Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2405-5204
  • E-ISSN: 2405-5212

Abstract

Introduction

Recently, abundant agricultural solid waste has been utilized as sustainable biosorbents for removing heavy metals from aqueous solutions. However, the influence of the carbonization parameters on the specified biosorbent performance has not been well discussed. In this study, we developed the removal efficiency (RE) of Exhausted Kahwa Coffee (EKC) as a low-cost and high-efficiency biosorbent for Cd (II) under various carbonization temperatures (300 – 600°C) and time (1- 4 h).

Methods

The batch biosorption test showed that the EKC biochar with a carbonization temperature of 500˚C and time of 4 h removed 97% of Cd (II) from the solution. The biosorption performance was further investigated by integrating the physicochemical changes in the surface and functional groups of the EKC biochar at different temperatures using BET, SEM, and FT-IR instruments.

Results

The FT-IR showed alterations in the functional groups, while the BET data and SEM images demonstrated that the porous surface of the biochar developed as the temperature increased. Furthermore, the biosorption test data was plotted in the Langmuir and Freundlich isotherm models, where the Langmuir isotherm model showed the better fit of EKC biochar. The maximum biosorption capacity of the EKC biochar on Cd (II) was calculated at 3.41 mg/g by fitting the equilibrium data to Langmuir isotherm equations.

Conclusion

It was found that the kinetic data fitted well with Pseudo-Second-Order (PSO) with a correlation coefficient of R2 = 0.99. These findings imply the influence of the carbonization parameter on the potential biosorption of the EKC biochar on Cd (II).

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204340243241230055026
2025-01-08
2025-09-27
Loading full text...

Full text loading...

