Skip to content
2000
Volume 18, Issue 7
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

IoT technology has triggered a revolutionary transformation across various industries, with agriculture being no exception. Smart farming, the integration of IoT in farming, has led to a complete overhaul of traditional agricultural practices by seamlessly combining sensor networks, data analytics, and automation. This comprehensive review aims to explore the diverse contributions of IoT in agriculture, synthesising insights from a wide range of research papers. The analysis delves into the multifaceted applications of IoT in farming, assessing its profound impact on productivity, resource management, environmental sustainability, and the challenges faced during implementation. By merging advanced sensor networks with data analytics, IoT in agriculture has given rise to intelligent farming practices, empowering farmers to make data-driven decisions and optimize their operations. Utilizing sensors to monitor soil moisture, temperature, and nutrient levels, along with advanced analytics, allows farmers to make real-time adjustments, thus maximizing crop yield and quality. Resource management has also been greatly affected by IoT in agriculture. The adoption of precision agriculture techniques enables farmers to precisely administer water, fertilizers, and pesticides, minimizing wastage and reducing the environmental footprint of conventional agricultural practices. Efficient resource use enhances agricultural sustainability and contributes to cost reduction and increased profitability for farmers. Moreover, the integration of IoT technology in agriculture holds great promise for fostering environmental sustainability. Farmers can proactively detect early signs of pest infestations or diseases by deploying IoT-based monitoring systems, facilitating timely intervention and reducing the need for excessive chemical treatments. This environmentally friendly approach helps preserve biodiversity, minimize soil and water pollution, and promote eco-conscious agricultural practices. Despite the numerous advantages, IoT implementation in agriculture does pose particular challenges. Connectivity issues, data security and privacy concerns, and the initial high costs of IoT deployment are among the primary obstacles faced by farmers. Addressing these challenges requires collaboration among stakeholders, including researchers, policymakers, and technology providers, to develop sustainable solutions that can facilitate the broader adoption of IoT in agriculture. In conclusion, this review paper sheds light on the immense potential of IoT technology in transforming the agricultural landscape. Smart farming, through IoT integration, paves the way toward sustainable food production, increased productivity, and efficient resource management. However, overcoming the challenges and ensuring seamless IoT integration is vital to fully harnessing this groundbreaking technology's benefits in agriculture.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558296394240902040727
2025-10-01
2025-09-21
Loading full text...

Full text loading...

References

  1. TorkyM. HassaneinA.E. Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges.Comput. Electron. Agric.202017810547610.1016/j.compag.2020.105476
    [Google Scholar]
  2. Rubio SánchezJ.L. Model to optimize the decision making on processes in IT departmentsMathematics20219998310.3390/math9090983
    [Google Scholar]
  3. KalytkaA. YurchakI. A computer system for collecting data on temperature and humidity on premises.Adv. Cyber-Phys. Sys2023811724
    [Google Scholar]
  4. UgwuanyiS. PaulG. IrvineJ. Survey of IoT for developing countries: Performance analysis of LoRaWAN and cellular nb-IoT networks.Electronics20211018222410.3390/electronics10182224
    [Google Scholar]
  5. JunS. Keyword data analysis using generative models based on statistics and machine learning algorithmsElectronics (Basel)202413479810.3390/electronics13040798
