Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2405-5204
  • E-ISSN: 2405-5212

Abstract

Natural gas hydrates (NGHs) are among the most promising clean alternative energy sources to replace fossil fuels in the post-petroleum era. Over the past decade, extensive research on NGHs has made remarkable progress, advancing from the resource exploration stage to trial production. Field production tests have demonstrated that depressurization is one of the most effective and promising methods for the commercial exploitation of NGHs. In this paper, we systematically summarized the current advances in experimental simulations, numerical simulations, and field production tests of NGHs exploitation by depressurization. The problems and limitations of laboratory simulations and field tests were discussed, and related technical and environmental issues that may arise in commercial production were analyzed. Key scientific challenges involved during production were put forward. Enhancing production efficiency and ensuring the stability of sediment layers are critical to achieving commercial-scale exploitation of NGHs reservoirs.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204364567250128045454
2025-02-10
2025-11-16
Loading full text...

Full text loading...

References

  1. SloanE.D. SubramanianS. MatthewsP.N. LederhosJ.P. KhokharA.A. Quantifying hydrate formation and kinetic inhibition.Ind. Eng. Chem. Res.19983783124313210.1021/ie970902h
    [Google Scholar]
  2. GuoX. ZhangN. KongB. Numerical simulation of depressurization production of natural gas hydrate in different well types.Petrol. Sci. Technol.202341101060108010.1080/10916466.2022.2072331
    [Google Scholar]
  3. KerrR.A. Energy. Gas hydrate resource: Smaller but sooner.Science2004303566094694710.1126/science.303.5660.946 14963301
    [Google Scholar]
  4. ZhouS.W. LiQ.P. ZhuJ.L. Challenges and considerations for the development of natural gas hydrates in South China Sea.Nat. Gas Ind.20234311152163
    [Google Scholar]
  5. WangY. FengJ.C. LiX.S. ZhangY. LiG. Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment.Appl. Energy201616237238110.1016/j.apenergy.2015.10.099
    [Google Scholar]
  6. KonnoY. MasudaY. HariguchiY. KuriharaM. OuchiH. Key factors for depressurization-induced gas production from oceanic methane hydrates.Energy Fuels20102431736174410.1021/ef901115h
    [Google Scholar]
  7. LvT. CaiJ. DingY. PanJ. ChenZ. LiX. Numerical evaluation of long-term depressurization production of a multilayer gas hydrate reservoir and its hydraulic fracturing applications.Energy Fuels20223663154316810.1021/acs.energyfuels.1c04017
    [Google Scholar]
  8. LiG. MoridisG.J. ZhangK. LiX. The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea.J. Petrol. Sci. Eng.2011771496810.1016/j.petrol.2011.02.009
    [Google Scholar]
  9. ChenZ. FengJ. LiX. ZhangY. LiB. LvQ. Preparation of warm brine in situ seafloor based on the hydrate process for marine gas hydrate thermal stimulation.Ind. Eng. Chem. Res.20145336141421415710.1021/ie501181r
    [Google Scholar]
  10. OhgakiK. TakanoK. SangawaH. MatsubaraT. NakanoS. Methane exploitation by carbon dioxide from gas hydrates. Phase equilibria for CO2-CH4 mixed hydrate system.J. Chem. Eng. of Jpn199629347848310.1252/jcej.29.478
    [Google Scholar]
  11. ChongZ.R. YangS.H.B. BabuP. LingaP. LiX-S. Review of natural gas hydrates as an energy resource: Prospects and challenges.Appl. Energy20161621633165210.1016/j.apenergy.2014.12.061
    [Google Scholar]
  12. WaiteW.F. WintersW.J. MasonD.H. Methane hydrate formation in partially water-saturated Ottawa sand.Am. Mineral.2004898-91202120710.2138/am‑2004‑8‑906
