Skip to content
2000
image of Modelling and Simulation Study of Methanol Production from the Catalytic Hydrogenation of CO2

Abstract

Introduction

Human activities during the last century have dramatically increased CO emissions, prompting scientists to develop both emission reduction techniques and profitable business opportunities. This research improves the production process for generating methanol fuel from captured CO while simultaneously reducing atmospheric CO levels and creating marketable products.

Methods

The simulation process, based on Aspen Plus software, develops a precise method to absorb CO from thermal power plant flue gases. The production of hydrogen, which drives methanol synthesis, depends on water electrolysis powered by carbon-free electricity. This study examines outcomes generated by using two different catalyst systems, Cu/

ZnO/AlO and InO, throughout the plant operation. Financial feasibility is determined by conducting an extensive economic plant evaluation, which includes a Return on Investment analysis, an Internal Rate of Return calculation, and assessments of Net Present Value and Payback Period.

Results

It is found that the process utilizing the InO catalyst is more efficient than the Cu/ZnO/AlO catalyst, particularly when H is sourced from different renewable energy sources.

Discussion

These findings suggest that the choice of a proper catalyst plays a vital role in the yield and economics of the methanol process. The benefits of InO are linked to the current strong focus on combating climate change by fully integrating renewable energy into the grid and promoting sustainable chemical production worldwide. While simulation data were used for the study, experimental validation and scalability studies are still needed.

Conclusion

Consequently, the synthesis process using the InO catalyst emerges as a sustainable and environmentally benign approach for methanol production.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204421127251016051013
2025-10-27
2025-11-02
Loading full text...

Full text loading...