    [Google Scholar]
  6. WatsonC.A. AtkinsonD. GoslingP. JacksonL.R. RaynsF.W. Managing soil fertility in organic farming systems.Soil Use Manage.200218s123924710.1111/j.1475‑2743.2002.tb00265.x
    [Google Scholar]
  7. NarayanG. HaveriP. RashmiB. DeewanY. A framework for data provenance assurance in cloud environment using ethereum blockchain.EAI Endorsed Transac. Scalable Inform. Sys.20241123536
    [Google Scholar]
  8. RinaldiM. HeZ. Decision support systems to manage irrigation in agriculture.Adv. Agron.201412322927910.1016/B978‑0‑12‑420225‑2.00006‑6
    [Google Scholar]
  9. BestariD.N. WibowoA. IoT based real-time weather monitoring system using telegram bot and thingsboard platformInt. J. Interactive Mobile Technol. (iJIM)202317641910.3991/ijim.v17i06.34129
    [Google Scholar]
  10. SharmaR. Cyber security to safeguard cyber attacksInt. J. Inform. Securit. Cybercrime2022112506310.19107/IJISC.2022.02.05
    [Google Scholar]
  11. SharmaS. Precision agriculture: Reviewing the advancements technologies and applications in precision agriculture for improved crop productivity and resource managementRev. Food And Agricult.202342454910.26480/rfna.02.2023.45.49
    [Google Scholar]
  12. NayakS. NayakM. PatelG.S. IOT in agriculture: survey on technology, challenges and future scope.Smart AgricultureCRC Press2021
    [Google Scholar]
  13. AyodeleT.R. OgunjuyigbeA.S.O. EkohE.E. Outlook of agricultural sector in the face of changing global climate: the case of Nigeria.Agric. Res. Technol.2017536871
    [Google Scholar]
  14. BetzU.A.K. AroraL. AssalR.A. AzevedoH. BaldwinJ. BeckerM.S. BostockS. ChengV. EgleT. FerrariN. Schneider-FutschikE.K. GerhardyS. HammesA. HarzheimA. HergetT. JausetC. KretschmerS. LammieC. KlossN. FernandesS.M. MitrofanC-G. MyrgorodskaI. NedbalekD. NeumannS.G. PaffenholzS. PonceL.P. RogellB. SavicD. VelikovaG. SchumacherC. WeisshaarN. YahyaM. YangJ.Y.C. ZhaoG. Game changers in science and technology - now and beyond.Technol. Forecast. Soc. Change202319312258810.1016/j.techfore.2023.122588
    [Google Scholar]
  15. KarthikeyanP.R. ChandrasekaranG. KumarN.S. SengottaiyanE. ManiP. KalavathiD.T. GowrishankarV. IoT based moisture control and temperature monitoring in smart farming.J. Phys.: Conf. Ser.1964196406205610.1088/1742‑6596/1964/6/062056
    [Google Scholar]
  16. KimT. ChaeS.H. A channel estimator via non-orthogonal pilot signals for uplink cellular IoT.IEEE Access20197534195342810.1109/ACCESS.2019.2912446
    [Google Scholar]
  17. PawlakK. Renewal summary report helps make data-driven decisionsMembsh. Manage. Rep.20231944410.1002/mmr.32100
    [Google Scholar]
  18. GabhaneJ. ThakareS. CraigM. Smart homes system using Internet-of-Things: issues, solutions and recent research directions.Int. Res. J. Engin. Technol.20174519651969
    [Google Scholar]
  19. ZhangM. XingX. WangW. Smart sensor-based monitoring technology for machinery fault detectionSensors (Basel)2024248247010.3390/s2408247038676087
    [Google Scholar]
  20. RikeethA. IoT in Agriculture 4.0: Farmer Adoption, Barriers, and the Path to Sustainable Farming.2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE)22-23 February 2024, Vellore, India, 2024, pp. 1-7.10.1109/ic‑ETITE58242.2024.10493146
    [Google Scholar]
  21. DayıoğluM.A. TurkerU. Digital transformation for sustainable future-agriculture 4.0: A review.J. Agric. Sci.2021274373399
    [Google Scholar]
  22. RedhuN.S. ThakurZ. YashveerS. MorP. Artificial intelligence: a way forward for agricultural sciences.Bioinformatics in Agriculture.Academic Press202264166810.1016/B978‑0‑323‑89778‑5.00007‑6
    [Google Scholar]
  23. MaroliA. NarwaneV.S. GardasB.B. Applications of IoT for achieving sustainability in agricultural sector: A comprehensive review.J. Environ. Manage.202129811348810.1016/j.jenvman.2021.11348834388541
    [Google Scholar]