    [Google Scholar]
  13. TsourisC. McCallumS. AaronD. Scale‐up of a continuous‐jet hydrate reactor for CO2 ocean sequestration.AIChE J.20075341017102710.1002/aic.11117
    [Google Scholar]
  14. SchicksJ.M. SpangenbergE. GieseR. SteinhauerB. KlumpJ. LuziM. New approaches for the production of hydrocarbons from hydrate bearing sediments.Energies20114115117210.3390/en4010151
    [Google Scholar]
  15. NagaoJ. Development of methane hydrate production method.Synthesiology201252899710.5571/synth.5.89
    [Google Scholar]
  16. LiuC. LiY. LiuL. An integrated experimental system for gas hydrate drilling and production and a preliminary experiment of the depressurization method.Nat. Gas Ind. B202071566310.1016/j.ngib.2019.06.003
    [Google Scholar]
  17. ZhaoJ.Z. ZhouS.W. ZhangL.H. The first global physical simulation experimental systems for the exploitation of marine natural gas hydrates through solid fluidization.Nat. Gas Ind.20173791522
    [Google Scholar]
  18. QinX. LuJ. LuH. Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea.China Geol.20203221022010.31035/cg2020038
    [Google Scholar]
  19. YuT. GuanG. WangD. SongY. AbudulaA. Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site.Appl. Energy202128511646610.1016/j.apenergy.2021.116466
    [Google Scholar]
  20. WuN.Y. HuangL. HuG.W. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation.Haiyang Dizhi Yu Disiji Dizhi201737111
    [Google Scholar]
  21. MaoP. WuN. WanY. Gas recovery enhancement from fine-grained hydrate reservoirs through positive inter-branch interference and optimized spiral multilateral well network.J. Nat. Gas Sci. Eng.202210710477110.1016/j.jngse.2022.104771
    [Google Scholar]
  22. MaoP. WuN. NingF. Gas production from muddy hydrate reservoirs by a spiral multilateral well network: Effects of well deployment and production methods.Gas Sci Eng202311820508710.1016/j.jgsce.2023.205087
    [Google Scholar]
  23. YuT. GuanG. AbudulaA. WangD. 3D investigation of the effects of multiple-well systems on methane hydrate production in a low-permeability reservoir.J. Nat. Gas Sci. Eng.20207610321310.1016/j.jngse.2020.103213
    [Google Scholar]
  24. Chandrasekharan NairV. GuptaP. SangwaiJ.S. Natural gas production from a marine clayey hydrate reservoir formed in seawater using depressurization at constant pressure, depressurization by constant rate gas release, thermal stimulation, and their implications for real field applications.Energy Fuels20193343108312210.1021/acs.energyfuels.9b00187
    [Google Scholar]
  25. LiangY.P. LiuS. WanQ.C. LiB. LiuH. HanX. Comparison and optimization of methane hydrate production process using different methods in a single vertical well.Energies201812112410.3390/en12010124
    [Google Scholar]
  26. HouJ. ZhaoE. JiY. Numerical simulation of gas production from Class III hydrate reservoirs using low-frequency electric heating-assisted depressurization with horizontal wells.Fuel202435712990610.1016/j.fuel.2023.129906
    [Google Scholar]
  27. KonnoY. JinY. YonedaJ. UchiumiT. ShinjouK. NagaoJ. Hydraulic fracturing in methane-hydrate-bearing sand.RSC Advances2016677731487315510.1039/C6RA15520K
    [Google Scholar]
  28. LiuZ. GongG. YuY. Natural core-based laboratory analysis and comparisons of the mechanical and hydraulic characteristics of the soil skeleton of hydrate reservoirs in the South China Sea.Ocean Eng.202327811434210.1016/j.oceaneng.2023.114342
    [Google Scholar]