References

  1. Manisalidis I. Stavropoulou E. Stavropoulos A. Bezirtzoglou E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020 8 14 10.3389/fpubh.2020.00014 32154200
    [Google Scholar]
  2. Hughes T.P. Kerry J.T. Álvarez-Noriega M. Álvarez-Romero J.G. Anderson K.D. Baird A.H. Babcock R.C. Beger M. Bellwood D.R. Berkelmans R. Bridge T.C. Butler I.R. Byrne M. Cantin N.E. Comeau S. Connolly S.R. Cumming G.S. Dalton S.J. Diaz-Pulido G. Eakin C.M. Figueira W.F. Gilmour J.P. Harrison H.B. Heron S.F. Hoey A.S. Hobbs J.P.A. Hoogenboom M.O. Kennedy E.V. Kuo C. Lough J.M. Lowe R.J. Liu G. McCulloch M.T. Malcolm H.A. McWilliam M.J. Pandolfi J.M. Pears R.J. Pratchett M.S. Schoepf V. Simpson T. Skirving W.J. Sommer B. Torda G. Wachenfeld D.R. Willis B.L. Wilson S.K. Global warming and recurrent mass bleaching of corals. Nature 2017 543 7645 373 377 10.1038/nature21707 28300113
    [Google Scholar]
  3. Shahsavari A. Akbari M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 2018 90 275 291 10.1016/j.rser.2018.03.065
    [Google Scholar]
  4. Nicoletti G. Arcuri N. Nicoletti G. Bruno R. A technical and environmental comparison between hydrogen and some fossil fuels. Energy Convers. Manage. 2015 89 205 213 10.1016/j.enconman.2014.09.057
    [Google Scholar]
  5. Witoon T. Kachaban N. Donphai W. Kidkhunthod P. Faungnawakij K. Chareonpanich M. Limtrakul J. Tuning of catalytic CO2 hydrogenation by changing composition of CuO–ZnO–ZrO2 catalysts. Energy Convers. Manage. 2016 118 21 31 10.1016/j.enconman.2016.03.075
    [Google Scholar]
  6. Zabel G. Zabel. Peak People: The interrelationship between population growth and energy resources. 2009 Available from: https://www.resilience.org/stories/2009-04-20/peak-people-interrelationship-between-population-growth-and-energy-resources/#_Toc227469806
  7. Gattuso J-P. Magnan A. Billé R. Cheung W.W.L. Howes E.L. Joos F. Allemand D. Bopp L. Cooley S.R. Eakin C.M. Hoegh-Guldberg O. Kelly R.P. Pörtner H-O. Rogers A.D. Baxter J.M. Laffoley D. Osborn D. Rankovic A. Rochette J. Sumaila U.R. Treyer S. Turley C. Contrasting futures for ocean and society from different anthropogenic CO 2 emissions scenarios. Science 1979 2015 349 10.1126/science.aac4722 26138982
    [Google Scholar]
  8. Bui M. Adjiman C.S. Bardow A. Anthony E.J. Boston A. Brown S. Fennell P.S. Fuss S. Galindo A. Hackett L.A. Hallett J.P. Herzog H.J. Jackson G. Kemper J. Krevor S. Maitland G.C. Matuszewski M. Metcalfe I.S. Petit C. Puxty G. Reimer J. Reiner D.M. Rubin E.S. Scott S.A. Shah N. Smit B. Trusler J.P.M. Webley P. Wilcox J. Mac Dowell N. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 2018 11 5 1062 1176 10.1039/C7EE02342A
    [Google Scholar]
  9. Ajmi A.N. Hammoudeh S. Nguyen D.K. Sato J.R. On the relationships between CO 2 emissions, energy consumption and income: The importance of time variation. Energy Econ. 2015 49 629 638 10.1016/j.eneco.2015.02.007
    [Google Scholar]
  10. Wang J.L. Wu G.Y. Luo J.N. Liu J.L. Zhuo C.X. Catalytic Intermolecular Deoxygenative Coupling of Carbonyl Compounds with Alkynes by a Cp*Mo(II)-Catalyst. J. Am. Chem. Soc. 2024 146 8 5605 5613 10.1021/jacs.3c14195 38351743
    [Google Scholar]
  11. Nhan J. Sitterly J. Brainard R.L. Modeling the acid-catalyzed cleavage of carbon-oxygen bonds. Advances in Patterning Materials and Processes XXXVIII. Guerrero D. Sanders D.P. SPIE 2021 38 10.1117/12.2583013
    [Google Scholar]
  12. Kar S Kothandaraman J Goeppert A Prakash GKS Advances in catalytic homogeneous hydrogenation of carbon dioxide to methanol. J. CO₂ Util. 2018 23 212 218 10.1016/j.jcou.2017.10.023
