Skip to content
2000
image of Thermo Acoustical Analysis of Polyethylene Glycol + Ethanol: Insights into Molecular Interactions

Abstract

Introduction

The purpose of this work is to investigate the molecular interactions in binary mixtures of polyethylene glycol (PEG) and ethanol at different temperatures (25°C, 35°C, 45°C, and 55°C) and concentrations (5%, 10%, and 15%). The goal is to comprehend how these factors affect important physicochemical and thermoacoustic characteristics that are pertinent to coatings, drug delivery systems, and material formulation.

Methods

At a steady frequency of 4 MHz, the ultrasonic velocity, density, and viscosity of PEG-ethanol solutions were measured. Internal pressure, free volume, available volume, Rao's constant, Wada's constant, molar volume, and surface tension were among the thermodynamic and acoustic parameters that were computed from these measurements. To guarantee accuracy, calibrated instruments and standard procedures (ASTM) were used.

Results

The findings showed that while free volume and molar volume increased with temperature, ultrasonic velocity and density decreased. Rao's and Wada's constants, as well as internal pressure, exhibited a declining trend as the temperature rose, suggesting that intermolecular interactions were becoming weaker. On the other hand, higher PEG concentrations improved hydrogen bonding, which raised the interaction constants, surface tension, and ultrasonic velocity. All of these patterns point to a significant reorganisation of the molecular structure in the PEG-ethanol system that is dependent on temperature and concentration.

Discussion

Internal pressure in PEG-ethanol mixtures rises with temperature as molecular vibrations intensify, but falls with increasing PEG concentration because PEG disrupts the hydrogen-bond network in ethanol. On the other hand, increased molecular spacing due to polymer addition and thermal expansion is indicated by the rise in free volume, available volume, and molar volume with concentration and temperature. Rao's and Wada's constants also rise in both scenarios, indicating variations in density, sound speed, and molecular packing that affect the mixture's thermodynamic and acoustic properties.

Conclusion

The study demonstrates that molecular interactions in PEG-ethanol mixtures can be successfully revealed by thermoacoustic and ultrasonic analysis. The trends demonstrate how PEG can form hydrogen bonds, which have a significant impact on the behavior of solutions. These results provide important new information for designing and optimising the stability of polymer-based solutions in material science and pharmaceutical applications.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204414734250925054001
2025-10-27
2026-01-02
Loading full text...

Full text loading...

