Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Background

Data is rapidly expanding in today's digital age. The reason for the expansion of data is due to social media sites. The internet produces an enormous quantity of unstructured data every second. Numerous users have many opinions and reviews to impart on everything from items and services to common pastimes. Opinions, feelings, attitudes, impressions, ., concerning subjects, products, and services are collected and analyzed through a method called sentiment analysis. Web-based networking mediums that rely on textual communication can be overwhelming. Understanding human psychology requires the real-time processing of data using techniques like sentiment analysis.

Aims

This study provides a thorough examination of the differences between methods of sentiment analysis, as well as its obstacles and emerging trends. The paper exemplifies the analysis's practical uses, examines its challenges, and outlines common methods of conducting it.

Objective

The objective of the current overview is to better understand the market, gauge public opinion, and make strategic decisions. In addition, enterprises, governments, and scholars can all benefit from conducting a sentiment analysis.

Methods

In this study, we review and categorize the most widely applied methods of deep learning and machine learning for analyzing sentiment. From the paper, we learn that which sentiment analysis technique is the best depends on the data at hand. When confronted with large amounts of data and a lengthy procedure, traditional machine learning-based algorithms flop. The ability to train deep learning models to learn more features using larger datasets is why they currently beat machine learning methodologies. Considerations include textual and temporal context, as well as data volume.

Results

Regardless of the fact that the English language has traditionally been the focus of research in this field, other spoken languages have recently attracted a growing amount of interest. The lack of resources for these languages continues to present numerous obstacles. Consequently, it can be an intriguing line of future effort to tackle other natural languages outside English by generating beneficial resources like building databases and addressing the problems with Natural language processing that have been stated in the context of sentiment examination.

Conclusion

The difficulties of sentiment analysis are examined as well, with the goal of illuminating potential solutions.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558312258240911111028
2024-09-19
2025-09-11
Loading full text...

Full text loading...

References

  1. LiuB. ZhangL. A survey of opinion mining and sentiment analysis.Mining text data.Boston, MASpringer201241546310.1007/978‑1‑4614‑3223‑4_13
    [Google Scholar]
  2. YusofN.N. MohamedA. Abdul-RahmanS. Reviewing classification approaches in sentiment analysis.Soft Computing in Data Science. SCDS 2015. Communications in Computer and Information Science, Springer, Singapore, 12 November 2015, pp 43–53.
    [Google Scholar]
  3. LiS. JuS. ZhouG. LinX. Active learning for imbalanced sentiment classification.Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Korea, July 2012, 139-148.
    [Google Scholar]
  4. StrapparavaC. MihalceaR. Learning to identify emotions in text.Proceedings of the 2008 ACM Symposium on Applied Computing, Fortaleza, Ceara, Brazil, 2008, pp. 1556–1560.10.1145/1363686.1364052
    [Google Scholar]
  5. LuY. KongX. QuanX. LiuW. XuY. Exploring the sentiment strength of user reviews.Web-Age Information Management. WAIM 2010. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2010. pp 471–482.
    [Google Scholar]
  6. Sánchez-RadaJ.F. IglesiasC.A. Social context in sentiment analysis: Formal definition, overview of current trends and framework for comparison.Inf. Fusion20195234435610.1016/j.inffus.2019.05.003
    [Google Scholar]
  7. AgarwalA. XieB. VovshaI. RambowO. PassonneauR.J. Sentiment analysis of twitter data.Proceedings of the Workshop on Language in Social Media (LSM 2011), Portland, Oregon, 23 June 2011, pp. 30-38.