    [Google Scholar]
  13. Das S. Wan Daud W.M.A. A review on advances in photocatalysts towards CO2 conversion. RSC Advances 2014 4 40 20856 10.1039/c4ra01769b
    [Google Scholar]
  14. Gür T.M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018 11 10 2696 2767 10.1039/C8EE01419A
    [Google Scholar]
  15. Sarp S. Gonzalez Hernandez S. Chen C. Sheehan S.W. Alcohol Production from Carbon Dioxide: Methanol as a Fuel and Chemical Feedstock. Joule 2021 5 1 59 76 10.1016/j.joule.2020.11.005
    [Google Scholar]
  16. Jiang X. Nie X. Guo X. Song C. Chen J.G. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem. Rev. 2020 120 15 7984 8034 10.1021/acs.chemrev.9b00723 32049507
    [Google Scholar]
  17. Din IU Shaharun MS Alotaibi MA Alharthi AI Naeem A Recent developments on heterogeneous catalytic CO2 reduction to methanol. J. CO2 Util 2019 34 20 10.1016/j.jcou.2019.05.036
    [Google Scholar]
  18. Tursunov O Kustov L Kustov A. A brief review of Carbon Dioxide hydrogenation to methanol over copper and iron based catalysts. Oil. Gas. Sci. Technol. Revue d'IFP Energ. Nouvell 2017 72 30 10.2516/ogst/2017027
    [Google Scholar]
  19. Guil-López R. Mota N. Llorente J. Millán E. Pawelec B. Fierro J.L.G. Navarro R.M. Methanol Synthesis from CO2: A Review of the Latest Developments in Heterogeneous Catalysis. Materials (Basel) 2019 12 23 3902 10.3390/ma12233902 31779127
    [Google Scholar]
  20. Arena F. Mezzatesta G. Zafarana G. Trunfio G. Frusteri F. Spadaro L. How oxide carriers control the catalytic functionality of the Cu–ZnO system in the hydrogenation of CO2 to methanol. Catal. Today 2013 210 39 46 10.1016/j.cattod.2013.02.016
    [Google Scholar]
  21. Arena F. Italiano G. Barbera K. Bordiga S. Bonura G. Spadaro L. Frusteri F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Appl. Catal. A Gen. 2008 350 1 16 23 10.1016/j.apcata.2008.07.028
    [Google Scholar]
  22. Raudaskoski R. Turpeinen E. Lenkkeri R. Pongrácz E. Keiski R.L. Catalytic activation of CO2: Use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts. Catal. Today 2009 144 3-4 318 323 10.1016/j.cattod.2008.11.026
    [Google Scholar]
  23. Ateka A. Sierra I. Ereña J. Bilbao J. Aguayo A.T. Performance of CuO–ZnO–ZrO2 and CuO–ZnO–MnO as metallic functions and SAPO-18 as acid function of the catalyst for the synthesis of DME co-feeding CO2. Fuel Process. Technol. 2016 152 34 45 10.1016/j.fuproc.2016.05.041
    [Google Scholar]
  24. Bonura G. Cordaro M. Cannilla C. Arena F. Frusteri F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Appl. Catal. B 2014 152-153 152 161 10.1016/j.apcatb.2014.01.035
    [Google Scholar]
  25. Lin L. Yao S. Liu Z. Zhang F. Li N. Vovchok D. Martínez-Arias A. Castañeda R. Lin J. Senanayake S.D. Su D. Ma D. Rodriguez J.A. In Situ Characterization of Cu/CeO 2 Nanocatalysts for CO 2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity. J. Phys. Chem. C 2018 122 24 12934 12943 10.1021/acs.jpcc.8b03596
    [Google Scholar]
  26. Ouyang B. Tan W. Liu B. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation. Catal. Commun. 2017 95 36 39 10.1016/j.catcom.2017.03.005
    [Google Scholar]
  27. Spadaro L. Palella A. Arena F. Copper-Iron-Zinc-Cerium oxide compositions as most suitable catalytic materials for the synthesis of green fuels via CO2 hydrogenation. Catal. Today 2021 379 230 239 10.1016/j.cattod.2020.04.052
    [Google Scholar]
  28. Liu R. Qin Z. Ji H. Su T. Synthesis of Dimethyl Ether from CO 2 and H 2 Using a Cu–Fe–Zr/HZSM-5 Catalyst System. Ind. Eng. Chem. Res. 2013 52 47 16648 16655 10.1021/ie401763g