References

  1. Das N. Kumar Praharaj M. Panda S. Exploring ultrasonic wave transmission in liquids and liquid mixtures: A comprehensive overview. J. Mol. Liq. 2024 403 124841 10.1016/j.molliq.2024.124841
    [Google Scholar]
  2. Pandey J.D. Dey R. Verma R. Thermodynamic properties of multicomponent liquid mixtures. Phys. Chem. Liquids 2003 41 2 145 153 10.1080/0031910021000044465
    [Google Scholar]
  3. Panda R. Panda S. Biswal S.K. Acoustic behavior of electrolytes in aqueous dimethyl sulphoxide as a solvent at different temperatures. J. Therm. Anal. Calorim. 2024 149 10 4839 4853 10.1007/s10973‑024‑13031‑9
    [Google Scholar]
  4. Chakraborty N. Juglan K.C. Kumar H. Effect of ethylene glycol/diethylene glycol/triethylene glycol on the thermodynamics of the aqueous biotin solutions at various temperatures. J. Chem. Thermodyn. 2021 163 106584 10.1016/j.jct.2021.106584
    [Google Scholar]
  5. Dhal K. Das P. Singh S. Talukdar M. Analysis of ultraacoustic behavior of l-aspartic acid in aqueous sodium benzoate and ammonium acetate media. J. Mol. Liq. 2023 376 121413 10.1016/j.molliq.2023.121413
    [Google Scholar]
  6. Panda S. Mahapatra A.P. Molecular interaction studies of aqueous Dextran solution through ultrasonic measurement at 313 K with different concentration and frequency. Arch Phys Res 2015 6 1 6 12
    [Google Scholar]
  7. Das N. Panda S. Praharaj M.K. Ultrasonic study of polyethylene glycol and ethanol interactions: Impact of concentration and temperature. Chem Thermodyn Therm Anal 2025 18 100169 10.1016/j.ctta.2025.100169
    [Google Scholar]
  8. Nithiyanantham S. Palaniappan L. Ultrasonic study on some monosaccharides in aqueous media at 298.15 K. Arab. J. Chem. 2012 5 1 25 30 10.1016/j.arabjc.2010.07.018
    [Google Scholar]
  9. Jyothirmai G. Nayeem S.M. Khan I. Anjaneyulu C. Thermo-physicochemical investigation of molecular interactions in binary combination (dimethyl carbonate + methyl benzoate). J. Therm. Anal. Calorim. 2018 132 1 693 707 10.1007/s10973‑017‑6926‑8
    [Google Scholar]
  10. Godhani D.R. Dobariya P.B. Sanghani A.M. Mehta J.P. Thermodynamic properties of binary mixtures of 1,3,4-oxadiazole derivative with chloroform, N,N-dimethyl formamide at 303, 308 and 313 K and atmospheric pressure. Arab. J. Chem. 2017 10 S422 S430 10.1016/j.arabjc.2012.10.002
    [Google Scholar]
  11. Panda R. Panda S. Biswal S.K. Thermo-acoustic behaviour of K2CrO4 and K4 [Fe(CN)6] in aqueous dimethylformamide at different temperatures. Recent Innov. Chem. Eng. 2024 17 3 190 207 10.2174/0124055204296907240330083154
    [Google Scholar]
  12. Naseem B. Ashraf N. Volumetric behavior of nitroimidazoles in binary solvent mixtures. J. Mol. Liq. 2016 224 377 386 10.1016/j.molliq.2016.10.004
    [Google Scholar]
  13. Sinha B. Roy P.K. Roy M.N. Apparent molar volumes and viscosity B-coefficients of glycine in aqueous silver sulphate solutions at T = (298.15, 308.15, 318.15) k. Acta Chim. Slov. 2010 57 3 651 659 24061813
    [Google Scholar]
  14. Hassun S.K. Al-Madfai S.H.F. Al-Jarrah M.M.F. Ultrasonic study of molecular association of poly(vinyl chloride) solution in tetrahydrofuran. Br. Polym. J. 1985 17 4 330 333 10.1002/pi.4980170402
    [Google Scholar]
  15. Verma C. Hussain C.M. Polyethylene glycol and its derivatives as environmental sustainable corrosion inhibitors: A literature survey. In: Environmentally Sustainable Corrosion Inhibitors. Elsevier 2022 321 333 10.1016/B978‑0‑323‑85405‑4.00005‑7