    [Google Scholar]
  8. GursoyU.T. BulutD. YigitC. Social media mining and sentiment analysis for brand management. Global journal of emerging trends in e-business.Mark. Consum. Psychol.201731497551
    [Google Scholar]
  9. AsgharZ. AliT. AhmadI. TharanidharanS. NazarS.K.A. KamalS. Sentiment analysis on automobile brands using Twitter data.First International Conference, INTAP 2018, Bahawalpur, Pakistan, October 23-25, 2018, pp. 76-85.10.1007/978‑981‑13‑6052‑7_7
    [Google Scholar]
  10. RajputA. Natural language processing, sentiment analysis, and clinical analytics.Innovation in health informatics.Academic Press2020799710.1016/B978‑0‑12‑819043‑2.00003‑4
    [Google Scholar]
  11. KhanM.T. DurraniM. AliA. InayatI. KhalidS. KhanK.H. Sentiment analysis and the complex natural language.Complex Adapt. Syst. Model.201641210.1186/s40294‑016‑0016‑9
    [Google Scholar]
  12. BellD. KoulouriT. LauriaS. MacredieR.D. SuttonJ. Microblogging as a mechanism for human–robot interaction.Knowl. Base. Syst.201469647710.1016/j.knosys.2014.05.009
    [Google Scholar]
  13. OrtisA. FarinellaG.M. BattiatoS. Survey on visual sentiment analysis.IET Image Process.20201481440145610.1049/iet‑ipr.2019.1270
    [Google Scholar]
  14. AnnettM. KondrakG. A comparison of sentiment analysis techniques: Polarizing movie blogs.Advances in Artificial Intelligence: 21st Conference of the Canadian Society for Computational Studies of Intelligence, Canadian AI 2008 Windsor, Canada, May 28-30, 2008, pp. 25-35.
    [Google Scholar]
  15. MontoyoA. Martínez-BarcoP. BalahurA. Subjectivity and sentiment analysis: An overview of the current state of the area and envisaged developments.Decis. Support Syst.201253467567910.1016/j.dss.2012.05.022
    [Google Scholar]
  16. RaviK. RaviV. A survey on opinion mining and sentiment analysis: Tasks, approaches and applications.Knowl. Base. Syst.201589144610.1016/j.knosys.2015.06.015
    [Google Scholar]
  17. KhardeV. SonawaneP. Sentiment analysis of twitter data: A survey of techniques.Preprint arXiv: 1601.06971,2016
    [Google Scholar]
  18. RanaT.A. CheahY.N. Aspect extraction in sentiment analysis: Comparative analysis and survey.Artif. Intell. Rev.201646445948310.1007/s10462‑016‑9472‑z
    [Google Scholar]
  19. PiryaniR. MadhaviD. SinghV.K. Analytical mapping of opinion mining and sentiment analysis research during 2000–2015.Inf. Process. Manage.201753112215010.1016/j.ipm.2016.07.001
    [Google Scholar]
  20. HangyaV. FarkasR. A comparative empirical study on social media sentiment analysis over various genres and languages.Artif. Intell. Rev.201747448550510.1007/s10462‑016‑9489‑3
    [Google Scholar]
  21. YangP. ChenY. A survey on sentiment analysis by using machine learning methods.Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15-17 December 2017, pp. 117-121.10.1109/ITNEC.2017.8284920
    [Google Scholar]
  22. ChaturvediI. CambriaE. WelschR.E. HerreraF. Distinguishing between facts and opinions for sentiment analysis: Survey and challenges.Inf. Fusion201844657710.1016/j.inffus.2017.12.006
    [Google Scholar]
  23. HemmatianF. SohrabiM.K. A survey on classification techniques for opinion mining and sentiment analysis.Artif. Intell. Rev.20195231495154510.1007/s10462‑017‑9599‑6
    [Google Scholar]
  24. ZhangL. WangS. LiuB. Deep learning for sentiment analysis: A survey.Wiley Interdiscip. Rev. Data Min. Knowl. Discov.201884e125310.1002/widm.1253
    [Google Scholar]
