Skip to content
2000
image of 5G-Based Wireless Sensor Networks: Performance Insights and Application Optimization

Abstract

Introduction

The introduction of 5G technology has revolutionized Wireless Sensor Networks (WSNs) by significantly enhancing connectivity, reducing latency, and improving scalability.

Methods

This paper presents a performance analysis framework for 5G-based WSNs, focusing on key parameters such as numerology, deployment strategies (e.g., Multi-Access Edge Computing and centralized models), traffic loads, and link capacity allocations. The framework evaluates their impact on critical performance metrics, including latency, throughput, energy efficiency, and reliability.

Results

Simulation results reveal that deploying edge computing significantly reduces latency (e.g., 5.325 ms compared to 26.725 ms in centralized architectures), while optimized link capacity allocation and numerology configurations enhance overall network efficiency.

Conclusion

These findings demonstrate how 5G parameters can be fine-tuned to optimize WSN performance for diverse applications such as industrial automation, smart cities, and healthcare. The study provides practical insights into achieving real-time, scalable, and energy-efficient operations in 5G-enabled WSNs.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279368191250226074907
2025-04-07
2025-09-13
Loading full text...

Full text loading...

References

  1. Jayadurga R. A novel method to identify and recover the fault nodes over 5G wireless sensor network environment. 2024 Asia Pacific Conference on Innovation in Technology (APCIT), MYSORE, India 2024 1 6 10.1109/APCIT62007.2024.10673552
    [Google Scholar]
  2. Muthineni K. Artemenko A. Vidal J. Outlier rejection for 5G-based indoor positioning in ray-tracing-enabled industrial scenario. ICC 2024 - IEEE International Conference on Communications, Denver, CO, USA 2024 5081 5085 10.1109/ICC51166.2024.10622520
    [Google Scholar]
  3. Zhang D. Keynote: From WiFi sensing to quantum sensing: Toward a wireless sensing theory. 2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Biarritz, France 2024 10.1109/PerComWorkshops59983.2024.10503283
    [Google Scholar]
  4. Rawat R. Kassem A.L.A. Dixit K.K. Real-time anomaly detection in large-scale sensor networks using isolation forests. 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE), Gautam Buddha Nagar, India 2024 1400 1405 10.1109/IC3SE62002.2024.10593443
    [Google Scholar]
  5. Hamdi A. Nahali A. Brahem R. Optimal and efficient sensor design for 5G-based internet-of-body healthcare monitoring network. J. Netw. Syst. Manage. 2024 32 1 10.1007/s10922‑023‑09795‑4
    [Google Scholar]
  6. Jain A.K. Mathur G. Jamwal P. Analysis of routing protocols for wireless sensor network for remote healthcare system. 5G-Based Smart Hospitals and Healthcare Systems Taylor and Francis 1st 2023
    [Google Scholar]
  7. Xia Y. Yan C. Yang H. Zhan Y. Cloud control for IIoT in a cloud-edge environment. J. Syst. Eng. Electron 2024 35 4 1013 1027
    [Google Scholar]
  8. Quan R. Zhang J. Feng Z. Remote fault diagnosis for the powertrain system of fuel cell vehicles based on random forest optimized with a genetic algorithm. Sensors 2024 24 1138 10.3390/s24041138
    [Google Scholar]
  9. Kajal N. Goyal N. An optimal scheme for minimizing energy consumption in WSN. GRD Journal for Engineering 2016 1 8 47 52
    [Google Scholar]
  10. Monika M. Mamta M. Goyal N. Architectural analysis of wireless sensor network and underwater wireless sensor network with issues and challenges. J. Comput. Theor. Nanosci. 2020 17 6 2706 2712 10.1166/jctn.2020.9109
    [Google Scholar]
  11. Goyal N. Khurana T. Singh S. An evaluation of ad-hoc routing protocols for wireless sensor networks. Int. J. Adv. Res. Comput. Sci. Electron. Eng. 2012 1 1 27 30