    [Google Scholar]
  16. Zhang X.H. Zhao J.J. Cao Q.L. Study on preparation and properties of PEG blend film. Dig. J. Nanomater. Biostruct. 2022 17 1 81 87 10.15251/DJNB.2022.171.81
    [Google Scholar]
  17. Yang Q. Lai S.K. Anti‐ PEG immunity: Emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015 7 5 655 677 10.1002/wnan.1339 25707913
    [Google Scholar]
  18. Panda S. Molecular interaction of Dextran and Sodium Hydroxide through Ultrasonic investigation. J Turk Chem Soc Ser A Chem 2024 11 4 1369 1376 10.18596/jotcsa.1345350
    [Google Scholar]
  19. Dhal K. Singh S. Talukdar M. Ultraacoustic and conductometric studies on the interactions of l-glutamic acid with potassium sorbate and sodium benzoate in aqueous media. J. Mol. Liq. 2022 368 120761 10.1016/j.molliq.2022.120761
    [Google Scholar]
  20. Moosavi M. Motahari A. Omrani A. Rostami A.A. Thermodynamic study on some alkanediol solutions: Measurement and modeling. Thermochim. Acta 2013 561 1 13 10.1016/j.tca.2013.03.010
    [Google Scholar]
  21. Chakraborty N. Juglan K.C. Kumar H. Singla M. Measurement of the density and ultrasonic speed of the sound of Poly(ethylene glycols) (600 and 6000) in aqueous vitamin B5 solutions at different temperatures. J. Chem. Eng. Data 2022 67 9 2292 2306 10.1021/acs.jced.2c00260
    [Google Scholar]
  22. Panda S. Ultrasonic study of novel polymer dextran in aqueous media at 12 MHz. Curr. Microw. Chem. 2023 10 2 237 243 10.2174/2213335610666230810094605
    [Google Scholar]
  23. Chakraborty N. Juglan K.C. Kumar H. Singla M. Study of thermodynamic parameters of ternary solutions of polyethylene glycols in aqueous biotin solutions at multiple temperatures. J. Chem. Thermodyn. 2022 174 106876 10.1016/j.jct.2022.106876
    [Google Scholar]
  24. Mirikar S. Pawar P.P. Bichile G.K. Studies of acoustic and thermodynamic properties of Glycine in double distilled water at different temperatures. J. Chem. 2011 3 5 306 310
    [Google Scholar]
  25. Panda R. Panda S. Thermo-acoustic analysis of potassium chromate with 5% tetrahydrofuran at different temperatures. J. Therm. Anal. Calorim. 2025 1 10 10.1007/s10973‑025‑14550‑9
    [Google Scholar]
  26. Praharaj M.K. Ultrasonic and conductometric studies of NACL solutions through ultrasonic parameters. Int J Recent Innov Eng Res 2018 3 2 12 16
    [Google Scholar]
  27. Dhal K. Singh S. Talukdar M. Volumetric, viscometric and spectroscopic studies of molecular interactions of glutamic acid with potassium sorbate and sodium benzoate in aqueous medium at T = 293.15–313.15 K. J. Mol. Liq. 2022 361 119578 10.1016/j.molliq.2022.119578
    [Google Scholar]
  28. Ramasami P. Kakkar R. Partial molar volumes and adiabatic compressibilities at infinite dilution of aminocarboxylic acids and glycylglycine in water and aqueous solutions of sodium sulphate at (288.15, 298.15 and 308.15)K. J. Chem. Thermodyn. 2006 38 11 1385 1395 10.1016/j.jct.2006.01.014
    [Google Scholar]
  29. Sarkar A. Sinha B. Solution thermodynamics of aqueous nicotinic acid solutions in presence of tetrabutylammonium hydrogen sulphate. J. Serb. Chem. Soc. 2013 78 8 1225 1240 10.2298/JSC111212027S
    [Google Scholar]
  30. Das N. Panda S. Praharaj M.K. Ultrasonic analysis of polyethylene glycol (PEG)–epoxy–ethanol mixtures: Impact of temperature and concentration. J. Mol. Eng. Mater. 2025 2550018 10.1142/S2251237325500182
    [Google Scholar]
  31. Panda S. Acoustic and thermodynamics study of aqueous dextran: An ultrasonic analysis. Rom. J. Biophys. 2023 33 3 105 117 10.59277/RJB.2023.3.02
