Skip to content
2000
Volume 18, Issue 8
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Background

In today’s ever-changing world, military forces face significant challenges in maintaining situational awareness and responding swiftly to emerging threats. Traditional aerial surveillance often fails to give timely and thorough intelligence over large areas. Limited coverage, mistakes, and difficulty noticing small changes on the ground hinder military operations. To address these problems, this paper introduces the development of a deep learning-based web application named “”, a solution tailored specifically for military aerial surveillance.

Methods

The application framework ., has been developed through multiple stages ., (i) pre-process the Xview overhead Satellite imagery dataset using Ground Truth refinement and image partitioning method, (ii) employed a SOTA deep model ., YOLOv8 as a baseline architecture for the research problem and assessed the performance on experimental dataset, (iii) a series of rigorous experiments have been conducted using deep model and obtained results are reported. (iv) Finally, the trained model has been seamlessly integrated into the web application and develops a comprehensive web-based object detection application. The developed application detects military-based objects from real-time satellite images.

Results

The developed application has shown promising results in identifying military objects from satellite images, outperforming other contemporary methods. The designed framework has achieved an overall mAP score of 0.315 for all nine classes of military-based objects. For certain specific classes, detection accuracy exceeds 70%, demonstrating the robustness of the framework.

Conclusion

The designed web application enables users to detect military-based objects in the region provided by the user. By harnessing the power of satellite object recognition technology, provides a new way to monitor and understand activities in operational areas.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558333174241009112642
2024-12-11
2025-09-28
Loading full text...

Full text loading...