    [Google Scholar]
  29. Zhou X. Su T. Jiang Y. Qin Z. Ji H. Guo Z. CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chem. Eng. Sci. 2016 153 10 20 10.1016/j.ces.2016.07.007
    [Google Scholar]
  30. Zhang L. Zhang Y. Chen S. Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation. Appl. Catal. A Gen. 2012 415-416 118 123 10.1016/j.apcata.2011.12.013
    [Google Scholar]
  31. Yu J. Yang M. Zhang J. Ge Q. Zimina A. Pruessmann T. Zheng L. Grunwaldt J.D. Sun J. Stabilizing Cu + in Cu/SiO 2 Catalysts with a Shattuckite-Like Structure Boosts CO 2 Hydrogenation into Methanol. ACS Catal. 2020 10 24 14694 14706 10.1021/acscatal.0c04371
    [Google Scholar]
  32. Yang H. Gao P. Zhang C. Zhong L. Li X. Wang S. Wang H. Wei W. Sun Y. Core–shell structured Cu@m-SiO2 and Cu/ZnO@m-SiO2 catalysts for methanol synthesis from CO2 hydrogenation. Catal. Commun. 2016 84 56 60 10.1016/j.catcom.2016.06.010
    [Google Scholar]
  33. Xiao J. Mao D. Guo X. Yu J. Effect of TiO2, ZrO2, and TiO2–ZrO2 on the performance of CuO–ZnO catalyst for CO2 hydrogenation to methanol. Appl. Surf. Sci. 2015 338 146 153 10.1016/j.apsusc.2015.02.122
    [Google Scholar]
  34. Bando K.K. Sayama K. Kusama H. Okabe K. Arakawa H. In-situ FT-IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, Al2O3, and TiO2. Appl. Catal. A Gen. 1997 165 1-2 391 409 10.1016/S0926‑860X(97)00221‑4
    [Google Scholar]
  35. Chang K. Wang T. Chen J.G. Hydrogenation of CO2 to methanol over CuCeTiO catalysts. Appl. Catal. B 2017 206 704 711 10.1016/j.apcatb.2017.01.076
    [Google Scholar]
  36. Graciani J. Mudiyanselage K. Xu F. Baber A.E. Evans J. Senanayake S.D. Stacchiola D.J. Liu P. Hrbek J. Sanz J.F. Rodriguez J.A. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO 2. Science 2014 345 6196 546 550 10.1126/science.1253057 25082699
    [Google Scholar]
  37. Sun K Fan Z Ye J Yan J Ge Q Li Y He W Yang W Liu C. Hydrogenation of CO₂ to methanol over In₂O₃ catalyst. J. CO₂ Util. 2015 12 1 6 10.1016/j.jcou.2015.09.002
    [Google Scholar]
  38. Ye J. Liu C. Mei D. Ge Q. Active Oxygen Vacancy Site for Methanol Synthesis from CO 2 Hydrogenation on In 2 O 3 (110): A DFT Study. ACS Catal. 2013 3 6 1296 1306 10.1021/cs400132a
    [Google Scholar]
  39. Ye J. Liu C. Ge Q. DFT Study of CO 2 Adsorption and Hydrogenation on the In 2 O 3 Surface. J. Phys. Chem. C 2012 116 14 7817 7825 10.1021/jp3004773
    [Google Scholar]
  40. Wang L. Dong Y. Yan T. Hu Z. Ali F.M. Meira D.M. Duchesne P.N. Loh J.Y.Y. Qiu C. Storey E.E. Xu Y. Sun W. Ghoussoub M. Kherani N.P. Helmy A.S. Ozin G.A. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun. 2020 11 1 2432 10.1038/s41467‑020‑16336‑z 32415078
    [Google Scholar]
  41. Dou M. Zhang M. Chen Y. Yu Y. Theoretical insights into the surface structure of In2O3(1 1 0) surface and its effect on methanol synthesis from CO2 hydrogenation. Comput. Theor. Chem. 2018 1126 7 15 10.1016/j.comptc.2018.01.008
    [Google Scholar]
  42. Lin D. Shen Q. Tang Y. Zhang M. Li W. Zhuo Q. Yang W. Luo Y. Qian Q. Chen Q. In2O3 crystal phase variation on In2O3/Co3O4 to boost CO2 hydrogenation to methanol. Molecular Catalysis 2024 557 113998 10.1016/j.mcat.2024.113998
    [Google Scholar]
  43. Hu J. Cai Y. Xie J. Hou D. Yu L. Deng D. Selectivity control in CO2 hydrogenation to one-carbon products. Chem 2024 10 4 1084 1117 10.1016/j.chempr.2024.02.017
    [Google Scholar]