    [Google Scholar]
  32. Praharaj M.K. Satapathy A. Mishra P. Mishra S. Ultrasonic analysis of intermolecular interaction in the mixtures of benzene with N, N-dimethylformamide and cyclohexane at different temperatures. J. Chem. Pharm. Res. 2013 5 1 49 56
    [Google Scholar]
  33. Beebi S. Nayeem S.M. Rambabu C. Investigation of molecular interactions in binary mixture of dimethyl carbonate + N-methylformamide at T = (303.15, 308.15, 313.15 and 318.15) K. J. Therm. Anal. Calorim. 2019 135 6 3387 3399 10.1007/s10973‑018‑7574‑3
    [Google Scholar]
  34. Mehra R. Malav B.B. Ultrasonic, volumetric and viscometric studies of lactose in mixed solvent of DMF–H2O at 298, 308 and 318 K. Arab. J. Chem. 2017 10 S1894 S1900 10.1016/j.arabjc.2013.07.018
    [Google Scholar]
  35. Panda S. Mahapatra A.P. Molecular interaction of dextran with urea through ultrasonic technique. Clay Res. 2019 38 1 35 42
    [Google Scholar]
  36. Praharaj M.K. Satapathy A. Ahmed I. Ultrasonic and conductometric studies of aqueous potassium chloride solutions at different temperatures. Int. J. Curr. Res. Acad. Rev. 2017 5 6 1 5 10.20546/ijcrar.2017.506.001
    [Google Scholar]
  37. Reddy S. Sk M.N. Raju K.T.S.S. The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium ethylsulfate+ 2-ethoxyethanol from density, speed of sound and refractive index measurements. J. Mol. Liq. 2016 218 83 94 10.1016/j.molliq.2016.01.096
    [Google Scholar]
  38. Akhtar Y. Study of solute-solute and solute-solvent interaction of glycerin and dextrose in buffer solutions at different temperature by using volumetric and acoustic methods. Chem Sci Int J 2016 17 2 1 7 10.9734/CSJI/2016/28872
    [Google Scholar]
  39. Panda R. Panda S. Biswal S.K. A review of ultrasonic wave propagation through liquid solutions. Curr. Microw. Chem. 2024 11 1 2 15 10.2174/0122133356288437240131061541
    [Google Scholar]
  40. Seetharaman V. Kalyanasundaram S. Gopalan A. Ultrasonic studies of aqueous solutions of poly diallyl dimethyl ammonium chloride. Indian J. Pure Appl. Phys. 2004 Oct 42 10 735 740
    [Google Scholar]
  41. Upmanyu A. Singh D.P. Ultrasonic studies of molecular interactions in polymer solution of the Polyisobutylene (PIB) and Benzene. Acta Acust. United Acust. 2014 100 3 434 439 10.3813/AAA.918723
    [Google Scholar]
  42. Dhiman M. Upmanyu A. Singh D. Juglan K. Ultrasonic and spectroscopic investigations of molecular interactions in binary mixture of PEG-400 and DMSO at different temperatures. J. Serb. Chem. Soc. 2024 89 10 1363 1385 10.2298/JSC231207058D
    [Google Scholar]
  43. Kumar P. Dhiman M. Upmanyu A. Prediction of refractive index and ultrasonic velocity in PEG-based binary liquid systems: Experimental and theoretical investigation. J. Mol. Liq. 2022 362 119756 10.1016/j.molliq.2022.119756
    [Google Scholar]
  44. Dhiman M. Upmanyu A. Ultrasonic investigation of polymeric binary liquid systems through adiabatic compressibility and acoustic impedance. Int. J. Thermophys. 2021 42 125 10.1007/s10765‑021‑02866‑3
    [Google Scholar]
  45. Ghosh M. Ganguly S. Ultrasound-assisted dispersion and stabilization of TiO2 nanoparticles in polymeric matrix: Mechanistic insights. Ultrason. Sonochem. 2020 64 104981 10.1016/j.ultsonch.2020.104981
    [Google Scholar]
  46. Zafarani-Moattar T.M. Samadi F. Sadeghi R. Volumetric and ultrasonic studies of the system (water+ polypropylene glycol 400) at temperatures from (283.15 to 313.15) K. J. Chem. Thermodyn. 2004 36 10 871 875 10.1016/j.jct.2004.06.006