  29. YuT. ChenB. JiangL. Feasibility evaluation of a new approach of seawater flooding for offshore natural gas hydrate exploitation.Energy Fuels20233764349436410.1021/acs.energyfuels.2c04233
    [Google Scholar]
  30. XuJ. QinH. LiH. LuC. LiS. WuD. Enhanced gas production efficiency of class 1,2,3 hydrate reservoirs using hydraulic fracturing technique.Energy202326312600310.1016/j.energy.2022.126003
    [Google Scholar]
  31. LvT. PanJ. ShenP. JiangH. WangW. CaiJ. Gas production from three-phase coexisting sandy hydrate systems induced by depressurization: Insights into water- and gas-rich environments.Energy Fuels20243822220692208010.1021/acs.energyfuels.4c03932
    [Google Scholar]
  32. ZhangL. DongH. DaiS. Effects of depressurization on gas production and water performance from excess-gas and excess-water methane hydrate accumulations.Chem. Eng. J.202243113322310.1016/j.cej.2021.133223
    [Google Scholar]
  33. LiX.S. ZhangY. LiG. ChenZ-Y. WuH-J. Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator.Energy Fuels201125104497450510.1021/ef200757g
    [Google Scholar]
  34. MoonS.Y. ShinH.J. LimJ.S. Field-scale simulation of gas hydrate dissociation behavior in multilayered sediments under different depressurization conditions.J. Petrol. Sci. Eng.202322011122110.1016/j.petrol.2022.111221
    [Google Scholar]
  35. Ubeydİ.M. MereyS. Gas production from methane hydrate reservoirs in different well configurations: A case study in the conditions of the Black Sea.Energy Fuels20213521281129610.1021/acs.energyfuels.0c03522
    [Google Scholar]
  36. XiaoC.W. LiX.S. LiG. Kinetic studies of the secondary hydrate formation in porous media based on experiments in a cubic hydrate simulator and a new kinetic model.Fuel202435813016810.1016/j.fuel.2023.130168
    [Google Scholar]
  37. DongS. YangM. ZhangL. ZhengJ. SongY. Methane hydrate exploitation characteristics and thermodynamic non-equilibrium mechanisms by long depressurization method.Energy202328012817810.1016/j.energy.2023.128178
    [Google Scholar]
  38. WangX. WangF. YangX. LiW. SongY. Investigation on the coupling effects of mass transfer limitation and the presence of ice on methane hydrate dissociation inside pore.Fuel202232412454110.1016/j.fuel.2022.124541
    [Google Scholar]
  39. LiY. Maria GambelliA. ChenJ. Experimental study on the competition between carbon dioxide hydrate and ice below the freezing point.Chem. Eng. Sci.202326811842610.1016/j.ces.2022.118426
    [Google Scholar]
  40. PhillipsS.C. FlemingsP.B. YouK. MeyerD.W. DongT. Investigation of in situ salinity and methane hydrate dissociation in coarse-grained sediments by slow, stepwise depressurization.Mar. Pet. Geol.201910912814410.1016/j.marpetgeo.2019.06.015
    [Google Scholar]
  41. LvT. LiX. ChenZ. Experimental investigation on the production behaviors of methane hydrate in sandy sediments by different depressurization strategies.Energy Technol.20186122501251110.1002/ente.201800453
    [Google Scholar]
  42. GaoQ. YinZ. ZhaoJ. YangD. LingaP. Tuning the fluid production behaviour of hydrate-bearing sediments by multi-stage depressurization.Chem. Eng. J.202140612717410.1016/j.cej.2020.127174
    [Google Scholar]
  43. KonnoY. MasudaY. AkamineK. NaikiM. NagaoJ. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method.Energy Convers. Manage.201610843944510.1016/j.enconman.2015.11.030
    [Google Scholar]
  44. YamamotoK. Overview and introduction: Pressure core-sampling and analyses in the 2012–2013 MH21 offshore test of gas production from methane hydrates in the eastern Nankai Trough.Mar. Pet. Geol.20156629630910.1016/j.marpetgeo.2015.02.024
    [Google Scholar]