    [Google Scholar]
  12. Khurana K. Goyal N. A survey on deployment strategies and energy efficiency of wireless sensor networks. Int. J. Electr. Electron. Comput. Sci. Eng. 2016 3 4 16 20
    [Google Scholar]
  13. Chakravarty S. Ahmed I. Kumar A. Semantic separation-based kinematic tracking with IoT and AI: Implementation and challenges. 5G-Based Smart Hospitals. Taylor and Francis 2023 10.1201/9781003403678‑14
    [Google Scholar]
  14. Putra F. Case study of computer network development for the Internet of Things (IoT) industry in an urban environment. Brilliance: Research of IT Science 2024 3
    [Google Scholar]
  15. Ott J. Pirkl J. Stahlke M. Radio foundation models: Pre-training transformers for 5g-based indoor localization ArXiv 2024 2024 10.1109/IPIN62893.2024.10786154
    [Google Scholar]
  16. Coll-Perales B. Lucas-Estañ M.C. Shimizu T. Gozalvez J. Higuchi T. Avedisov S. Altintas O. Sepulcre M. End-to-End V2X latency modeling and analysis in 5G networks. IEEE Trans. Vehicular Technol. 2023 72 4 5094 5109 10.1109/TVT.2022.3224614
    [Google Scholar]
  17. Lucas-Estañ M.C. An analytical latency model and evaluation of the capacity of 5G NR to support V2X services using V2N2V communications. ArXiv 2021 2021
    [Google Scholar]
  18. Candela M. Luconi V. Vecchio A. Impact of the COVID-19 pandemic on the Internet latency: A large-scale study. Comput. Netw. 2020 182 107495 10.1016/j.comnet.2020.107495 35023997
    [Google Scholar]
  19. Giotsas V. Nomikos G. Kotronis V. Sermpezis P. Gigis P. Manassakis L. Dietzel C. Konstantaras S. Dimitropoulos X. O Peer, Where art thou? Uncovering remote peering interconnections at IXPs. IEEE/ACM Trans. Netw. 2021 29 1 1 16 10.1109/TNET.2020.3025945
    [Google Scholar]
  20. Ali Q.I. lazim S. Design and implementation of an embedded intrusion detection system for wireless applications. IET Inf. Secur. 2012 6 3 171 182 10.1049/iet‑ifs.2010.0245
    [Google Scholar]
  21. Ali Q.I. Securing solar energy‐harvesting road‐side unit using an embedded cooperative‐hybrid intrusion detection system. IET Inf. Secur. 2016 10 6 386 402 10.1049/iet‑ifs.2014.0456
    [Google Scholar]
  22. Arya G. Bagwari A. Chauhan D.S. Performance analysis of deep learning-based routing protocol for an efficient data transmission in 5G WSN communication. IEEE Access 2022 10 9340 9356 10.1109/ACCESS.2022.3142082
    [Google Scholar]
  23. Rehma S.U. Hussain A. Hussain F. Mannan M.A. A comprehensive study: 5G wireless networks and emerging technologies. Proc. Int. Conf. Electr. Eng. 2022 5 Feb 25 32
    [Google Scholar]
  24. Vu K.Q. Solanki V.K. Le A-N. A saving energy MANET routing protocol in 5G. Secure Communication for 5G and IoT Networks. Cham, Switzerland Springer 2022 10.1007/978‑3‑030‑79766‑9_13
    [Google Scholar]
  25. Mir M. Yaghoobi M. Khairabadi M. A new approach to energy-aware routing in the Internet of Things using improved Grasshopper Metaheuristic Algorithm with Chaos theory and Fuzzy Logic. Multimedia Tools Appl. 2023 82 4 5133 5159 10.1007/s11042‑021‑11841‑9
    [Google Scholar]
  26. Ibrahim Q. Enhanced power management scheme for embedded road side units. IET Comput. Digit. Tech. 2016 10 4 174 185 10.1049/iet‑cdt.2015.0135
    [Google Scholar]
  27. Wong A.M.K. Hsu C.L. Le T.V. Hsieh M.C. Lin T.W. Three-factor fast authentication scheme with time bound and user anonymity for multi-server E-health systems in 5G-based wireless sensor networks. Sensors 2020 20 9 2511 10.3390/s20092511 32365543
    [Google Scholar]
  28. Iqbal S. Qureshi K.N. Kanwal N. Jeon G. Collaborative energy efficient zone‐based routing protocol for multihop Internet of Things. Trans. Emerg. Telecommun. Technol. 2022 33 2 e3885 10.1002/ett.3885
    [Google Scholar]