  24. GarousiV. MäntyläM.V. Citations, research topics and active countries in software engineering: A bibliometrics study.Comput. Sci. Rev.201619567710.1016/j.cosrev.2015.12.002
    [Google Scholar]
  25. SarkerI.H. Machine learning: Algorithms, real-world applications and research directions.SN comp. sci.202123160
    [Google Scholar]
  26. Méndez-GuzmánH.A. Padilla-MedinaJ.A. Martínez-NolascoC. Martinez-NolascoJ.J. Barranco-GutiérrezA.I. Contreras-MedinaL.M. Leon-RodriguezM. Iot-based monitoring system applied to aeroponics greenhouse.Sensors (Basel)20222215564610.3390/s2215564635957199
    [Google Scholar]
  27. AbsarM.H. MirzaG.F. ZakaiW. JohnY. MansoorN. Novel IoT-based plant monitoring system.Engin. Proceed.202332112
    [Google Scholar]
  28. ÇaylıA. BaytorunA.N. Analysis of climate and vapor pressure deficit (vpd) in a heated multi-span plastic greenhouse.J. Animal. Plant Sci.202131616321644
    [Google Scholar]
  29. NóbregaL. GonçalvesP. PedreirasP. PereiraJ. An IoT-based solution for intelligent farming.Sensors (Basel)201919360310.3390/s1903060330709013
    [Google Scholar]
  30. LimH.R. KhooK.S. ChiaW.Y. ChewK.W. HoS.H. ShowP.L. Smart microalgae farming with internet-of-things for sustainable agriculture.Biotechnol. Adv.20225710793110.1016/j.biotechadv.2022.10793135202746
    [Google Scholar]
  31. RokadeA. SinghM. AroraS.K. NizeyimanaE. IOT-based medical informatics farming system with predictive data analytics using supervised machine learning algorithmsComput. Math. Methods Med.20222022111510.1155/2022/843496636081435
    [Google Scholar]
  32. PriyankaB.H.D.D. UdayarajuP. KoppireddyC.S. NeethikaA. Developing a region-based energy-efficient IoT agriculture network using region-based clustering and shortest path routing for making sustainable agriculture environment.Measurement: Sensors202327100734
    [Google Scholar]
  33. IdojeG. DagiuklasT. IqbalM. Survey for smart farming technologies: Challenges and issues.Comput. Electr. Eng.20219210710410.1016/j.compeleceng.2021.107104
    [Google Scholar]
  34. TzounisA. KatsoulasN. BartzanasT. KittasC. Internet of Things in agriculture, recent advances and future challenges.Biosyst. Eng.2017164314810.1016/j.biosystemseng.2017.09.007
    [Google Scholar]
  35. MohanrajI. AshokumarK. NarenJ. Field monitoring and automation using IOT in agriculture domain.Procedia Comput. Sci.20169393193910.1016/j.procs.2016.07.275
    [Google Scholar]
  36. SimeltonE. McCampbellM. Do digital climate services for farmers encourage resilient farming practices? Pinpointing gaps through the responsible research and innovation framework.Agriculture2021111095310.3390/agriculture11100953
    [Google Scholar]
  37. JavaidM. HaleemA. SinghR.P. SumanR. Enhancing smart farming through the applications of Agriculture 4.0 technologies.Int. J. Intell. Net.2022315016410.1016/j.ijin.2022.09.004
    [Google Scholar]
  38. HanifaR.M. ArumugamG.R. MohamadS. HazriM.M. KobinathS.P. Optimizing water efficiency in agriculture: Design and evaluation of a smart crop watering system (SCWS) prototype2023 IEEE International Conference on Agrosystem Engineering, Technology & Applications (AGRETA)09-09 September 2023, Shah Alam, Malaysia, 2023, pp. 86-91.10.1109/AGRETA57740.2023.10262435
    [Google Scholar]
  39. FascioloB. AwoudaA. BrunoG. LombardiF. A smart aeroponic system for sustainable indoor farming.Procedia CIRP202311663664110.1016/j.procir.2023.02.107
    [Google Scholar]
  40. PanotraN. BelagallaN. MohantyL.K. N MR. Vikash TiwariA.K. AbhishekG.J. GulaiyaS. YadavK. PandeyS.K. Vertical farming: Addressing the challenges of 21st century agriculture through innovationInt. J. Environ. Climate Change202414466469110.9734/ijecc/2024/v14i44150
    [Google Scholar]
  41. HammondJ. FravalS. van EttenJ. SuchiniJ.G. MercadoL. PagellaT. FrelatR. LannerstadM. DouxchampsS. TeufelN. ValbuenaD. van WijkM.T. The rural household multi-indicator survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: Description and applications in East Africa and Central AmericaAgric. Syst.201715122523310.1016/j.agsy.2016.05.003