  45. SeoY. KimJ.Y. LeeJ. AhnT. Inclusion effect of thermal stimulation on the cyclic depressurization process for gas hydrate production using x-ray computed tomography image analysis.Energy Fuels20243813117331174510.1021/acs.energyfuels.4c01448
    [Google Scholar]
  46. GeK. ZhangX. WangJ. ChengC. HeJ. Optimization of the depressurization rate and stepwise strategy for hydrate exploitation using a genetic algorithm-based depressurization method.Chem. Eng. Sci.202326511821810.1016/j.ces.2022.118218
    [Google Scholar]
  47. FengJ.C. LiB. LiX.S. WangY. Effects of depressurizing rate on methane hydrate dissociation within large-scale experimental simulator.Appl. Energy202130411775010.1016/j.apenergy.2021.117750
    [Google Scholar]
  48. LiuC.L. LiY.L. SunJ.Y. Gas hydrate production tests: From experimental simulation to field practice.Haiyang Dizhi Yu Disiji Dizhi2017371221
    [Google Scholar]
  49. MaoP. WuN. WanY. HuG. WangX. Optimization of a multi-fractured multilateral well network in advantageous structural positions of ultralow-permeability hydrate reservoirs.Energy202326812662310.1016/j.energy.2023.126623
    [Google Scholar]
  50. DuH. ZhangY. ZhangB. TianS. LiG. ZhangP. Study of CO2 injection to enhance gas hydrate production in multilateral wells.Energy202328312907810.1016/j.energy.2023.129078
    [Google Scholar]
  51. LiS. GuoY. WuD. LiuL. ZhangN. Enhanced gas production from silty clay hydrate reservoirs using multi-branch wells combined with multi-stage fracturing: Influence of fracture parameters.Fuel202435712970510.1016/j.fuel.2023.129705
    [Google Scholar]
  52. ZhanL. KangD. LuH. LuJ. Characterization of coexistence of gas hydrate and free gas using sonic logging data in the Shenhu Area, South China Sea.J. Nat. Gas Sci. Eng.202210110454010.1016/j.jngse.2022.104540
    [Google Scholar]
  53. SungW.M. HuhD.G. RyuB.J. LeeH-S. Development and application of gas hydrate reservoir simulator based on depressurizing mechanism.Korean J. Chem. Eng.200017334435010.1007/BF02699051
    [Google Scholar]
  54. KimH.C. BishnoiP.R. HeidemannR.A. RizviS.S.H. Kinetics of methane hydrate decomposition.Chem. Eng. Sci.19874271645165310.1016/0009‑2509(87)80169‑0
    [Google Scholar]
  55. ClarkeM. BishnoiP.R. Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition.Can. J. Chem. Eng.2001791143147[a]10.1002/cjce.5450790122
    [Google Scholar]
  56. MakogonY.F. Hydrates of Hydrocarbon.USAPenn Well Publishing Company1997
    [Google Scholar]
  57. HolderG.D. AngertP.F. Simulation of gas production from a reservoir containing both gas hydrates and free natural gas.Presented at: 57th Annual Fall Technical Conference and Exhibition of the Society of Petroleum Engineers1982 Sep 26-29New Orleans, LA10.2118/11105‑MS
    [Google Scholar]
  58. JamaluddinA.K.M. KalogerakisN. BishnoiP.R. Modelling of decomposition of a synthetic core of methane gas hydrate by coupling intrinsic kinetics with heat transfer rates.Can. J. Chem. Eng.198967694895410.1002/cjce.5450670613
    [Google Scholar]
  59. YousifM.H. AbassH.H. SelimM.S. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media.SPE Reserv. Eng.1991646976
    [Google Scholar]
  60. TsypkinG.G. Mathematical models of gas hydrates dissociation in porous media.Ann. N. Y. Acad. Sci.2000912142843610.1111/j.1749‑6632.2000.tb06797.x
    [Google Scholar]
  61. JiC. AhmadiG. SmithD.H. Natural gas production from hydrate decomposition by depressurization.Chem. Eng. Sci.200156205801581410.1016/S0009‑2509(01)00265‑2
    [Google Scholar]