  29. Reddy K.S.K. Tamizhazhagan V. Senthil Murugan V. Rajaveerappa D. Energy-efficient hybrid secured routing for 5G vehicular ad hoc network (VANET). Proc. 3rd Int. Conf. Commun., Comput. Electron. Syst. 2022 289 311
    [Google Scholar]
  30. Mohamed A. An inter-disciplinary modelling approach in industrial 5G/6G and machine learning era. IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020 1 6 10.1109/ICCWorkshops49005.2020.9145434
    [Google Scholar]
  31. Dhinakaran K. Elantamilan D. Gnanavel R. Vinod D. Nalini M.K. A hybrid algorithm to perform dynamic node energy and link stability through invoking data from 5G wireless sensor-based network. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India 2022 1 8 10.1109/ACCAI53970.2022.9752628
    [Google Scholar]
  32. Verma S. Mitra N.S. An efficient routing approach to improve the performance of IoT node for 5G communication applications. Int. J. Innov. Res. Sci. Eng. Technol. 2022 11 4 3746 3750
    [Google Scholar]
  33. Shi Z. Xie X. Garg S. Lu H. Yang H. Xiong Z. Deep reinforcement learning-based big data resource management for 5G/6G communications. 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021 1 6 10.1109/GLOBECOM46510.2021.9685098
    [Google Scholar]
  34. Wang X. Weng Y. Gao H. A low-latency and energy-efficient multimetric routing protocol based on network connectivity in event communication. IEEE Trans. Green Commun. Netw. 2021 5 4 1761 1776 10.1109/TGCN.2021.3100526
    [Google Scholar]
  35. Jothikumar C. Ramana K. Chakravarthy V. D. Singh S. An efficient routing approach to maximize the lifetime of IoT-based wireless sensor networks in 5G and beyond. Mob. Inf. Syst. 2021 2021 9160516 10.1155/2021/9160516
    [Google Scholar]
  36. Mohammad U.G. Imtiaz S. Shakya M. Almadhor A. Anwar F. An optimized feature selection method using ensemble classifiers in software defect prediction for healthcare systems. Wirel. Commun. Mob. Comput. 2022 2022 Jun 1 14 10.1155/2022/1028175
    [Google Scholar]
  37. Pal T. Saha R. Biswas S. Sink mobility-based energy efficient routing algorithm variants in WSN. Int. J. Wirel. Inf. Netw. 2022 29 3 373 392 10.1007/s10776‑022‑00557‑8
    [Google Scholar]
  38. Kumar S. Gautam P.R. Rashid T. Verma A. Kumar A. Division algorithm-based energy-efficient routing in wireless sensor networks. Wirel. Pers. Commun. 2022 122 3 2335 2354 10.1007/s11277‑021‑08996‑x
    [Google Scholar]
  39. Nabati M. Maadani M. Pourmina M.A. AGEN-AODV: An intelligent energy-aware routing protocol for heterogeneous mobile ad hoc networks. Mob. Netw. Appl. 2022 27 2 576 587 10.1007/s11036‑021‑01821‑6
    [Google Scholar]
  40. Alghamdi S.A. Cuckoo energy-efficient load-balancing on-demand multipath routing protocol. Arab. J. Sci. Eng. 2022 47 2 1321 1335 10.1007/s13369‑021‑05841‑y
    [Google Scholar]
  41. Ali Q.I. Green communication infrastructure for vehicular ad hoc network (VANET). J. Electr. Eng. 2016 16 2 10 10
    [Google Scholar]
  42. Kamruzzaman M.M. Key technologies, applications and trends of Internet of Things for energy-efficient 6G wireless communication in smart cities. Energies 2022 15 15 5608 10.3390/en15155608
    [Google Scholar]
  43. El Houda Z.A. Khoukhi L. Brik B. A low-latency fog-based framework to secure IoT applications using collaborative federated learning. 2022 IEEE 47th Conference on Local Computer Networks (LCN) 2022 343 346 10.1109/LCN53696.2022.9843315
    [Google Scholar]
  44. El Houda Z.A. Brik B. Senouci S.M. A novel IoT-based explainable deep learning framework for intrusion detection systems. IEEE Internet of Things Magazine 2022 5 2 20 23 10.1109/IOTM.005.2200028
    [Google Scholar]
  45. Brik B. Dev K. Xiao Y. Han G. Ksentini A. Guest editorial introduction to the special section on AI-powered Internet of Everything (IoE) services in next-generation wireless networks. IEEE Trans. Netw. Sci. Eng. 2022 9 5 2952 2954 10.1109/TNSE.2022.3195385