    [Google Scholar]
  47. Yasmin M. Gupta M. Shukla J.P. Acoustical study of molecular interactions in polymer solutions through various thermodynamical parameters and Flory’s theory at 298.15 K. Phys. Chem. Liquids 2010 48 5 682 697 10.1080/00319104.2010.487261
    [Google Scholar]
  48. Aboudzadeh M.A. Kruse J. Sanromán Iglesias M. Gold nanoparticles endowed with low-temperature colloidal stability by cyclic polyethylene glycol in ethanol. Soft Matter 2021 17 33 7792 7801 10.1039/D1SM00720C 34368823
    [Google Scholar]
  49. Rahi S.K. Shaker I.A. Hadi A.K. The effect of gamma rays on some electrical properties of polyethylene glycol (PEG) dissolved in distill water. Macromol. Symp. 2022 401 1 2100347 10.1002/masy.202100347
    [Google Scholar]
  50. Habeeb M. Al-Bermany A.K. Sabeeh D. Effect of polyacrilamide on the rheological and electrical properties of polyethylene glycol. J Ind Eng Res 2015 1 4 33 39
    [Google Scholar]
  51. Zitserman V.Y. Stojilkovich K.S. Bezrukov S.M. Berezhkovskii A.M. Electrical conductivity of aqueous solutions of polyethylene glycol. Russ J Phys Chem A 2005 79 7 1083 1089
    [Google Scholar]
  52. Javanbakht T. Laurent S. Stanicki D. David E. Related physicochemical, rheological, and dielectric properties of nanocomposites of superparamagnetic iron oxide nanoparticles with polyethyleneglycol. J. Appl. Polym. Sci. 2020 137 3 48280 10.1002/app.48280
    [Google Scholar]
  53. Shi L. Zhang J. Zhao M. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 2021 13 24 10748 10764 10.1039/D1NR02065J 34132312
    [Google Scholar]
  54. Surakasi R. Sekhar G.C. Pakalapati J. Pakalapati R. Rafeeq M. Evaluation of electrical properties of graphene nanopowder-dispersed propylene glycol-water solutions. Eng. Res. Express 2023 5 3 035019 10.1088/2631‑8695/ace58e
    [Google Scholar]
  55. Lysenkov E.A. Klepko V.V. Golovanets V.M. Demchenko V.L. Electric field effect on the percolative behavior of systems based on polyethylene glycol and carbon nanotubes. Ukr J Phys 2014 59 9 906 914 10.15407/ujpe59.09.0906
    [Google Scholar]
  56. Panda S. Molecular interaction of novel polymer dextran with 1 (N) sodium hydroxide solution: Ultrasonic studies. Asia-Pac. J. Sci. Technol. 2022 27 1 7
    [Google Scholar]
  57. Praharaj M.K. Mishra S. Study of acoustic and thermodynamic parameters for different ratios of aqueous sodium chloride and potassium chloride solution at and about the normal human body temperature. International Symposium on Ultrasonics 2015, RTM Nagpur, India 2015
    [Google Scholar]
  58. Venkatramanan K. Padmanaban R. Arumugam V. Acoustic, thermal and molecular interactions of Polyethylene Glycol (2000, 3000, 6000). Phys. Procedia 2015 70 1052 1056 10.1016/j.phpro.2015.08.224
    [Google Scholar]
  59. Ayranci E. Sahin M. Interactions of polyethylene glycols with water studied by measurements of density and sound velocity. J. Chem. Thermodyn. 2008 40 8 1200 1207 10.1016/j.jct.2008.04.007
    [Google Scholar]
  60. Panda S. Mahapatra A.P. Intermolecular interaction of dextran with urea. Int. J. Innov. Technol. Explor. Eng. 2019 8 11 742 748 10.35940/ijitee.K1445.0981119
    [Google Scholar]
  61. Praharaj M. Satapathy A. Mishra P. Mishra S. Ultrasonic studies of ternary liquid mixtures of N-N-dimethylformamide, nitrobenzene, and cyclohexane at different frequencies at 318 K. J Theor. Appl Phys 2013 7 1 23 10.1186/2251‑7235‑7‑23