References

  1. BalasubramaniamA. PasrichaS. Object detection in autonomous vehicles: Status and open challenges.arXiv202210.48550/arXiv.2201.07706
    [Google Scholar]
  2. SobekJ. Medina InojosaJ. Medina InojosaB. Rassoulinejad-MousaviS. ConteG. Lopez-JimenezF. EricksonB MedYOLO: A medical image object detection framework.J. Imaging Inform. Med.202210.1007/s10278‑024‑01138‑238844717
    [Google Scholar]
  3. KmiećM. GlowaczA. Object detection in security applications using dominant edge directions.Pattern Recognit. Lett.201552727910.1016/j.patrec.2014.09.018
    [Google Scholar]
  4. Hasimoto-BeltranR. Canul-KuM. Díaz MéndezG.M. Ocampo-TorresF.J. Esquivel-TravaB. Ocean oil spill detection from SAR images based on multi-channel deep learning semantic segmentation.Mar. Pollut. Bull.202318811465110.1016/j.marpolbul.2023.11465136736256
    [Google Scholar]
  5. WosnerO. FarjonG. Bar-HillelA. Object detection in agricultural contexts: A multiple resolution benchmark and comparison to human.Comput. Electron. Agric.202118910640410.1016/j.compag.2021.106404
    [Google Scholar]
  6. RoyA.M. BhaduriJ. KumarT. RajK. WilDect-YOLO: An efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection.Ecol. Inform.20237510191910.1016/j.ecoinf.2022.101919
    [Google Scholar]
  7. FouadY. OsmanA.M. HassanS.A.Z. El-BakryH.M. ElsheweyA.M. Adaptive visual sentiment prediction model based on event concepts and object detection techniques in social media.Int. J. Adv. Comput. Sci. Appl.202314725225610.14569/IJACSA.2023.0140728
    [Google Scholar]
  8. AhmadH.M. RahimiA. Deep learning methods for object detection in smart manufacturing: A survey.J. Manuf. Syst.20226418119610.1016/j.jmsy.2022.06.011
    [Google Scholar]
  9. What is xView?Available from: http://xviewdataset.org/#dataset(Accessed on: September 04, 2024)
  10. SkyView_Sentinel.Available from: https://github.com/Adinp1213/SkyView_Sentinel/
  11. LoweD.G. Distinctive image features from scale-invariant keypoints.Int. J. Comput. Vis.20046029111010.1023/B:VISI.0000029664.99615.94
    [Google Scholar]
  12. LiK. CaoL. A review of object detection techniques.5th International Conference on Electromechanical Control Technology and Transportation (ICECTT)Nanchang, China, 15-17 May, 2020, pp. 385-390.
    [Google Scholar]
  13. O’MahonyN. CampbellS. CarvalhoA. HarapanahalliS. HernandezG.V. KrpalkovaL. RiordanD. WalshJ. Deep learning vs. traditional computer vision.Adv. Intel. Syst. Comput.202094312814410.1007/978‑3‑030‑17795‑9_10
    [Google Scholar]
  14. BaiC. BaiX. WuK. A review: Remote sensing image object detection algorithm based on deep learning.Electronics (Basel)20231224490210.3390/electronics12244902
    [Google Scholar]
  15. LiuW. AnguelovD. ErhanD. SzegedyC. ReedS. FuC.Y. BergA. SSD: Single shot multibox detector.European Conference on Computer VisionAmsterdam, 8-16 Oct, 2016, pp. 21-37.10.1007/978‑3‑319‑46448‑0_2
    [Google Scholar]
  16. GirshickR. DonahueJ. DarrellT. MalikJ. Rich feature hierarchies for accurate object detection and semantic segmentation.Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitionColumbus, 23 June 2014, pp. 580-587.10.1109/CVPR.2014.81
    [Google Scholar]
  17. RenS. HeK. GirshickR. SunJ. Faster R-CNN: Towards real-time object detection with region proposal networks.IEEE Trans. Pattern Anal. Mach. Intell.20173961137114910.1109/TPAMI.2016.257703127295650
    [Google Scholar]
  18. RedmonJ. DivvalaS. GirshickR. FarhadiA. You Only Look Once: Unified, real-time object detection.Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitionLas Vegas, 27-30 June 2016, pp. 779-788.10.1109/CVPR.2016.91
    [Google Scholar]
  19. XiaG.S. BaiX. DingJ. ZhuZ. BelongieS. LuoJ. ZhangL. DOTA: A large-scale dataset for object detection in aerial images.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition2018, pp. 3974-3983.10.1109/CVPR.2018.00418
    [Google Scholar]
  20. TalibM. Al-NooriA.H.Y. SuadJ. YOLOv8-CAB: Improved YOLOv8 for real-time object detection.Karbala Int. J. Mod. Sci.2024101566810.33640/2405‑609X.3339
    [Google Scholar]
  21. ZhouJ. SuT. LiK. DaiJ. Small target-YOLOv5: Enhancing the algorithm for small object detection in drone aerial imagery based on YOLOv5.Sensors202324113410.3390/s24010134
    [Google Scholar]