  25. KhaderM. AwajanA. Al-NaymatG. The effects of natural language processing on big data analysis: Sentiment analysis case study.2018 International Arab Conference on Information Technology (ACIT), Werdanye, Lebanon, 28-30 November 2018, pp. 1-7.10.1109/ACIT.2018.8672697
    [Google Scholar]
  26. YadavA. VishwakarmaD.K. Sentiment analysis using deep learning architectures: A review.Artif. Intell. Rev.20205364335438510.1007/s10462‑019‑09794‑5
    [Google Scholar]
  27. LigthartA. CatalC. TekinerdoganB. Systematic reviews in sentiment analysis: A tertiary study.Artif. Intell. Rev.20215474997505310.1007/s10462‑021‑09973‑3
    [Google Scholar]
  28. GiménezM. PalancaJ. BottiV. Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis.Neurocomputing202037831532310.1016/j.neucom.2019.08.096
    [Google Scholar]
  29. MathewL. BinduV.R. A review of natural language processing techniques for sentiment analysis using pre-trained models.2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11-13 March 2020, pp. 340-345.10.1109/ICCMC48092.2020.ICCMC‑00064
    [Google Scholar]
  30. BalajiT.K. AnnavarapuC.S.R. BablaniA. Machine learning algorithms for social media analysis: A survey.Comput. Sci. Rev.20214010039510.1016/j.cosrev.2021.100395
    [Google Scholar]
  31. RaniS. KumarP. A journey of Indian languages over sentiment analysis: A systematic review.Artif. Intell. Rev.20195221415146210.1007/s10462‑018‑9670‑y
    [Google Scholar]
  32. AhmadiS. ShokouhyarS. ShahidzadehM.H. Elpiniki PapageorgiouI. The bright side of consumers’ opinions of improving reverse logistics decisions: A social media analytic framework.Int. J. Logist.2022256977101010.1080/13675567.2020.1846693
    [Google Scholar]
  33. WadhvaniB.A. ChauhanS.A. Hike the performance of collaborative filtering algorithm with the inclusion of multiple attributes.IJITCS2018104738010.5815/ijitcs.2018.04.08
    [Google Scholar]
  34. WadhvaniB.A. ChauhanS.A. A review on scale up the performance of collaborative filtering algorithm.Int. J. Sci. Res.20176425282533
    [Google Scholar]
  35. SheikS.A. MuniyandiA.P. Secure authentication schemes in cloud computing with glimpse of artificial neural networks: A review.Cyber Secur. Appl.2023110000210.1016/j.csa.2022.100002
    [Google Scholar]
  36. HanH. ShiwakotiR.K. JarvisR. MordiC. BotchieD. Accounting and auditing with blockchain technology and artificial Intelligence: A literature review.Int. J. Account. Inf. Syst.20234810059810.1016/j.accinf.2022.100598
    [Google Scholar]
  37. KumarS. YadavaM. RoyP.P. Fusion of EEG response and sentiment analysis of products review to predict customer satisfaction.Inf. Fusion201952415210.1016/j.inffus.2018.11.001
    [Google Scholar]
  38. JainP.K. YekunE.A. PamulaR. SrivastavaG. Consumer recommendation prediction in online reviews using Cuckoo optimized machine learning models.Comput. Electr. Eng.20219510739710.1016/j.compeleceng.2021.107397
    [Google Scholar]
  39. ZvarevasheK. OlugbaraO.O. A framework for sentiment analysis with opinion mining of hotel reviews.2018 Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 08-09 March 2018, pp. 1-4.201810.1109/ICTAS.2018.8368746
    [Google Scholar]
  40. SalincaA. Business reviews classification using sentiment analysis.2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 21-24 September 2015, pp. 247-250.10.1109/SYNASC.2015.46
    [Google Scholar]
  41. HaqueT. U. SaberN. N. ShahF. M. Sentiment analysis on large scale Amazon product reviews.2018 IEEE International Conference on Innovative Research and Development (ICIRD), Bangkok, Thailand, 11-12 May 2018, pp. 1-6.10.1109/ICIRD.2018.8376299
    [Google Scholar]