    [Google Scholar]
  62. Panda S. Thermoacoustical analysis of polymer dextran at different frequencies. Bulg J Phys 2022 49 2
    [Google Scholar]
  63. Saxena I. Pathak R.N. Kumar V. Devi R. Introduction of ultrasonic interferometer and experimental techniques for determination of ultrasonic velocity, density, viscosity and various thermodynamic parameters. Int. J. Appl. Res. 2015 1 9 562 569
    [Google Scholar]
  64. Horn N.R. A critical review of free volume and occupied volume calculation methods. J. Membr. Sci. 2016 518 289 294 10.1016/j.memsci.2016.07.014
    [Google Scholar]
  65. Praharaj M.K. Molecular interaction in ionic liquids at different temperatures. Int Res J Eng Technol 2020 7 5 2213 2216 10.5281/zenodo.3964204
    [Google Scholar]
  66. Gavezzotti A. The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity. J. Am. Chem. Soc. 1983 105 16 5220 5225 10.1021/ja00354a007
    [Google Scholar]
  67. Mehrotra K.N. Chauhan M. Shukla R.K. Molar volume and ultrasonic studies of europium soaps in mixed organic solvents. J. Am. Oil Chem. Soc. 1996 73 7 897 902 10.1007/BF02517992
    [Google Scholar]
  68. Bagchi S. Nema S.K. Singh R.P. Ultrasonic and viscometric investigation of ISRO polyol in various solvents and its compatibility with polypropylene glycol. Eur. Polym. J. 1986 22 10 851 857 10.1016/0014‑3057(86)90029‑7
    [Google Scholar]
  69. Panda S. Mahapatra A.P. Variation of acoustical parameters of dextran in 2 (M) glycine with temperature and concentrations. Int J Chem Phys Sci 2016 5 5 15 22
    [Google Scholar]
  70. Pandiyan V. Oswal S.L. Vasantharani P. Thermodynamic and acoustic properties of binary mixtures of ethers. IV. Diisopropyl ether or oxolane with N,N-dimethylaniline or N,N-diethylaniline at 303.15, 313.15 and 323.15 K. Thermochim. Acta 2011 518 1-2 36 46 10.1016/j.tca.2011.02.004
    [Google Scholar]
  71. Sharma D. Agarwal S. Free volume and internal pressure of binary liquid mixtures from ultrasonic velocity at 303.15 K. Int. J. Thermodyn. 2022 25 2 16 22 10.5541/ijot.991645
    [Google Scholar]
  72. Dhiman M. Singh K. Kaushal J. Upmanyu A. Singh D.P. Ultrasonic study of molecular interactions in polymeric solution of polypropylene glycol-400 and ethanol at 303 K. Acta Acust. United Acust. 2019 105 5 743 752 10.3813/AAA.919354
    [Google Scholar]
  73. Thirumaran S. George G. Vijay S. Prakash N. Acoustical and thermodynamical studies of molecular interactions in aqueous ethylene glycol at 303.15, 308.15 AND 313.15 K. Int. J. Pharm. Chem. Biol. Sci. 2013 3 3
    [Google Scholar]
  74. Kondaiah M. Sreekanth K. Dr N. Krishna R.D. Ultrasonic and volumetric study of aqueous solution of ethylene glycol, propylene glycol in iso-propanol. J. Chem. Pharm. Res. 2014 6 1243 1258
    [Google Scholar]
  75. Nanda B. Determination of available volume using thermo acoustical parameters and evaluation of ion-solvent interactions in liquid solutions. Indian J. Pure Appl. Phys 54 7 471 475
    [Google Scholar]
  76. Panda S. Molecular interaction of polymer dextran in sodium hydroxide through evaluation of thermo acoustic parameters. Indian J Pharm Educ Res 2020 54 3 630 636 10.5530/ijper.54.3.112
    [Google Scholar]
  77. Das Y. Nanda B. Sarangi D. Nanda B.B. Determination of available volume in the ternary solutions of tetra-n-butyl ammonium bromide using thermo acoustical and ultrasonic methods. AIP Conf Proc 2023 2740 1 060012 10.1063/5.0125925