  22. SinghA. NeneM.J. Performance assessment of deep learning algorithm using xView data set.Proceedings of the International Conference for Advancement in TechnologyGoa, India, 24-26 Jan, 2023, pp. 1-6.10.1109/ICONAT57137.2023.10080522
    [Google Scholar]
  23. MaM. PangH. SP-YOLOv8s: An improved YOLOv8s model for remote sensing image tiny object detection.Appl. Sci. (Basel)20231314816110.3390/app13148161
    [Google Scholar]
  24. AktaşM. AteşH.F. Small object detection and tracking from aerial imagery.6th International Conference on Computer Science and EngineeringAnkara, Turkey, 15-17 Sep, 2021, pp. 688-693.10.1109/UBMK52708.2021.9558923
    [Google Scholar]
  25. JiC.L. YuT. GaoP. WangF. YuanR.Y. YOLO-TLA: An efficient and lightweight small object detection model based on YOLOv5.J. Real-Time Image Process.202421410.1007/s11554‑024‑01519‑4
    [Google Scholar]
  26. LiY. FanQ. HuangH. HanZ. GuQ. A modified YOLOv8 detection network for UAV aerial image recognition.Drones 20237530410.3390/drones7050304
    [Google Scholar]
  27. LiuS. ZhaJ. SunJ. LiZ. WangG. EdgeYOLO: An edge-real-time object detector.2nd Chinese Control Conference (CCC)Tianjin, China, 24-26 July, 2023, pp. 7507-7512.10.23919/CCC58697.2023.10239786
    [Google Scholar]
  28. Božić-ŠtulićD. MarušićŽ. GotovacS. Deep learning approach in aerial imagery for supporting land search and rescue missions.Int. J. Comput. Vis.201912791256127810.1007/s11263‑019‑01177‑1
    [Google Scholar]
  29. KeC. Military object detection using multiple information extracted from hyperspectral imagery.International Conference on Progress in Informatics and Computing (PIC)Nanjing, China,15-17 Dec, 2017, pp. 124-128.10.1109/PIC.2017.8359527
    [Google Scholar]
  30. TahirA. MunawarH. AkramJ. AdilM. AliS. KouzaniA. MahmudM. Automatic target detection from satellite imagery using machine learning.Sensors (Basel)2022223114710.3390/s2203114735161892
    [Google Scholar]
  31. RahnemoonfarM. ChowdhuryT. SarkarA. VarshneyD. YariM. MurphyR.R. FloodNet: A high resolution aerial imagery dataset for post flood scene understanding.IEEE Access20219896448965410.1109/ACCESS.2021.3090981
    [Google Scholar]
  32. Ga̧sienica-JózkowyJ. KnapikM. CyganekB. An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance.Integr. Comput. Aided Eng.202128322123510.3233/ICA‑210649
    [Google Scholar]
  33. Waqas ZamirS. AroraA. GuptaA. KhanS. SunG. Shahbaz KhanF. ZhuF. ShaoL. XiaG.S. BaiX. iSAID: A large-scale dataset for instance segmentation in aerial imagesProceedings of the Conference on Computer Vision and Pattern Recognition Workshops2019, pp. 28-37.
    [Google Scholar]
  34. LiK. WanG. ChengG. MengL. HanJ. Object detection in optical remote sensing images: A survey and a new benchmark.ISPRS J. Photogramm. Remote Sens.202015929630710.1016/j.isprsjprs.2019.11.023
    [Google Scholar]
  35. SunX. WangP. YanZ. XuF. WangR. DiaoW. ChenJ. LiJ. FengY. XuT. WeinmannM. HinzS. WangC. FuK. FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery.ISPRS J. Photogramm. Remote Sens.202218411613010.1016/j.isprsjprs.2021.12.004
    [Google Scholar]
  36. WeiS. ZengX. QuQ. WangM. SuH. ShiJ. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation.IEEE Access2020812023412025410.1109/ACCESS.2020.3005861
    [Google Scholar]
  37. A planetary-scale platform for Earth science data & analysis.Available from: https://developers.google.com/earth-engine/datasets(Accessed on: September 9, 2024)
  38. LiuZ. GaoY. DuQ. ChenM. LvW. YOLO-extract: Improved YOLOv5 for aircraft object detection in remote sensing images.IEEE Access2023111742175110.1109/ACCESS.2023.3233964
    [Google Scholar]
  39. MahendrakarT. EkbladA. FischerN. WhiteR. WildeM. KishB. SilverI. Performance study of yolov5 and faster R-CNN for autonomous navigation around non-cooperative targets.Proceedings of the Aerospace ConferenceBig Sky, MT, USA, 05-12 March, 2022, pp. 1-12.10.1109/AERO53065.2022.9843537
    [Google Scholar]
  40. LinT.Y. GoyalP. GirshickR. HeK. DollárP. Focal loss for dense object detection.IEEE International Conference on Computer Vision (ICCV)Venice, Italy, 22-29 Oct, 2017, pp. 2999-3007.10.1109/ICCV.2017.324
    [Google Scholar]