  62. HongH. Pooladi-DarvishM. Simulation of depressurization for gas production from gas hydrate reservoirs.J. Can. Pet. Technol.20054411666710.2118/05‑11‑03
    [Google Scholar]
  63. AhmadiG. JiC. SmithD.H. Numerical solution for natural gas production from methane hydrate dissociation.J. Petrol. Sci. Eng.200441426928510.1016/j.profnurs.2003.09.004
    [Google Scholar]
  64. SunX. MohantyK.K. Kinetic simulation of methane hydrate formation and dissociation in porous media.Chem. Eng. Sci.200661113476349510.1016/j.ces.2005.12.017
    [Google Scholar]
  65. OyamaH. KonnoY. MasudaY. NaritaH. Dependence of depressurization induced dissociation of methane hydrate bearing laboratory cores on heat transfer.Energy Fuels200923104995500210.1021/ef900179y
    [Google Scholar]
  66. OyamaH. KonnoY. SuzukiK. NagaoJ. Depressurized dissociation of methane-hydrate-bearing natural cores with low permeability.Chem. Eng. Sci.201268159560510.1016/j.ces.2011.10.029
    [Google Scholar]
  67. MoridisG.J. TOUGH+HYDRATE v12 User’s manual.In: A code for the simulation of system behavior in hydrate-bearing.Berkeley, CaliforniaGeologic Media2014
    [Google Scholar]
  68. AndersonB.J. KuriharaM. WhiteM.D. Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope.Mar. Pet. Geol.201128249350110.1016/j.marpetgeo.2010.01.015
    [Google Scholar]
  69. WhiteM.D. OostromM. STOMP Subsurface Transport Over Multiple Phase: User’s Guide PNNL-15782 (UC-2010).WashingtonPacific Northwest National Laboratory2006
    [Google Scholar]
  70. MoridisG.J. KimJ. ReaganM.T. KimS-J. Feasibility of gas production from a gas hydrate accumulation at the UBGH2-6 site of the Ulleung basin in the Korean East Sea.J. Petrol. Sci. Eng.201310818021010.1016/j.petrol.2013.03.002
    [Google Scholar]
  71. KuriharaM. SatoA. OuchiH. NaritaH. MasudaY. SaekiT. FujiiT. Prediction of gas productivity from eastern Nankai Trough methane-hydrate reservoirs.Offshore Technology Conference2008 May 5–8Houston, TX10.4043/19382‑MS
    [Google Scholar]
  72. LiG. LiX.S. LvQ.N. XiaoC-W. LiuJ-W. Full implicit simulator of hydrate (FISH) and analysis on hydrate dissociation in porous media in the cubic hydrate simulator.Energy202328012819110.1016/j.energy.2023.128191
    [Google Scholar]
  73. LiX.S. YangB. LiG. LiB. Numerical simulation of gas production from natural gas hydrate using a single horizontal well by depressurization in Qilian Mountain Permafrost.Ind. Eng. Chem. Res.201251114424443210.1021/ie201940t
    [Google Scholar]
  74. KonnoY. FujiiT. SatoA. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: toward future commercial production.Energy Fuels20173132607261610.1021/acs.energyfuels.6b03143
    [Google Scholar]
  75. MaoP.X. WuN.Y. NingF.L. Behaviors of gas and water production from hydrate induced by depressurization with different types of wells.Nat. Gas Ind.20204011168176
    [Google Scholar]
  76. MaoP. SunJ. NingF. Numerical simulation on gas production from inclined layered methane hydrate reservoirs in the Nankai Trough: A case study.Energy Rep.202178608862310.1016/j.egyr.2021.03.032
    [Google Scholar]
  77. TerzariolM. SantamarinaJ.C. Multi-well strategy for gas production by depressurization from methane hydrate-bearing sediments.Energy202122011971010.1016/j.energy.2020.119710
    [Google Scholar]
  78. ChenZ.Y. YouC.Y. LvT. Numerical simulation of the depressurization production of natural gas hydrate reservoirs by vertical well patterns in the northern South China Sea.Nat. Gas Ind.2020408177185
    [Google Scholar]
  79. SaekiT. KamedaJ. On the issues of economical feasibility.Presented at: Methane Hydrate Forum2017; 2017 Nov; Tokyo, Japan.