    [Google Scholar]
  42. Ali Lakhiar GaoJ. Naz SyedT. Ali ChandioF. Hussain TunioM. AhmadF. Ali SolangiK. Overview of the aeroponic agriculture – An emerging technology for global food security.Int. J. Agric. Biol. Eng.202013111010.25165/j.ijabe.20201301.5156
    [Google Scholar]
  43. LiQ. LiY. WangL. Research on application of internet of things technology in quality traceability of fruit and vegetable agricultural products.J. Ambient Intell. Humaniz. Comput.202120211810.1007/s12652‑021‑03006‑1
    [Google Scholar]
  44. XuJ. GuB. TianG. Review of agricultural IoT technology.Artif. Intell. Agricult.20226102210.1016/j.aiia.2022.01.001
    [Google Scholar]
  45. McCulloughE.B. PingaliP.L. StamoulisK.G. Small farms and the transformation of food systems: an overview.The Transformation of Agri-Food SystemsRoutledge2012
    [Google Scholar]
  46. AsghariP. RahmaniA.M. JavadiH.H.S. Internet of Things applications: A systematic review.Comput. Netw.201914824126110.1016/j.comnet.2018.12.008
    [Google Scholar]
  47. NavarroE. CostaN. PereiraA. A systematic review of IoT solutions for smart farming.Sensors (Basel)20202015423110.3390/s2015423132751366
    [Google Scholar]
  48. DebaucheO. TraniJ.P. MahmoudiS. MannebackP. BindelleJ. MahmoudiS.A. GuttadauriaA. LebeauF. Data management and internet of things : A methodological review in smart farming.Internet of Things20211410037810.1016/j.iot.2021.100378
    [Google Scholar]
  49. SpandanaK. PabbojuS. IoT enabled smart agriculture using digital dashboard.Indian J. Sci. Technol.202316111110.17485/IJST/v16i1.1680
    [Google Scholar]
  50. LeeD.R. Agricultural sustainability and technology adoption: Issues and policies for developing countries.Am. J. Agric. Econ.20058751325133410.1111/j.1467‑8276.2005.00826.x
    [Google Scholar]
  51. FarooqT.H. KumarU. YanY. ArifM.S. ShakoorA. TayyabM. RathodP.H. AltafM.M. WuP. Receptiveness of soil bacterial diversity in relation to soil nutrient transformation and canopy growth in Chinese fir monoculture influenced by varying stand density.Trees (Berl.)20223631149116010.1007/s00468‑022‑02278‑0
    [Google Scholar]
  52. PostolacheS. SebastiãoP. ViegasV. PostolacheO. CercasF. IoT-based systems for soil nutrients assessment in horticulture.Sensors (Basel)202223140310.3390/s2301040336617000
    [Google Scholar]
  53. MutaleB. XianbaoL. Precision agriculture in denmark and China: A comprehensive comparative review with policy implications for ChinaPrecis. Agric.2021767184
    [Google Scholar]
  54. TurukmaneA.V. PradeepaM. ReddyK.S.S. SuganthiR. RiyazuddinY.M. TallapragadaV.S. Smart farming using cloud-based Iot data analytics.Measurement: Sensors202327100806
    [Google Scholar]
  55. KendallH. ClarkB. LiW. JinS. JonesG.D. ChenJ. TaylorJ. LiZ. FrewerL.J. Precision agriculture technology adoption: a qualitative study of small-scale commercial “family farms” located in the North China Plain.Precis. Agric.202223131935110.1007/s11119‑021‑09839‑2
    [Google Scholar]
  56. ChamaraN. IslamM.D. BaiG.F. ShiY. GeY. Ag-IoT for crop and environment monitoring: Past, present, and future.Agric. Syst.202220310349710.1016/j.agsy.2022.103497
    [Google Scholar]
  57. RahulB.V. VatsavG.R.S. SupreethM.R.D. VinayN. Monitoring the soil parameters using IoT and android based application for smart agriculture.EasyChair Preprint no. 62492021
    [Google Scholar]
  58. AyazM. Ammad-UddinM. SharifZ. MansourA. AggouneE.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk.IEEE Access2019712955112958310.1109/ACCESS.2019.2932609
    [Google Scholar]
  59. AlahmadT. NeményiM. NyékiA. Applying IoT sensors and big data to improve precision crop production: a review.Agronomy (Basel)20231310260310.3390/agronomy13102603
    [Google Scholar]
  60. LiangC. ShahT. IoT in agriculture: The future of precision monitoring and data-driven farming.Eigenpub Rev. Sci. Technol.20237185104