  41. WangX. HeN. HongC. WangQ. ChenM. Improved YOLOX-X based UAV aerial photography object detection algorithm.Image Vis. Comput.202313510469710469710.1016/j.imavis.2023.104697
    [Google Scholar]
  42. CaoY. HeZ. WangL. WangW. YuanY. ZhangD. ZhangJ. ZhuP. Van GoolL. HanJ. HoiS. VisDrone-DET2021: The vision meets drone object detection challenge results.Proceedings of the International Conference on Computer VisionMontreal, Canada, 11-17 Oct, 2021, pp. 2847-2854.10.1109/ICCVW54120.2021.00319
    [Google Scholar]
  43. SainiR. JhaN.K. DasB. MittalS. MohanC.K. ULSAM: Ultra-lightweight subspace attention module for compact convolutional neural networks.IEEE Winter Conference on Applications of Computer VisionSnowmass, CO, USA, 1-5 March, 2020, pp. 1616-1625.10.1109/WACV45572.2020.9093341
    [Google Scholar]
  44. DuncanE.C. SkakunS. KariryaaA. PrishchepovA. Detection and mapping of artillery craters with very high spatial resolution satellite imagery and deep learning, Science of Remote Sensing, Vol. 7.Article2023100092111
    [Google Scholar]
  45. RonnebergerO. FischerP. BroxT. U-net: Convolutional networks for biomedical image segmentation.Proceedings of the International Conference on Medical Image Computing and Computer-Assisted InterventionCham, 18 Nov, 2015, pp. 234-241.10.1007/978‑3‑319‑24574‑4_28
    [Google Scholar]
  46. VivoneG. Dalla MuraM. GarzelliA. PacificiF. A benchmarking protocol for pansharpening: Dataset, preprocessing, and quality assessment.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.2021146102611810.1109/JSTARS.2021.3086877
    [Google Scholar]
  47. SalehiS.S.M. ErdogmusD. GholipourA. Tversky loss function for image segmentation using 3D fully convolutional deep networks.Proceedings of the International Workshop on Machine Learning in Medical ImagingCham, 07 Sep, 2017, pp. 379–387.10.1007/978‑3‑319‑67389‑9_44
    [Google Scholar]
  48. JanakiramaiahB. KalyaniG. KarunaA. PrasadL.V.N. KrishnaM. Military object detection in defense using multi-level capsule networks.Soft Comput.20232721045105910.1007/s00500‑021‑05912‑0
    [Google Scholar]
  49. PhayeS.S.R. SikkaA. DhallA. BathulaD.R. Multi-level dense capsule networks.Proceedings of the 14th Asian Conference on Computer VisionSpringerCham JawaharC. LiH. MoriG. Schindlerand K. 577592201910.1007/978‑3‑030‑20873‑8_37
    [Google Scholar]
  50. AhmedM. El-SheimyN. LeungH. KamelA.M. MoussaA. Performance assessment of object detection from multi satellites and aerial images, ISPRS annals of the photogrammetry.Remote Sens. Spat. Inf. Sci.202310763770
    [Google Scholar]
  51. DozatT. Incorporating Nesterov Momentum into Adam.Proceedings of the 4th International Conference on Learning Representations, Workshop TrackSan Juan, Puerto Rico, 2-4 May, 2016, pp. 1-4.
    [Google Scholar]
  52. Military vehicles detection in satellite & aerial imagery using instance segmentation.Available from: https://wandb.ai/nadernarcisse/MVD-Satellite-Imagery/reports/Military-Vehicles-Detection-in-Satellite-Aerial-Imagery-using-Instance-Segmentation--VmlldzoyNzE1MTY0(Accessed on: September 9, 2024)
  53. WahbiM. El BakaliI. Ez-zahouaniB. AzmiR. MoujahidA. ZouitenM. AlaouiO.Y. BoulaassalH. MaatoukM. El KharkiO. A deep learning classification approach using high spatial satellite images for detection of built-up areas in rural zones: Case study of Souss-Massa region - Morocco.Remote Sens. Appl. Soc. Environ.20232910089810.1016/j.rsase.2022.100898
    [Google Scholar]
  54. GuiS. SongS. QinR. TangY. Remote sensing object detection in the deep learning era — a Review.Remote Sens.202416232710.3390/rs16020327
    [Google Scholar]
  55. ClementN. SchoenA. BoedihardjoA. JenkinsA. Synthetic data and hierarchical object detection in overhead imagery.ACM Trans. Multimed. Comput. Commun. Appl.202420412010.1145/3635309
    [Google Scholar]
  56. WenqiY.U. GongC.H.E.N.G. MeijunW.A.N.G. YanqingY.A.O. XingxingX.I.E. XiwenY.A.O. JunweiH.A.N. MAR20: A benchmark for military aircraft recognition in remote sensing images.Nat. Remote Sens. Bull.2024271226882696
    [Google Scholar]
  57. ShiT. GongJ. JiangS. ZhiX. BaoG. SunY. ZhangW. Complex optical remote-sensing aircraft detection dataset and benchmark.IEEE Trans. Geosci. Remote Sens.2023611910.1109/TGRS.2023.3283137
    [Google Scholar]