References

  1. AliH. KhanE. IlahiI. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation.J. Chem.2019201911410.1155/2019/6730305
    [Google Scholar]
  2. KahlonS.K. SharmaG. JulkaJ.M. KumarA. SharmaS. StadlerF.J. Impact of heavy metals and nanoparticles on aquatic biota.Environ. Chem. Lett.201816391994610.1007/s10311‑018‑0737‑4
    [Google Scholar]
  3. VaredaJ.P. ValenteA.J.M. DurãesL. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review.J. Environ. Manage.201924610111810.1016/j.jenvman.2019.05.126
    [Google Scholar]
  4. FawzyM.A. DarwishH. AlharthiS. Al-ZabanM.I. NoureldeenA. HassanS.H.A. Process optimization and modeling of Cd2+ biosorption onto the free and immobilized Turbinaria ornata using Box–Behnken experimental design.Sci. Rep.2022121325610.1038/s41598‑022‑07288‑z 35228594
    [Google Scholar]
  5. JiangC. ShengX. QianM. WangQ. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil.Chemosphere200872215716410.1016/j.chemosphere.2008.02.006 18348897
    [Google Scholar]
  6. McLaughlinM.J. ParkerD.R. ClarkeJ.M. Metals and micronutrients – food safety issues.Field Crops Res.1999601-214316310.1016/S0378‑4290(98)00137‑3
    [Google Scholar]
  7. RahimH.U. AkbarW.A. AlataloJ.M. A comprehensive literature review on cadmium (cd) status in the soil environment and its immobilization by biochar-based materials.Agronomy (Basel)202212487710.3390/agronomy12040877
    [Google Scholar]
  8. FadlillahL.N. UtamiS. RachmawatiA.A. JayantoG.D. WidyastutiM. Ecological risk and source identifications of heavy metals contamination in the water and surface sediments from anthropogenic impacts of urban river, Indonesia.Heliyon202394e1548510.1016/j.heliyon.2023.e15485 37151694
    [Google Scholar]
  9. World Health Organization (WHO) Guidelines for Drinking-water Quality. 4th ed., incorporating the 1st and 2nd addenda. Geneva: World Health Organization; 2024. Vol.
    [Google Scholar]
  10. ElgarahyA.M. ElwakeelK.Z. MohammadS.H. ElshoubakyG.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process.Clean. Eng. Technol.20214June10020910.1016/j.clet.2021.100209
    [Google Scholar]
  11. AnggriawanR. Remediation of heavy metals polluted soils in Indonesia. In: Trialih R, Wardiani FE, Anggriawan R, Putra CD, Said A, editors. Indonesia post-pandemic outlook: Environment and technology role for Indonesia development.JakartaBRIN Publishing2022496710.55981/brin.538.c504
    [Google Scholar]
  12. AhmadiH. HafizS.S. SharifiH. ReneN.N. HabibiS.S. HussainS. Low cost biosorbent (Melon Peel) for effective removal of Cu (II), Cd (II), and Pb (II) ions from aqueous solution.Case Stu Chem Envir Eng20226August10024210.1016/j.cscee.2022.100242
    [Google Scholar]
  13. Choińska-PulitA. Sobolczyk-BednarekJ. ŁabaW. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design.Ecotoxicol. Environ. Saf.201814927528310.1016/j.ecoenv.2017.12.008
    [Google Scholar]
  14. ZhouR. ZhangM. ZhouJ. WangJ. Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd2+.Sci. Rep.2019911753810.1038/s41598‑019‑54105‑1 31772278
    [Google Scholar]
  15. ÇelebiH. GökG. GökO. Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions.Sci. Rep.20201011757010.1038/s41598‑020‑74553‑4 33067532
    [Google Scholar]
  16. SimónD. PaletC. CostasA. CristóbalA. Agro-industrial waste as potential heavy metal adsorbents and subsequent safe disposal of spent adsorbents.Water20221420329810.3390/w14203298
    [Google Scholar]
  17. NagS. BarN. DasS.K. Sustainable bioremadiation of Cd(II) in fixed bed column using green adsorbents: Application of Kinetic models and GA-ANN technique.Environ. Technol. Innov.20191313014510.1016/j.eti.2018.11.007
    [Google Scholar]
  18. YantiN.R. PuariA.T. RusnamR. StiyantoE. Potential of exhausted kahwa coffee as activated carbon to remove Cd 2+ and Zn 2+.IOP Conf. Ser. Earth Environ. Sci.20221059101204110.1088/1755‑1315/1059/1/012041
    [Google Scholar]
  19. ChenX.M. MaZ. KittsD.D. Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves.Food Chem.201824914315310.1016/j.foodchem.2017.12.073