    [Google Scholar]
  61. RehmanA. SabaT. KashifM. FatiS.M. BahajS.A. ChaudhryH. A revisit of internet of things technologies for monitoring and control strategies in smart agriculture.Agronomy (Basel)202212112710.3390/agronomy12010127
    [Google Scholar]
  62. ObaideenK. YousefB.A.A. AlMallahiM.N. TanY.C. MahmoudM. JaberH. RamadanM. An overview of smart irrigation systems using IoT.Energy Nexus2022710012410.1016/j.nexus.2022.100124
    [Google Scholar]
  63. GimpelH. Graf-DraschV. HawlitschekF. NeumeierK. Designing smart and sustainable irrigation: A case study.J. Clean. Prod.202131512804810.1016/j.jclepro.2021.128048
    [Google Scholar]
  64. SirimewanD.C. SamaraweeraA. ManjulaN.H.C. RameezdeenR. RodrigoM.N.N. EkanayakeE.M.A.C. Strategies for sustainable irrigation system management: a socio-technical system approach.Eng. Construct. Architect. Manag.202330243645510.1108/ECAM‑06‑2021‑0521
    [Google Scholar]
  65. SchultzB. De WrachienD. Irrigation and drainage systems research and development in the 21st century.Irrigat. Drainage2002514311327
    [Google Scholar]
  66. AdeyemiO. GroveI. PeetsS. NortonT. Advanced monitoring and management systems for improving sustainability in precision irrigation.Sustainability (Basel)20179335310.3390/su9030353
    [Google Scholar]
  67. DoshiJ. PatelT. BhartiS. Smart Farming using IoT, a solution for optimally monitoring farming conditions.Procedia Comput. Sci.201916074675110.1016/j.procs.2019.11.016
    [Google Scholar]
  68. RajendiranG. RethnarajJ. Smart aeroponic farming system: Using IoT with LCGM-boost regression model for monitoring and predicting lettuce crop yieldInt. J. Intell. Engin. Sys.2023165
    [Google Scholar]
  69. GowthamR. JebakumarR. 2023A machine learning approach for aeroponic lettuce crop growth monitoring systemInternational Conference on Intelligent Sustainable Systems16 June 2023, Singapore, pp. 99-116.10.1007/978‑981‑99‑1726‑6_9
    [Google Scholar]
  70. RajendiranG. RethnarajJ. IoT-integrated machine learningbased automated precision agriculture-indoor farming techniquesUsing Traditional Design Methods to Enhance AI-Driven Decision Making.IGI Global202428931710.4018/979‑8‑3693‑0639‑0.ch013
    [Google Scholar]
  71. GuntakaM.L. SaraswatD. Overview of IoT Applications in Indoor Farming.Human-Automation Interaction: Mobile Computing.ChamSpringer International Publishing2022621637
    [Google Scholar]
  72. QaziS. KhawajaB.A. FarooqQ.U. IoT-equipped and AI-enabled next generation smart agriculture: A critical review, current challenges and future trends.IEEE Access202210212192123510.1109/ACCESS.2022.3152544
    [Google Scholar]
  73. RhoadsJ. Next-generation precision farming integrating AI and IoT in crop management systems. AI.IoT. Fourth Indust. Revol. Rev.202313719
    [Google Scholar]
  74. ChanderB. KumaravelanG. Internet of things: foundation.Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm.Springer2020
    [Google Scholar]
  75. VermesanO. FriessP. Internet of things applications-from research and innovation to market deployment.Taylor and Francis2014364
    [Google Scholar]
  76. HussainF. HussainR. AnpalaganA. BenslimaneA. A new block-based reinforcement learning approach for distributed resource allocation in clustered IoT networks.IEEE Trans. Vehicular Technol.20206932891290410.1109/TVT.2020.2965796
    [Google Scholar]
  77. VadapalliA. PeravaliS. DadiV. Smart agriculture system using IoT technology.Int. J. Adv. Res. Sci. Engin.202095865
    [Google Scholar]
  78. NareshM. MunaswamyP. Smart agriculture system using IoT technology.Int. J. Adv. Res. Sci. Engin.20197598102
    [Google Scholar]
  79. MasekP. FujdiakR. ZemanK. HosekJ. MuthannaA. Remote networking technology for IoT: Cloud-based access for AllJoyn-enabled devices.2016 18th Conference of Open Innovations Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT)18-22 April 2016, St. Petersburg, Russia, 2016, pp. 200-205.