    [Google Scholar]
  46. Navarro-Ortiz J. Romero-Diaz P. Sendra S. Ameigeiras P. Ramos-Munoz J.J. Lopez-Soler J.M. A survey on 5G usage scenarios and traffic models. IEEE Commun. Surv. Tutor. 2020 22 2 905 929 10.1109/COMST.2020.2971781
    [Google Scholar]
  47. Mogensen R.S. Rodriguez I. Berardinelli G. Pocovi G. Kolding T. Empirical IIoT data traffic analysis and comparison to 3GPP 5G models. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall) 2021 10.1109/VTC2021‑Fall52928.2021.9625319
    [Google Scholar]
  48. Rodriguez I. Mogensen R.S. Khatib E.J. Berardinelli G. Mogensen P. Madsen O. Møller C. On the design of a wireless MES solution for the factories of the future. 2019 Global IoT Summit (GIoTS), Aarhus, Denmark 2019 1 6 10.1109/GIOTS.2019.8766419
    [Google Scholar]
  49. Mogensen R.S. Rodriguez I. Berardinelli G. Fink A. Marcker R. Markussen S.A. Raunholt T. Kolding T.E. Pocovi G. Barbera S. Implementation and trial evaluation of a wireless manufacturing execution system for Industry 4.0. 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 2019 10.1109/VTCFall.2019.8891231
    [Google Scholar]
  50. Oyekanlu E.A. Smith A.C. Thomas W.P. Mulroy G. Hitesh D. Ramsey M. Kuhn D.J. Mcghinnis J.D. Buonavita S.C. Looper N.A. Ng M. Ng’oma A. Liu W. Mcbride P.G. Shultz M.G. Cerasi C. Sun D. A review of recent advances in automated guided vehicle technologies: Integration challenges and research areas for 5G-based smart manufacturing applications. IEEE Access 2020 8 202312 202353 10.1109/ACCESS.2020.3035729
    [Google Scholar]
  51. Fink A. Mogensen R.S. Rodriguez I. Kolding T. Karstensen A. Pocovi G. Empirical performance evaluation of enterprise Wi-Fi for IIoT applications requiring mobility. European Wireless 2021; 26th European Wireless Conference, Verona, Italy, 2021
    [Google Scholar]
  52. Kehl P. Lange D. Maurer F.K. Nemeth G. Overbeck D. Jung S. König N. Schmitt R.H. Comparison of 5G-enabled control loops for production 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK 2020 1 6 10.1109/PIMRC48278.2020.9217176
    [Google Scholar]
  53. Raunholt T. Rodriguez I. Mogensen P. Larsen M. Towards a 5G mobile edge cloud planner for autonomous mobile robots 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA 2021 1 5 10.1109/VTC2021‑Fall52928.2021.9625208
    [Google Scholar]
  54. Pocovi G. Shariatmadari H. Berardinelli G. Pedersen K. Steiner J. Li Z. Achieving ultra-reliable low-latency communications: Challenges and envisioned system enhancements. IEEE Netw. 2018 32 2 8 15 10.1109/MNET.2018.1700257
    [Google Scholar]
  55. Gundall M. Huber C. Rost P. Halfmann R. Schotten H.D. Integration of 5G with TSN as prerequisite for a highly flexible future industrial automation: Time synchronization based on IEEE 802.1AS IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore 2020 3823 3830 10.1109/IECON43393.2020.9254296
    [Google Scholar]
  56. Lu T. Fan Z. Lei Y. Shang Y. Wang C. The edge computing cloud architecture based on 5G network for industrial vision detection 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA), Xiamen, China 2021 328 332 10.1109/ICBDA51983.2021.9402999
    [Google Scholar]
  57. Li X. Liu S. Kumari S. Chen C.M. PSAP-WSN: A provably secure authentication protocol for 5G-based wireless sensor networks. CMES 2023 135 1 711 732 10.32604/cmes.2022.022667
    [Google Scholar]
  58. Tuptuk N. Hailes S. Security of smart manufacturing systems. J. Manuf. Syst. 2018 47 93 106 10.1016/j.jmsy.2018.04.007
    [Google Scholar]
  59. Adeogun R. Berardinelli G. Mogensen P.E. Rodriguez I. Razzaghpour M. Towards 6G in-X subnetworks with sub-millisecond communication cycles and extreme reliability. IEEE Access 2020 8 110172 110188 10.1109/ACCESS.2020.3001625
    [Google Scholar]