    [Google Scholar]
  20. KlingelT. KremerJ.I. GottsteinV. De RezendeT.R. A review of coffee by-products including leaf.Foods20209120
    [Google Scholar]
  21. RonsseF. van HeckeS. DickinsonD. PrinsW. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions.Glob. Change Biol. Bioenergy20135210411510.1111/gcbb.12018
    [Google Scholar]
  22. RusnamR. PuariA.T. YantiN.R. EfrizalE. Utilisation of exhausted coffee husk as low-cost bio-sorbent for adsorption of Pb2+.Trop. Life Sci. Res.202233322925210.21315/tlsr2022.33.3.12 36545053
    [Google Scholar]
  23. XiaoH. PengH. DengS. YangX. ZhangY. LiY. Preparation of activated carbon from edible fungi residue by microwave assisted K2CO3 activation—Application in reactive black 5 adsorption from aqueous solution.Bioresour. Technol.201211112713310.1016/j.biortech.2012.02.054 22397825
    [Google Scholar]
  24. YantiN.R. PuariA.T. Rusnam, Styanto E. Potential of exhausted kahwa coffee as activated carbon to remove Cd2+ and Zn2+.IOP Conf. Ser. Earth Environ. Sci.2022105910.1088/1755‑1315/1059/1/012041
    [Google Scholar]
  25. BhattacharyyaK.G. GuptaS.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review.Adv. Colloid Interface Sci.2008140211413110.1016/j.cis.2007.12.008 18319190
    [Google Scholar]
  26. MeroufelB. BenaliO. BenyahiaM. ZenasniM.A. MerlinA. GeorgeB. Removal of Zn (II) from aqueous solution onto kaolin by batch design.J. Water Resource Prot.20135766968010.4236/jwarp.2013.57067
    [Google Scholar]
  27. AyalewA.A. AragawT.A. Utilization of treated coffee husk as low-cost bio-sorbent for adsorption of methylene blue.Adsorpt. Sci. Technol.2020385-620522210.1177/0263617420920516
    [Google Scholar]
  28. LagergrenS. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar1898244139
    [Google Scholar]
  29. HoY.S. McKayG. WaseD.A.J. ForsterC.F. Study of the sorption of divalent metal ions on to peat.Adsorpt. Sci. Technol.200018763965010.1260/0263617001493693
    [Google Scholar]
  30. OsmanN.B. ShamsuddinN. UemuraY. Activated carbon of oil palm empty fruit bunch (EFB).Core and Shaggy. Procedia Eng201614875876410.1016/j.proeng.2016.06.610
    [Google Scholar]
  31. AngınD. AltintigE. KöseT.E. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.Bioresour. Technol.201314854254910.1016/j.biortech.2013.08.164 24080293
    [Google Scholar]
  32. ÜnerO. BayrakY. The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax.Microporous Mesoporous Mater.2018268March22523410.1016/j.micromeso.2018.04.037
    [Google Scholar]
  33. NagS. MondalA. RoyD.N. BarN. DasS.K. Sustainable bioremediation of Cd(II) from aqueous solution using natural waste materials: Kinetics, equilibrium, thermodynamics, toxicity studies and GA-ANN hybrid modelling.Environ. Technol. Innov.2018118310410.1016/j.eti.2018.04.009
    [Google Scholar]
  34. SunS. YuQ. LiM. ZhaoH. WangY. JiX. Effect of carbonization temperature on characterization and water vapor adsorption of coffee-shell activated carbon.Adsorpt. Sci. Technol.2020389-1037739210.1177/0263617420950994
    [Google Scholar]
  35. LiJ. HeF. ShenX. HuD. HuangQ. Pyrolyzed fabrication of N/P co-doped biochars from (NH4)3PO4-pretreated coffee shells and appraisement for remedying aqueous Cr(VI) contaminants.Bioresour. Technol.2020315July12384010.1016/j.biortech.2020.123840 32693347
    [Google Scholar]
  36. LawtaeP. TangsathitkulchaiC. The use of high surface area mesoporous-activated carbon from longan seed biomass for increasing capacity and kinetics of methylene blue adsorption from aqueous solution.Molecules20212621652110.3390/molecules26216521 34770928
    [Google Scholar]
  37. ALOthman Z. A review: Fundamental aspects of silicate mesoporous materials.Materials (Basel)20125122874290210.3390/ma5122874
    [Google Scholar]
  38. SaasaV. OrasughJ.T. MwakikungaB. RayS.S. Electrospun rGO-PVDF/WO3 composite fibers for SO2 sensing.Mater. Sci. Semicond. Process.2024181October10863110.1016/j.mssp.2024.108631