    [Google Scholar]
  80. TomanekO. KenclL. Security and privacy of using AllJoyn IoT framework at home and beyond.2016 2nd International Conference on Intelligent Green Building and Smart Grid (IGBSG) 27-29 June 2016, Prague, Czech Republic, 2016, pp. 1-6.10.1109/IGBSG.2016.7539413
    [Google Scholar]
  81. GyoryN. ChuahM. 2017IoTOne: Integrated platform for heterogeneous IoT devices.2017 International Conference on Computing, Networking and Communications (ICNC)26-29 January 2017, Silicon Valley, CA, USA, 2017, pp. 783-787.10.1109/ICCNC.2017.7876230
    [Google Scholar]
  82. DemestichasK. PeppesN. AlexakisT. Survey on security threats in agricultural IoT and smart farming.Sensors (Basel)20202022645810.3390/s2022645833198160
    [Google Scholar]
  83. ElijahO. RahmanT.A. OrikumhiI. LeowC.Y. HindiaM.H.D.N. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges.IEEE Internet Things J.2018553758377310.1109/JIOT.2018.2844296
    [Google Scholar]
  84. BalamuruganS. DivyabharathiN. JayashruthiK. BowiyaM. ShermyR.P. ShankerR. Internet of agriculture: Applying IoT to improve food and farming technology.Int. Res. J. Engin. Technol.2016310713719
    [Google Scholar]
  85. SumaV. Internet-of-Things (IoT) based smart agriculture in India-an overview.J. ISMAC20213111510.36548/jismac.2021.1.001
    [Google Scholar]
  86. OteyoI.N. MarraM. KimaniS. MeuterW.D. BoixE.G. A survey on mobile applications for smart agriculture: making use of mobile software in modern farming.SN computer sci.202124293
    [Google Scholar]
  87. MekalaM.S. ViswanathanP. A Survey: Smart agriculture IoT with cloud computing.2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS)10-12 August 2017, Vellore, India, 2017, pp. 1-7.
    [Google Scholar]
  88. DelgadoJ.A. ShortN.M.Jr RobertsD.P. VandenbergB. Big data analysis for sustainable agriculture on a geospatial cloud framework.Front. Sustain. Food Syst.201935410.3389/fsufs.2019.00054
    [Google Scholar]
  89. KhanN. RayR.L. SarganiG.R. IhtishamM. KhayyamM. IsmailS. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture.Sustainability (Basel)2021139488310.3390/su13094883
    [Google Scholar]
  90. BoursianisA.D. PapadopoulouM.S. DiamantoulakisP. Liopa-TsakalidiA. BarouchasP. SalahasG. KaragiannidisG. WanS. GoudosS.K. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review.Internet of Things20221810018710.1016/j.iot.2020.100187
    [Google Scholar]
  91. Nookala VenuD. KumarA. RaoM.A.S. Smart agriculture with internet of things and unmanned aerial vehicles.Neuroquantology202220699049914
    [Google Scholar]
  92. TelagamN. KandasamyN. Arun KumarM. Review on Smart Farming and Smart Agriculture for Society: Post-pandemic Era.Green Technological Innovation for Sustainable Smart SocietiesSpringer2021
    [Google Scholar]
  93. JaraA.J. LadidL. Gómez-SkarmetaA.F. The Internet of Everything through IPv6: An Analysis of Challenges, Solutions and Opportunities.J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl.20134397118
    [Google Scholar]
  94. SaidakhmedovichG.S. UralovichM.D. SaidakhmedovichG.S. TishabayevnaR.M. Application of digital technologies for ensuring agricultural productivityBritish J. Global Ecol. Sustain. Develop.202425620
    [Google Scholar]
  95. StupinaA.A. RozhkovaA.V. OlentsovaJ.A. RozhkovS.E. Digital technologies as a tool for improving the efficiency of the agricultural sector.IOP Conf. Ser. Earth Environ. Sci.2021839202209210.1088/1755‑1315/839/2/022092
    [Google Scholar]
  96. MorchidA. El AlamiR. RaezahA.A. SabbarY. Applications of internet of things (IoT) and sensors technology to increase food security and agricultural Sustainability: Benefits and challenges.Ain Shams Eng. J.20232023102509
    [Google Scholar]
  97. QureshiT. SaeedM. AhsanK. MalikA.A. MuhammadE.S. TouheedN. Smart agriculture for sustainable food security using internet of things (IoT).Wirel. Commun. Mob. Comput.20222022111010.1155/2022/9608394
    [Google Scholar]
  98. SatriyoP. NasutionI.S. F’AliaS. IoT-enable smart agriculture using multiple sensors for sprinkle irrigation systems.IOP Conf. Ser. Earth Environ. Sci.20241290101202710.1088/1755‑1315/1290/1/012027
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558296394240902040727
Loading
/content/journals/rascs/10.2174/0126662558296394240902040727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test