  42. BoseR. DeyR.K. RoyS. SarddarD. Sentiment analysis on online product reviews.Information and Communication Technology for Sustainable Development: Proceedings of ICT4SD 2018.Springer Singapore202055956910.1007/978‑981‑13‑7166‑0_56
    [Google Scholar]
  43. WangY. LiX. TsungF. Configuration-based smart customization service: A multitask learning approach.IEEE Trans. Autom. Sci. Eng.20201742038204710.1109/TASE.2020.2986774
    [Google Scholar]
  44. ValenciaF. Gómez-EspinosaA. Valdés-AguirreB. Price movement prediction of cryptocurrencies using sentiment analysis and machine learning.Entropy201921658910.3390/e2106058933267303
    [Google Scholar]
  45. IwendiC. MohanS. khanS. IbekeE. AhmadianA. CianoT. COVID-19 fake news sentiment analysis.Comput. Electr. Eng.202210110796710.1016/j.compeleceng.2022.10796735474674
    [Google Scholar]
  46. BhardwajA. NarayanY. Vanraj Pawan DuttaM. Sentiment analysis for Indian stock market prediction using Sensex and nifty.Procedia Comput. Sci.201570859110.1016/j.procs.2015.10.043
    [Google Scholar]
  47. RaoT. SrivastavaS. Analyzing stock market movements using twitter sentiment analysis.2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, USA, 26 August 2012, pp. 119–123
    [Google Scholar]
  48. SawalhaJ. YousefnezhadM. ShahZ. BrownM.R.G. GreenshawA.J. GreinerR. Detecting presence of PTSD using sentiment analysis from text data.Front. Psychiatry20221281139210.3389/fpsyt.2021.81139235178000
    [Google Scholar]
  49. LiuD. FengX.L. AhmedF. ShahidM. GuoJ. Detecting and measuring depression on social media using a machine learning approach: Systematic review.JMIR Ment. Health202293e2724410.2196/2724435230252
    [Google Scholar]
  50. Jiménez-ZafraS.M. Martín-ValdiviaM.T. Molina-GonzálezM.D. Ureña-LópezL.A. How do we talk about doctors and drugs? Sentiment analysis in forums expressing opinions for medical domain.Artif. Intell. Med.201993505710.1016/j.artmed.2018.03.00729685725
    [Google Scholar]
  51. DömökL. FodorS. The use of mixed-reality sport platforms in social media sentiment analysis during COVID-19.Perspectives in Business Informatics Research: 21st International Conference on Business Informatics Research, BIR 2022, Rostock, Germany, September 21–23, 2022, pp. 175-188.
    [Google Scholar]
  52. PengZ. LiM. WangY. HoG.T.S. Combating the COVID-19 infodemic using Prompt-based curriculum learning.Expert Syst. Appl.202322912050110.1016/j.eswa.2023.12050137274611
    [Google Scholar]
  53. OnanA. Sentiment analysis on massive open online course evaluations: A text mining and deep learning approach.Comput. Appl. Eng. Educ.202129357258910.1002/cae.22253
    [Google Scholar]
  54. DolianitiF.S. IakovakisD. DiasS.B. HadjileontiadouS. DinizJ.A. HadjileontiadisL. Sentiment analysis techniques and applications in education: A survey.Technology and Innovation in Learning, Teaching and Education: First International Conference, TECH-EDU 2018, Thessaloniki, Greece, June 20–22, 2018, pp. 412-427.10.1007/978‑3‑030‑20954‑4_31
    [Google Scholar]
  55. VickersN.J. Animal communication: When i’m calling you, will you answer too?Curr. Biol.20172714R713R71510.1016/j.cub.2017.05.06428743020
    [Google Scholar]
  56. SinghP. SawhneyR.S. KahlonK.S. Sentiment analysis of demonetization of 500 & 1000 rupee banknotes by Indian government.ICT Express20184312412910.1016/j.icte.2017.03.001
    [Google Scholar]
  57. HaselmayerM. JennyM. Sentiment analysis of political communication: Combining a dictionary approach with crowdcoding.Qual. Quant.20175162623264610.1007/s11135‑016‑0412‑429070915
    [Google Scholar]