    [Google Scholar]
  78. Kant S. Singh D. Kumar S. Molar volume and ultrasonic studies of some alkaline earth metal chlorides in water+ NaCl+ fructose system. Arch. Appl. Sci. Res. 2011 3 70 84
    [Google Scholar]
  79. Panda S. Thermoacoustical parameters of dextran polymer in sodium hydroxide solutions. Songklanakarin J. Sci. Technol. 2022 44 4 1125 1130
    [Google Scholar]
  80. Singh G. Patyar P. Kaur T. Kaur G. Volumetric behavior of glycine in aqueous succinic acid and sodium succinate buffer at different temperatures. J. Mol. Liq. 2016 222 804 817 10.1016/j.molliq.2016.07.042
    [Google Scholar]
  81. Praharaj M.K. Misra S. Ultrasonic and conductometric studies of NaCl solutions and study of ionicity of the liquid solution through the Walden plot and various ultrasonic parameters. J. Therm. Anal. Calorim. 2018 132 2 1089 1094 10.1007/s10973‑018‑7038‑9
    [Google Scholar]
  82. Nagarjun B. Sarma A.V. Rao G.V.R. Rambabu C. Thermodynamic and acoustic study on molecular interactions in certain binary liquid systems involving ethyl benzoate. J. Thermodyn. 2013 2013 1 1 9 10.1155/2013/285796
    [Google Scholar]
  83. Panda S. Mahapatra A.P. Study of acoustic and thermodynamic properties of aqueous solution of dextran at different concentration and temperature through ultrasonic technique. J Sci Res 2015 22 503 508
    [Google Scholar]
  84. Palani R. Geetha A. Swara R.K. Ultrasonic studies on molecular interaction and physico-chemical behaviour of some divalent transition metal sulphates in aqueous propylene glycol at 303.15 k. Rasayan J. Chem. 2009 2 3 602 606
    [Google Scholar]
  85. Singh J.P. Sharma R. Variation of Wada constant, Raos constant and acoustic impedance of aqueous cholesteryl oleyl carbonate with temperature. RN 2013 10 1026
    [Google Scholar]
  86. Pal A. Kumar H. Kumar B. Gaba R. Density and speed of sound for binary mixtures of 1,4-dioxane with propanol and butanol isomers at different temperatures. J. Mol. Liq. 2013 187 278 286 10.1016/j.molliq.2013.08.009
    [Google Scholar]
  87. Dubey G.P. Rani S. Kumar H. Acoustic, volumetric and spectral studies of binary liquid mixtures of aliphatic dialkylamine and 2-alkanols at different temperatures. J. Chem. Thermodyn. 2019 132 1 8 10.1016/j.jct.2018.12.012
    [Google Scholar]
  88. Panda S. Mahapatra A.P. Acoustic and ultrasonic studies of dextran in 2 (M) glycine-variation with frequencies and concentrations. Int J Pure Appl Phys 2016 12 1 71 79
    [Google Scholar]
  89. Ali K.F. Hummadi H.H. A study of some physical properties for b12 in aqueous solution at four temperatures. Al-Nahrain J Sci 2007 10 1 13 17
    [Google Scholar]
  90. Praharaj M.K. Mishra S. Comparative study of molecular interaction in ternary liquid mixtures of polar and non-polar solvents by ultrasonic velocity measurements. Int. J. Sci. Res. 2014 3 11 642 646
    [Google Scholar]
  91. Awasthi A. Awasthi A. Intermolecular interactions] in formamide+2-alkoxyethanols: Viscometric study. Thermochim. Acta 2012 537 57 64 10.1016/j.tca.2012.03.001
    [Google Scholar]
  92. Panda S. Mahapatra A.P. Ultrasonic study of acoustical parameters of dextran solution with 1(N) NaOH at different temperatures and concentrations. J Pure Appl Ultrason 2018 40 4 100 105
    [Google Scholar]
/content/journals/rice/10.2174/0124055204414734250925054001
Loading
/content/journals/rice/10.2174/0124055204414734250925054001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test