    [Google Scholar]
  80. DeepakM. KumarP. SinghK. YadavU.S. Techno-economic forecasting of a hypothetical gas hydrate field in the offshore of India.Mar. Pet. Geol.201910874174610.1016/j.marpetgeo.2018.11.016
    [Google Scholar]
  81. VedachalamN. RameshS. JyothiV.B.N. RamadassG.A. AtmanandM.A. ManivannanP. Techno-economic viability studies on methane gas production from gas hydrates reservoir in the Krishna-Godavari basin, east coast of India.J. Nat. Gas Sci. Eng.20207710325310.1016/j.jngse.2020.103253
    [Google Scholar]
  82. WanQ.C. SiH. LiB. LiG. Heat transfer analysis of methane hydrate dissociation by depressurization and thermal stimulation.Int. J. Heat Mass Transf.201812720621710.1016/j.ijheatmasstransfer.2018.07.016
    [Google Scholar]
  83. SunZ.X. ZhuX.C. LiuL. Feasibility study on joint exploitation of methane hydrate with deep geothermal energy.Haiyang Dizhi Yu Disiji Dizhi2019392146156
    [Google Scholar]
  84. LiuX. ZhangW. QuZ. Feasibility evaluation of hydraulic fracturing in hydrate-bearing sediments based on analytic hierarchy process-entropy method (AHP-EM).J. Nat. Gas Sci. Eng.202081910343410.1016/j.jngse.2020.103434
    [Google Scholar]
  85. YangL. ChenC. JiaR. Influence of reservoir stimulation on marine gas hydrate conversion efficiency in different accumulation conditions.Energies201811233910.3390/en11020339
    [Google Scholar]
  86. YeJ.L. QinX.W. XieW.W. Main progress of the second gas hydrate trial production in the South China Sea.China Geology202047557568
    [Google Scholar]
  87. KuriharaM. FunatsuK. OuchiH. Analysis of 2007/2008 JOGMEC/NRCan/Aurora Mallik gas hydrate production test through numerical simulation.Proceedings of the 7th International Conference on Gas HydratesEdinburgh, Scotland, United Kingdom2011
    [Google Scholar]
  88. YamamotoK. TeraoY. FujiiT. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough.Paper presented at the Offshore Technology ConferenceHouston, TexasMay 5–8, 201410.4043/25243‑MS
    [Google Scholar]
  89. ShenZ. WangD. ZhengT. Numerical simulations of the synthetic processes and consequences of secondary hydrates during depressurization of a horizontal well in the hydrates production.Energy202326312567510.1016/j.energy.2022.125675
    [Google Scholar]
  90. LiY. WanY. ChenQ. Large borehole with multi-lateral branches: A novel solution for exploitation of clayey silt hydrate.China Geol.20192333133910.31035/cg2018082
    [Google Scholar]
  91. DongL. WuN. LeonenkoY. WanY. ZhangY. LiY. Numerical analysis on hydrate production performance with multi-well systems: Synergistic effect of adjacent wells and implications on field exploitation.Energy202429013029210.1016/j.energy.2024.130292
    [Google Scholar]
  92. TooJ.L. ChengA. KhooB.C. PalmerA. LingaP. Hydraulic fracturing in a penny-shaped crack. Part II: Testing the frackability of methane hydrate-bearing sand.J. Nat. Gas Sci. Eng.20185261962810.1016/j.jngse.2018.01.046
    [Google Scholar]
  93. ZhaoJ. XuL. GuoX. Enhancing the gas production efficiency of depressurization-induced methane hydrate exploitation via fracturing.Fuel202128811974010.1016/j.fuel.2020.119740
    [Google Scholar]
/content/journals/rice/10.2174/0124055204364567250128045454
Loading
/content/journals/rice/10.2174/0124055204364567250128045454
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test