  58. TheocharisY. de MoorJ. van DethJ.W. Digitally networked participation and lifestyle politics as new modes of political participation.Policy Internet2021131305310.1002/poi3.231
    [Google Scholar]
  59. HaoJ. DaiH. Social media content and sentiment analysis on consumer security breaches.J. Financ. Crime201623485586910.1108/JFC‑01‑2016‑0001
    [Google Scholar]
  60. ZadS. HeidariM. JonesJ.H. UzunerO. A survey on concept-level sentiment analysis techniques of textual data.2021 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 10-13 May 2021, pp. 0285-0291.10.1109/AIIoT52608.2021.9454169
    [Google Scholar]
  61. TajS. ShaikhB.B. MeghjiA.F. Sentiment analysis of news articles: A lexicon based approach.2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30-31 January 2019, pp. 1-5.10.1109/ICOMET.2019.8673428
    [Google Scholar]
  62. RaffelC. ShazeerN. RobertsA. LeeK. NarangS. MatenaM. Exploring the limits of transfer learning with a unified text-to-text transformer.J. Mach. Learn. Res.202021154855551
    [Google Scholar]
  63. TanX. CaiY. XuJ. LeungH.F. ChenW. LiQ. Improving aspect-based sentiment analysis via aligning aspect embedding.Neurocomputing202038333634710.1016/j.neucom.2019.12.035
    [Google Scholar]
  64. BibiM. AbbasiW.A. AzizW. KhalilS. UddinM. IwendiC. GadekalluT.R. A novel unsupervised ensemble framework using concept-based linguistic methods and machine learning for twitter sentiment analysis.Pattern Recognit. Lett.2022158808610.1016/j.patrec.2022.04.004
    [Google Scholar]
  65. KhanF.H. QamarU. BashirS. A semi-supervised approach to sentiment analysis using revised sentiment strength based on SentiWordNet.Knowl. Inf. Syst.201751385187210.1007/s10115‑016‑0993‑1
    [Google Scholar]
  66. IosifidisV. NtoutsiE. Sentiment analysis on big sparse data streams with limited labels.Knowl. Inf. Syst.20206241393143210.1007/s10115‑019‑01392‑9
    [Google Scholar]
  67. SamalB. BeheraA.K. PandaM. Performance analysis of supervised machine learning techniques for sentiment analysis.2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), , Chennai, India, 04-05 May 2017, pp. 128-133.10.1109/SSPS.2017.8071579
    [Google Scholar]
  68. DeyL. ChakrabortyS. BiswasA. BoseB. TiwariS. Sentiment analysis of review datasets using naive bayes and k-nn classifier.Preprint arXiv: 1610.09982,2016
    [Google Scholar]
  69. MarcotB.G. PenmanT.D. Advances in Bayesian network modelling: Integration of modelling technologies.Environ. Model. Softw.201911138639310.1016/j.envsoft.2018.09.016
    [Google Scholar]
  70. AhmedS. DantiA. Effective sentimental analysis and opinion mining of web reviews using rule based classifiers.Proceedings of the International Conference on CIDM, Springer, New Delhi. 09 December 2015, pp 171–179.10.1007/978‑81‑322‑2734‑2_18
    [Google Scholar]
  71. PolikarR. Ensemble based systems in decision making.IEEE Circuits Syst. Mag.200663214510.1109/MCAS.2006.1688199
    [Google Scholar]
  72. TangD. ZhangM. Deep learning in sentiment analysis.Deep learning in natural language processingSpringer201821925310.1007/978‑981‑10‑5209‑5_8
    [Google Scholar]
  73. WangY. LiX. ZhangL.L. MoD. Configuring products with natural language: A simple yet effective approach based on text embeddings and multilayer perceptron.Int. J. Prod. Res.202260175394540610.1080/00207543.2021.1957508
    [Google Scholar]
  74. CaiG. XiaB. Convolutional neural networks for multimedia sentiment analysis.Natural Language Processing and Chinese Computing: 4th CCF Conference, NLPCC 2015, Nanchang, China, October 9-13, 2015, pp. 159-167.