  44. Qin H. Zhang H. Wang K. Wang X. Fan W. Theoretical study of CO2 hydrogenation to methanol on modified Au/In2O3 catalysts: Effects of hydrogen spillover and activation energy prediction for hydrogen transfer. Surf. Sci. 2024 744 122469 10.1016/j.susc.2024.122469
    [Google Scholar]
  45. Aktary M. Alghamdi H.S. Ajeebi A.M. AlZahrani A.S. Sanhoob M.A. Aziz M.A. Nasiruzzaman Shaikh M. Hydrogenation of CO 2 into Value‐added Chemicals Using Solid‐Supported Catalysts. Chem. Asian J. 2024 19 16 e202301007 10.1002/asia.202301007 38311592
    [Google Scholar]
  46. Hartadi Y. Widmann D. Behm R.J. Methanol formation by CO2 hydrogenation on Au/ZnO catalysts – Effect of total pressure and influence of CO on the reaction characteristics. J. Catal. 2016 333 238 250 10.1016/j.jcat.2015.11.002
    [Google Scholar]
  47. Kiss A.A. Pragt J.J. Vos H.J. Bargeman G. de Groot M.T. Novel efficient process for methanol synthesis by CO 2 hydrogenation. Chem. Eng. J. 2016 284 260 269 10.1016/j.cej.2015.08.101
    [Google Scholar]
  48. Li M.M.J. Zeng Z. Liao F. Hong X. Tsang S.C.E. Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts. J. Catal. 2016 343 157 167 10.1016/j.jcat.2016.03.020
    [Google Scholar]
  49. Olah G.A. Goeppert A. Prakash G.K.S. Beyond Oil and Gas: The Methanol Economy. Wiley 2009 10.1002/9783527627806
    [Google Scholar]
  50. Olah G.A. Towards oil independence through renewable methanol chemistry. Angew. Chem. Int. Ed. 2013 52 1 104 107 10.1002/anie.201204995 23208664
    [Google Scholar]
  51. Olah G.A. Beyond oil and gas: the methanol economy. Angew. Chem. Int. Ed. 2005 44 18 2636 2639 10.1002/anie.200462121 15800867
    [Google Scholar]
  52. Samiee L. Gandzha S. Power to methanol technologies via CO 2 recovery: CO 2 hydrogenation and electrocatalytic routes. Rev. Chem. Eng. 2021 37 5 619 641 10.1515/revce‑2019‑0012
    [Google Scholar]
  53. Zhong J. Yang X. Wu Z. Liang B. Huang Y. Zhang T. State of the art and perspectives in heterogeneous catalysis of CO 2 hydrogenation to methanol. Chem. Soc. Rev. 2020 49 5 1385 1413 10.1039/C9CS00614A 32067007
    [Google Scholar]
  54. Nieminen H. Laari A. Koiranen T. CO2 Hydrogenation to Methanol by a Liquid-Phase Process with Alcoholic Solvents: A Techno-Economic Analysis. Processes (Basel) 2019 7 7 405 10.3390/pr7070405
    [Google Scholar]
  55. Lombardelli G. Consonni S. Conversano A. Mureddu M. Pettinau A. Gatti M. Process Design and Techno-Economic Assessment of biogenic CO 2 Hydrogenation-to-Methanol with innovative catalyst. J. Phys. Conf. Ser. 2022 2385 1 012038 10.1088/1742‑6596/2385/1/012038
    [Google Scholar]
  56. Campos LOB. John K. Beeskow P. Herrera Delgado K. Pitter S. Dahmen N. Sauer J. A Detailed Process and Techno-Economic Analysis of Methanol Synthesis from H2 and CO2 with Intermediate Condensation Steps. Processes (Basel) 2022 10 8 1535 10.3390/pr10081535
    [Google Scholar]
  57. Yousaf M. Mahmood A. Elkamel A. Rizwan M. Zaman M. Techno-economic analysis of integrated hydrogen and methanol production process by CO2 hydrogenation. Int. J. Greenh. Gas Control 2022 115 103615 10.1016/j.ijggc.2022.103615
    [Google Scholar]
  58. Haghighatjoo F. Rahimpour M.R. Farsi M. Techno-economic and environmental assessment of CO2 conversion to methanol: Direct versus indirect conversion routes. Chem. Eng. Process. 2023 184 109264 10.1016/j.cep.2023.109264
    [Google Scholar]
  59. Centi G. Perathoner S. Salladini A. Iaquaniello G. Economics of CO2 Utilization: A Critical Analysis. Front. Energy Res. 2020 8 567986 10.3389/fenrg.2020.567986
    [Google Scholar]