    [Google Scholar]
  39. HuangH. ReddyN.G. HuangX. Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil.Sci. Rep.2021111741910.1038/s41598‑021‑86701‑5 33795757
    [Google Scholar]
  40. YargicogluE.N. SadasivamB.Y. ReddyK.R. SpokasK. Physical and chemical characterization of waste wood derived biochars.Waste Manag.20153625626810.1016/j.wasman.2014.10.029 25464942
    [Google Scholar]
  41. NiaziN.K. BibiI. ShahidM. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination.Environ. Pollut.2018232314110.1016/j.envpol.2017.09.051 28966026
    [Google Scholar]
  42. AbbasZ. AliS. RizwanM. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar.Arab. J. Geosci.2018111644810.1007/s12517‑018‑3790‑1
    [Google Scholar]
  43. FonsecaG.C. OliveiraM.S. MartinsC.V.C. de SouzaJ.C.P. How the carbonization time of sugarcane biomass affects the microstructure of biochar and the adsorption process?Sustainability (Basel)2022143157110.3390/su14031571
    [Google Scholar]
  44. HoY. McKayG. The kinetics of sorption of divalent metal ions onto sphagnum moss peat.Water Res.200034373574210.1016/S0043‑1354(99)00232‑8
    [Google Scholar]
  45. AzouaouN. SadaouiZ. DjaafriA. MokaddemH. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics.J. Hazard. Mater.20101841-312613410.1016/j.jhazmat.2010.08.014 20817346
    [Google Scholar]
  46. MinamisawaM. MinamisawaH. YoshidaS. TakaiN. Adsorption behavior of heavy metals on biomaterials.J. Agric. Food Chem.200452185606561110.1021/jf0496402 15373400
    [Google Scholar]
  47. PuariA.T. AzoraA. RusnamR. YantiN.R. ArliusF. ShukorM.Y. Carbonization parameters optimization for the biosorption capacity of Cu2+ by a novel biosorbent from agroindustrial solid waste using response surface methodology.Chem Envir Engin2024910064510.1016/j.cscee.2024.100645
    [Google Scholar]
  48. OliveiraW.E. FrancaA.S. OliveiraL.S. RochaS.D. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions.J. Hazard. Mater.200815231073108110.1016/j.jhazmat.2007.07.085 17804159
    [Google Scholar]
  49. SinghK. SinghA. HasanS. Low cost bio-sorbent ‘wheat bran’ for the removal of cadmium from wastewater: Kinetic and equilibrium studies.Bioresour. Technol.2006978994100110.1016/j.biortech.2005.04.043 15993581
    [Google Scholar]
  50. GhasemiS. Mafi GholamiR. YazdanianM. Biosorption of heavy metal from cadmium rich aqueous solutions by tea waste as a low cost bio-adsorbent. Jundis.J. Health Sci.20169110.17795/jjhs‑37301
    [Google Scholar]
  51. SinghK. RastogiR. HasanS. Removal of cadmium from wastewater using agricultural waste ‘rice polish’.J. Hazard. Mater.20051211-3515810.1016/j.jhazmat.2004.11.002 15885406
    [Google Scholar]
  52. MemonJ.R. MemonS.Q. BhangerM.I. MemonG.Z. El-TurkiA. AllenG.C. Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal.Colloids Surf. B Biointerfaces200866226026510.1016/j.colsurfb.2008.07.001 18760572
    [Google Scholar]
  53. SaikaewW. KaewsarnP. SaikaewW. Pomelo peel: agricultural waste for biosorption of cadmium ions from aqueous solutions.World Acad. Sci. Eng. Technol.200956287291
    [Google Scholar]
  54. MinamisawaM. NakajimaS. MinamisawaH. YoshidaS. TakaiN. Removal of copper(II) and cadmium(II) from water using roasted coffee beans.In: Lichtfouse E, Schwarzbauer J, Robert D, editors. Environmental Chemistry: Green Chemistry and Pollutants in Ecosystems.BerlinSpringer-Verlag200525926510.1007/3‑540‑26531‑7_25
    [Google Scholar]
  55. HoY.S. OfomajaA.E. Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent.Biochem. Eng. J.200630211712310.1016/j.bej.2006.02.012
    [Google Scholar]
  56. DasA. BarN. DasS.K. Adsorptive removal of Pb(II) ion on Arachis hypogaea’s shell: Batch Experiments, statistical, and GA modeling.Int. J. Environ. Sci. Technol.202320153755010.1007/s13762‑021‑03842‑w
    [Google Scholar]
/content/journals/rice/10.2174/0124055204340243241230055026
Loading
/content/journals/rice/10.2174/0124055204340243241230055026
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test