    [Google Scholar]
  75. SeverynA. MoschittiA. Twitter sentiment analysis with deep convolutional neural networks.Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, Santiago, Chile, 09 August 2015, pp. 959–962.10.1145/2766462.2767830
    [Google Scholar]
  76. SherstinskyA. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network.Physica D202040413230610.1016/j.physd.2019.132306
    [Google Scholar]
  77. MyersD. MohaweshR. ChellaboinaV.I. SathvikA.L. VenkateshP. HoY.H. HenshawH. AlhawawrehM. BerdikD. JararwehY. Foundation and large language models: Fundamentals, challenges, opportunities, and social impacts.Cluster Comput.202427112610.1007/s10586‑023‑04203‑7
    [Google Scholar]
  78. ChangY. WangX. WangJ. WuY. YangL. ZhuK. ChenH. YiX. WangC. WangY. YeW. ZhangY. ChangY. YuP.S. YangQ. XieX. A survey on evaluation of large language models.ACM Trans. Intell. Syst. Technol.202415314510.1145/3641289
    [Google Scholar]
  79. PatraB.G. DasD. DasA. PrasathR. Shared task on sentiment analysis in indian languages (sail) tweets-an overview.Mining Intelligence and Knowledge Exploration: Third International Conference, MIKE 2015, Hyderabad, India, December 9-11, 2015, pp. 650-655.
    [Google Scholar]
  80. GuptaC.P. BalB.K. Detecting sentiment in nepali texts: A bootstrap approach for sentiment analysis of texts in the nepali language.2015 International Conference on Cognitive Computing and Information Processing (CCIP), Noida, India, 03-04 March 2015, pp. 1-4.10.1109/CCIP.2015.7100739
    [Google Scholar]
  81. NaukarkarR.A. ThakareA.N. A design on recognization of sentiment analysis of marathi tweets using natural language processing.Int J Scienti Resear Sci Eng Tech202182451455
    [Google Scholar]
  82. AkhtarM.S. EkbalA. BhattacharyyaP. Aspect based sentiment analysis in Hindi: Resource creation and evaluation.Proceedings of the tenth international conference on language resources and evaluation (LREC’16), Portorož, Slovenia, May 2016, pp. 2703-2709
    [Google Scholar]
  83. BalamuraliA.R. JoshiA. BhattacharyyaP. Cross-lingual sentiment analysis for Indian languages using linked wordnets.Proceedings of COLING 2012: Posters, Mumbai, 1 December 2012, pp. 73-82.
    [Google Scholar]
  84. PradhanR. SharmaD.K. An ensemble deep learning classifier for sentiment analysis on code-mix Hindi-English data.Soft Comput.202211835493275
    [Google Scholar]
  85. JoshiR. GoelP. JoshiR. Deep learning for hindi text classification: A comparison.Intelligent Human Computer Interaction: 11th International Conference, IHCI 2019, Allahabad, India, December 12–14, 2019, pp. 94-101.
    [Google Scholar]
  86. ShahP. SwaminarayanP. Machine learning-based sentiment analysis of Gujarati reviews.IJDATS202214210512110.1504/IJDATS.2022.124763
    [Google Scholar]
  87. SinghJ. SinghG. SinghR. SinghP. Morphological evaluation and sentiment analysis of Punjabi text using deep learning classification.JKSU Comput. Inf. Sci.202133550851710.1016/j.jksuci.2018.04.003
    [Google Scholar]
  88. BansalN. GoyalV. RaniS. Experimenting language identification for sentiment analysis of english punjabi code mixed social media text.Int. J. E-Adoption20201215262[IJEA].10.4018/IJEA.2020010105
    [Google Scholar]
  89. SinghV. KumarP. Word sense disambiguation for Punjabi language using deep learning techniques.Neural Comput. Appl.20203282963297310.1007/s00521‑019‑04581‑3
    [Google Scholar]
  90. DasA. BandyopadhyayS. Phrase-level polarity identification for Bangla.Int. J. Comput. Linguistics Appl.201011-2169182
    [Google Scholar]