  60. Dwivedi A. Gudi R. Biswas P. An improved water electrolysis and oxy-fuel combustion coupled tri-reforming process for methanol production and CO2 valorization. J. Environ. Chem. Eng. 2021 9 1 105041 10.1016/j.jece.2021.105041
    [Google Scholar]
  61. Bolland O. Sæther S. New concepts for natural gas fired power plants which simplify the recovery of carbon dioxide. Energy Convers. Manage. 1992 33 5-8 467 475 10.1016/0196‑8904(92)90045‑X
    [Google Scholar]
  62. Amann J.M.G. Bouallou C. CO2 capture from power stations running with natural gas (NGCC) and pulverized coal (PC): Assessment of a new chemical solvent based on aqueous solutions of N-methyldiethanolamine + triethylene tetramine. Energy Procedia 2009 1 1 909 916 10.1016/j.egypro.2009.01.121
    [Google Scholar]
  63. Van-Dal ÉS Bouallou C CO2 abatement through a methanol production process. Chem Eng Trans 2012 2012 463 10.3303/CET1229078
    [Google Scholar]
  64. Van-Dal É.S. Bouallou C. Design and simulation of a methanol production plant from CO2 hydrogenation. J. Clean. Prod. 2013 57 38 45 10.1016/j.jclepro.2013.06.008
    [Google Scholar]
  65. Vanden Bussche K.M. Froment G.F. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al 2 O 3 catalyst. J. Catalysis 1996 161 1 10 10.1006/jcat.1996.0156
    [Google Scholar]
  66. Mignard D. Pritchard C. On the use of electrolytic hydrogen from variable renewable energies for the enhanced conversion of biomass to fuels. Chem. Eng. Res. Des. 2008 86 5 473 487 10.1016/j.cherd.2007.12.008
    [Google Scholar]
  67. Graaf G.H. Sijtsema P.J.J.M. Stamhuis E.J. Joosten G.E.H. Chemical equilibria in methanol synthesis. Chem. Eng. Sci. 1986 41 11 2883 2890 10.1016/0009‑2509(86)80019‑7
    [Google Scholar]
  68. Linnhoff B. Flower J.R. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. AIChE J. 1978 24 4 633 642 10.1002/aic.690240411
    [Google Scholar]
  69. Liu D. Men Y. Wang J. Kolb G. Liu X. Wang Y. Sun Q. Highly active and durable Pt/In2O3/Al2O3 catalysts in methanol steam reforming. Int. J. Hydrogen Energy 2016 41 47 21990 21999 10.1016/j.ijhydene.2016.08.184
    [Google Scholar]
  70. Liu L. Mezari B. Kosinov N. Hensen E.J.M. Al Promotion of In 2 O 3 for CO 2 Hydrogenation to Methanol. ACS Catal. 2023 13 24 15730 15745 10.1021/acscatal.3c04620 38125979
    [Google Scholar]
  71. Ghosh S. Sebastian J. Olsson L. Creaser D. Experimental and kinetic modeling studies of methanol synthesis from CO2 hydrogenation using In2O3 catalyst. Chem. Eng. J. 2021 416 129120 10.1016/j.cej.2021.129120
    [Google Scholar]
  72. Towler G. Sinnott R. Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design. Springer 2021
    [Google Scholar]
  73. Ren R. Wang H. Feng X. You C. Techno-economic analysis of auto-thermal gasification of municipal solid waste with ash direct melting for hydrogen production. Energy Convers. Manage. 2023 292 117401 10.1016/j.enconman.2023.117401
    [Google Scholar]
  74. Lopes J.V.M. Bresciani A.E. Carvalho K.M. Kulay L.A. Alves R.M.B. Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals. Renew. Sustain. Energy Rev. 2021 151 111542 10.1016/j.rser.2021.111542
    [Google Scholar]
  75. Hosseini S.E. Wahid M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016 57 850 866 10.1016/j.rser.2015.12.112
    [Google Scholar]
  76. Luyben W.L. Design and control of a methanol reactor/column process. Ind. Eng. Chem. Res. 2010 49 13 6150 6163 10.1021/ie100323d
    [Google Scholar]
/content/journals/rice/10.2174/0124055204421127251016051013
Loading
/content/journals/rice/10.2174/0124055204421127251016051013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test