022. Engineering Cyber-Physical Systems and Critical InfrastructuresSpringerCham202248911010.1007/978‑3‑031‑21101‑0_8
    [Google Scholar]
  59. MengL. ZhangL. YangL. YangW. A GPS-adaptive spoofing detection method for the small UAV cluster.Drones20237746110.3390/drones7070461
    [Google Scholar]
  60. AbroG. ZulkifliS. MasoodR. AsirvadamV. LaouitiA. Comprehensive review of UAV detection, security, and communication advancements to prevent threats.Drones202261028410.3390/drones6100284
    [Google Scholar]
  61. AdepojuO. Drone/unmanned aerial vehicles (UAVs) technology.In: Re-skilling Human Resources for Construction 4.0. Springer Tracts in Civil Eng.ChamSpringer202210.1007/978‑3‑030‑85973‑2_4
    [Google Scholar]
  62. SangeethaS.K.B. DhayaR. Deep learning era for future 6G wireless communications—theory, applications, and challenges.In: Artificial Intelligent Techniques for Wireless Communication and Networking.Wiley Online Library202210511910.1002/9781119821809.ch8
    [Google Scholar]
  63. BanumathiJ. SangeethaS.K.B. DhayaR. Robust cooperative spectrum sensing techniques for a practical framework employing cognitive radios in 5G networks.In: Artificial Intelligent Techniques for Wireless Communication and Networking.Wiley Online Library202212113810.1002/9781119821809.ch9
    [Google Scholar]
  64. SabuwalaN.A. DaruwalaR.D. An approach to enhance the security of unmanned aerial vehicles (UAVs).J. Supercomput.20248079609963910.1007/s11227‑023‑05811‑1
    [Google Scholar]
  65. U.S. Department of Homeland Security, Cybersecurity and Infrastructure Security Agency, Interagency Security CommitteeProtecting Against the Threat of Unmanned Aircraft Systems (UAS): An Interagency Security Committee Best Practice.2020Available from: https://www.cisa.gov/sites/default/files/2022-11/Protecting%20Against%20the%20Threat%20of%20Unmanned%20Aircraft%20Systems%20November%202020_508c.pdf
/content/journals/swcc/10.2174/0122103279318064240708102401
Loading
/content/journals/swcc/10.2174/0122103279318064240708102401
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test