  91. BaduguS. Telugu movie review sentiment analysis using natural language processing approach.Data Engineering and Communication Technology: Proceedings of 3rd ICDECT-2K19,Springer Singapore202068569510.1007/978‑981‑15‑1097‑7_57
    [Google Scholar]
  92. Paredes-ValverdeM.A. Colomo-PalaciosR. Salas-ZárateM.P. Valencia-GarcíaR. Sentiment analysis in Spanish for improvement of products and services: A deep learning approach.Sci. Program.201720171610.1155/2017/1329281
    [Google Scholar]
  93. LinY.L. LaiC.J. PaiP.F. Using deep learning techniques in forecasting stock markets by hybrid data with multilingual sentiment analysis.Electronics20221121351310.3390/electronics11213513
    [Google Scholar]
  94. ChakravarthiB.R. PriyadharshiniR. MuralidaranV. JoseN. SuryawanshiS. SherlyE. McCraeJ.P. DravidianCodeMix: Sentiment analysis and offensive language identification dataset for Dravidian languages in code-mixed text.Lang. Resour. Eval.202256376580610.1007/s10579‑022‑09583‑735996566
    [Google Scholar]
  95. MohammadA.S. HammadM.M. Sa’adA. SajaA.T. CambriaE. Gated recurrent unit with multilingual universal sentence encoder for Arabic aspect-based sentiment analysis.Knowl. Base. Syst.2021107540
    [Google Scholar]
  96. KumarA. GargG. Empirical study of shallow and deep learning models for sarcasm detection using context in benchmark datasets.J. Ambient Intell. Humaniz. Comput.20231453275342
    [Google Scholar]
  97. YangJ. YuY. NiuD. GuoW. XuY. ConFEDE: Contrastive feature decomposition for multimodal sentiment analysis.Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, Canada, july 2023, pp. 7617-7630.10.18653/v1/2023.acl‑long.421
    [Google Scholar]
  98. WeiY. YuanS. YangR. ShenL. LiZ. WangL. ChenM. Tackling modality heterogeneity with multi-view calibration network for multimodal sentiment detection.Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, Canada, July 2023, 5240--5252.10.18653/v1/2023.acl‑long.287
    [Google Scholar]
  99. LuoL. WangY. MoD.Y. Identifying heart disease risk factors from electronic health records using an ensemble of deep learning method.IISE Trans. Healthc. Syst. Eng.202313323724710.1080/24725579.2023.2205665
    [Google Scholar]
  100. XuX. ZhangY. Corn cash price forecasting with neural networks.Comput. Electron. Agric.202118410612010.1016/j.compag.2021.106120
    [Google Scholar]
  101. XuX. ZhangY. House price forecasting with neural networks.Intell Syst Appl20211220005210.1016/j.iswa.2021.200052
    [Google Scholar]
  102. XuX. ZhangY. Residential housing price index forecasting via neural networks.Neural Comput. Appl.20223417147631477610.1007/s00521‑022‑07309‑y
    [Google Scholar]
  103. JinB. XuX. Forecasting wholesale prices of yellow corn through the Gaussian process regression.Neural Comput. Appl.202436158693871010.1007/s00521‑024‑09531‑2
    [Google Scholar]
  104. JinB. XuX. Price forecasting through neural networks for crude oil, heating oil, and natural gas. Measurement.Energy2024100001
    [Google Scholar]
  105. HuangS. WangY. WongE.Y.C. YuL. Ensemble learning with soft-prompted pretrained language models for fact checking.NLPJ2024710006710.1016/j.nlp.2024.100067
    [Google Scholar]
  106. MohammadS. M. Challenges in sentiment analysis.A practical guide to sentiment analysisNational Research Council CanadaOttawa, ON, Canada20176183
    [Google Scholar]
  107. McDuffD. KalioubyR.E. CohnJ.F. PicardR.W. Predicting ad liking and purchase intent: Large-scale analysis of facial responses to ads.IEEE Trans. Affect. Comput.20156322323510.1109/TAFFC.2014.2384198
    [Google Scholar]