  58. ButlerH. DalyM. DoyleA. GilliesS. HagenS. SchaubT The GeoJSON Format2016Available from: https://www.rfc-editor.org/rfc/rfc7946
  59. Custom image dataset for YOLO object detection using Open image dataset.2021Available from: https://g-vj.medium.com/custom-image-dataset-for-yolo-object-detection-using-open-image-dataset-41c128b9231b(Accessed on: September 10, 2024).
  60. Ozge UnelF. OzkalayciB.O. CiglaC. The power of tiling for small object detection.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition WorkshopsLos Angeles, 1 June, 20192019pp. 1-1010.1109/CVPRW.2019.00084
    [Google Scholar]
  61. BochkovskiyA. WangC.Y. LiaoH.Y.M. Yolov4: Optimal speed and accuracy of object detection.arXiv202010.48550/arXiv.2004.10934
    [Google Scholar]
  62. KarnaN.B.A. PutraM.A.P. RachmawatiS.M. AbisadoM. SampedroG.A. Toward accurate fused deposition modeling 3D printer fault detection using improved YOLOv8 with hyperparameter optimizationIEEE Access202311742517426210.1109/ACCESS.2023.3293056
    [Google Scholar]
  63. GuoM.H. XuT.X. LiuJ.J. LiuZ.N. JiangP.T. MuT.J. ZhangS.H. MartinR.R. ChengM.M. HuS.M. Attention mechanisms in computer vision: A survey.Comput. Vis. Media (Beijing)20228333136810.1007/s41095‑022‑0271‑y
    [Google Scholar]
  64. YangJ. FuX. HuY. HuangY. DingX. PaisleyJ. PanNet: A deep network architecture for pan-sharpening.Proceedings of the IEEE International Conference on Computer Vision (ICCV)Venice, Italy, 1 Oct, 2017, pp. 5449-5457.10.1109/ICCV.2017.193
    [Google Scholar]
  65. LinT.Y. DollárP. GirshickR. HeK. HariharanB. BelongieS. Feature pyramid networks for object detection.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Honolulu, 21-26 July, 2017, pp. 2117-2125.10.1109/CVPR.2017.106
    [Google Scholar]
  66. HolovatyA. Kaplan-MossJ. The Definitive Guide to Django: Web Development Done Right.ApressUS20092nd ed10.1007/978‑1‑4302‑1937‑8
    [Google Scholar]
  67. KingmaD.P. BaJ. Adam: A method for stochastic optimization.arXiv201410.48550/arXiv.1412.6980
    [Google Scholar]
  68. ultralytics.Available from: https://github.com/ultralytics/ultralytics(Accessed on: January 12, 2024)
  69. KetkarN. Stochastic gradient descent.Deep Learning with PythonApressBerkeley, CA201711313210.1007/978‑1‑4842‑2766‑4_8
    [Google Scholar]
  70. ZhouD. FangJ. SongX. GuanC. YinJ. DaiY. YangR. IoU loss for 2D/3D object detection.International Conference on 3D Vision (3DV)Quebec City, QC, Canada, 16-19 Sep, 2019, pp. 85-94.10.1109/3DV.2019.00019
    [Google Scholar]
  71. Intersection over Union (IoU) for object detection.2016Available from: https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
  72. PadillaR. NettoS.L. Da SilvaE.A. A survey on performance metrics for object-detection algorithms.Proceedings of the International Conference on Systems, Signals and Image Processing (IWSSIP)Niteroi, Brazil, 01-03 July, 2020, pp. 237-242.10.1109/IWSSIP48289.2020.9145130
    [Google Scholar]
  73. HeydarianM. DoyleT.E. SamaviR. MLCM: Multi-label confusion matrix.IEEE Access202210190831909510.1109/ACCESS.2022.3151048
    [Google Scholar]
  74. BosquetB. CoresD. SeidenariL. BreaV.M. MucientesM. BimboA.D. A full data augmentation pipeline for small object detection based on generative adversarial networks.Pattern Recognit.202313310899810899810.1016/j.patcog.2022.108998
    [Google Scholar]
  75. YangH. QiuS. A novel dynamic contextual feature fusion model for small object detection in satellite remote-sensing images.Information (Basel)202415423010.3390/info15040230
    [Google Scholar]
  76. YangG. LeiJ. ZhuZ. ChengS. FengZ. LiangR. AFPN: Asymptotic feature pyramid network for object detection.Proceedings of the IEEE International Conference on Systems, Man, and CyberneticsHonolulu, Oahu, HI, USA, 01-04 Oct, 2023, pp. 2184-2189.10.1109/SMC53992.2023.10394415
    [Google Scholar]
  77. LiuZ. LinY. CaoY. HuH. WeiY. ZhangZ. LinS. GuoB. Swin transformer: Hierarchical vision transformer using shifted windows.IEEE/CVF International Conference on Computer Vision (ICCV)Montreal, 10-17 Oct, 2021, pp. 9992-10002.10.1109/ICCV48922.2021.00986
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558333174241009112642
Loading
/content/journals/rascs/10.2174/0126662558333174241009112642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test