  60. Fedullo T. Morato A. Tramarin F. Rovati L. Vitturi S. A comprehensive review on time-sensitive networks with a special focus on its applicability to industrial smart and distributed measurement systems. Sensors 2022 22 4 1638 10.3390/s22041638 35214541
    [Google Scholar]
  61. Mishra S. Artificial intelligence assisted enhanced energy efficient model for device-to-device communication in 5G networks. Hum-Cent Intell Syst 2023 3 425 440 10.1007/s44230‑023‑00040‑4
    [Google Scholar]
  62. Cavalcanti D. Cordeiro C. Smith M. Regev A. WiFi TSN: Enabling deterministic wireless connectivity over 802.11. IEEE Communications Standards Magazine 2022 6 4 22 29 10.1109/MCOMSTD.0002.2200039
    [Google Scholar]
  63. Val I. Seijo O. Torrego R. Astarloa A. IEEE 802.1AS clock synchronization performance evaluation of an integrated wired-wireless TSN architecture. IEEE Trans. Industr. Inform. 2022 18 5 2986 2999 10.1109/TII.2021.3106568
    [Google Scholar]
  64. Farooqi A.M. Alam M.A. Hassan S.I. A fog computing model for VANET to reduce latency and delay using 5G network in smart city transportation. Appl. Sci. 2022 12 4 2083 10.3390/app12042083
    [Google Scholar]
  65. Collotta M. Gentile L. Pau G. Scata G. A dynamic algorithm to improve industrial wireless sensor networks management Proc. IEEE Industrial Electronics Society Annual Conference (IECON), Montreal, QC, Canada 2012 2802 2807 10.1109/IECON.2012.6389451
    [Google Scholar]
  66. Chen J.J. Tsai M.H. Zhao L. Chang W.C. Lin Y.H. Zhou Q. Lu Y.Z. Tsai J.L. Cai Y.Z. Realizing dynamic network slice resource management based on SDN networks 2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA), Tainan, Taiwan, 2019 120 125 10.1109/ICEA.2019.8858288
    [Google Scholar]
  67. Wang R. Beshley H. Yu L. Urikova O. Beshley M. Kuzmin O. Industrial 5G private network: Architectures, resource management, challenges, and future directions Proc. 16th Int. Conf. Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine 2022 780 784
    [Google Scholar]
  68. Du J. Xiong W. Wang J. Cao X. A heuristic AP deployment approach for industrial wireless networks 2021 China Automation Congress (CAC) 2021 8035 8040 10.1109/CAC53003.2021.9727316
    [Google Scholar]
  69. Bedhief I. Foschini L. Bellavista P. Kassar M. Aguili T. Toward self-adaptive software-defined fog networking architecture for IIoT and Industry 4.0 Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Limassol, Cyprus 2019 10.1109/CAMAD.2019.8858499
    [Google Scholar]
  70. Lazim Qaddoori S. Ali Q.I. An embedded and intelligent anomaly power consumption detection system based on smart metering. IET Wirel. Sens. Syst. 2023 13 2 75 90 10.1049/wss2.12054
    [Google Scholar]
  71. Yang Y. Li Y. Zhang W. Qin F. Zhu P. Wang C.X. Generative-adversarial-network-based wireless channel modeling: Challenges and opportunities. IEEE Commun. Mag. 2019 57 3 22 27 10.1109/MCOM.2019.1800635
    [Google Scholar]
  72. Lin M. Zhao Y. Artificial intelligence-empowered resource management for future wireless communications: A survey. China Commun. 2020 17 3 58 77 10.23919/JCC.2020.03.006
    [Google Scholar]
  73. Garg S. Guizani M. Guo S. Verikoukis C. Guest editorial special section on AI-driven developments in 5G-envisioned industrial automation: Big data perspective. IEEE Trans. Industr. Inform. 2020 16 2 1291 1295 10.1109/TII.2019.2955963
    [Google Scholar]
  74. Seliem M. Zahran A. Pesch D. Delay analysis of TSN-based industrial networks with preemptive traffic using network calculus 2023 IFIP Networking Conference (IFIP Networking), Barcelona, Spain 2023 10.23919/IFIPNetworking57963.2023.10186400
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279368191250226074907
Loading
/content/journals/swcc/10.2174/0122103279368191250226074907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test