Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Aim: To develop a prediction model grounded on Machine Learning using Support Vector Machine (SVM). Background: Prediction of workload in a Cloud Environment is one of the primary task in provisioning resources. Forecasting the requirements of future workload lies in the competency of predicting technique which could maximize the usage of resources in a cloud computing environment. Objective: To reduce the training time of SVM model. Methods: K-Means clustering is applied on the training dataset to form ‘n’ clusters firstly. Then, for every tuple in the cluster, the tuple’s class label is compared with the tuple’s cluster label. If the two labels are identical then the tuple is rightly classified and such a tuple would not contribute much during the SVM training process that formulates the separating hyperplane with lowest generalization error. Otherwise the tuple is added to the reduced training dataset. This selective addition of tuples to train SVM is carried for all clusters. The support vectors are a few among the samples in reduced training dataset that determines the optimal separating hyperplane. Results: On Google Cluster Trace dataset, the proposed model incurred a reduction in the training time, Root Mean Square Error and a marginal increase in the R2 Score than the traditional SVM. The model has also been tested on Los Alamos National Laboratory’s Mustang and Trinity cluster traces. Conclusion: The Cloudsim’s CPU utilization (VM and Cloudlet utilization) was measured and it was found to increase upon running the same set of tasks through our proposed model.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/2666255813666200206124025
2020-06-01
2025-09-06
Loading full text...

Full text loading...

/content/journals/rascs/10.2174/2666255813666200206124025
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test