  108. ZavattaroS.M. FrenchP.E. MohantyS.D. A sentiment analysis of U.S. local government tweets: The connection between tone and citizen involvement.Gov. Inf. Q.201532333334110.1016/j.giq.2015.03.003
    [Google Scholar]
  109. RaganatoA. Camacho-ColladosJ. NavigliR. Word sense disambiguation: A unified evaluation framework and empirical comparison.Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, April 2017, pp. 99-110.10.18653/v1/E17‑1010
    [Google Scholar]
  110. BarbaE. ProcopioL. NavigliR. ConSeC: Word sense disambiguation as continuous sense comprehension.Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, Nov 2021, pp. 1492-1503.10.18653/v1/2021.emnlp‑main.112
    [Google Scholar]
  111. RenL. XuB. LinH. LiuX. YangL. Sarcasm detection with sentiment semantics enhanced multi-level memory network.Neurocomputing202040132032610.1016/j.neucom.2020.03.081
    [Google Scholar]
  112. DuY. LiT. PathanM.S. TeklehaimanotH.K. YangZ. An effective sarcasm detection approach based on sentimental context and individual expression habits.Cognit. Comput.2022141789010.1007/s12559‑021‑09832‑x
    [Google Scholar]
  113. WenZ. GuiL. WangQ. GuoM. YuX. DuJ. XuR. Sememe knowledge and auxiliary information enhanced approach for sarcasm detection.Inf. Process. Manage.202259310288310.1016/j.ipm.2022.102883
    [Google Scholar]
  114. LouC. LiangB. GuiL. HeY. DangY. XuR. Affective dependency graph for sarcasm detection.Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, Canada, 11 July 2021, pp. 1844–1849.
    [Google Scholar]
  115. JainD. KumarA. GargG. Sarcasm detection in mash-up language using soft-attention based bi-directional LSTM and feature-rich CNN.Appl. Soft Comput.20209110619810.1016/j.asoc.2020.106198
    [Google Scholar]
  116. MohammadS.M. Sentiment analysis: Automatically detecting valence, emotions, and other affectual states from text.Emotion measurement.Woodhead Publishing202132337910.1016/B978‑0‑12‑821124‑3.00011‑9
    [Google Scholar]
  117. MukherjeeP. BadrY. DoppalapudiS. SrinivasanS.M. SangwanR.S. SharmaR. Effect of negation in sentences on sentiment analysis and polarity detection.Procedia Comput. Sci.202118537037910.1016/j.procs.2021.05.038
    [Google Scholar]
  118. SaumyaS. SinghJ.P. Detection of spam reviews: A sentiment analysis approach.CSI Transactions on ICT20186213714810.1007/s40012‑018‑0193‑0
    [Google Scholar]
  119. RodriguesA.P. FernandesR. AA. BA. ShettyA. KA. LakshmannaK. ShafiR.M. Real-time twitter spam detection and sentiment analysis using machine learning and deep learning techniques.Comput. Intell. Neurosci.2022202211410.1155/2022/521194935463239
    [Google Scholar]
  120. SukthankerR. PoriaS. CambriaE. ThirunavukarasuR. Anaphora and coreference resolution: A review.Inf. Fusion20205913916210.1016/j.inffus.2020.01.010
    [Google Scholar]
  121. MoratanchN. ChitrakalaS. Anaphora resolved abstractive text summarization (AR-ATS) system.Multimedia Tools Appl.20238234569459710.1007/s11042‑022‑13299‑9
    [Google Scholar]
  122. Agüero-ToralesM.M. Abreu SalasJ.I. López-HerreraA.G. Deep learning and multilingual sentiment analysis on social media data: An overview.Appl. Soft Comput.202110710737310.1016/j.asoc.2021.107373
    [Google Scholar]
  123. ZhouG. ZhuZ. HeT. HuX. T. Cross-lingual sentiment classification with stacked autoencoders.Knowl. Inf. Syst.2016472744
    [Google Scholar]
  124. RenY. KajiN. YoshinagaN. KitsuregawaM. Sentiment classification in under-resourced languages using graph-based semi-supervised learning methods.IEICE Trans. Inf. Syst.2014E97D79079710.1587/transinf.E97.D.790
    [Google Scholar]
  125. ChoudharyN. SinghR. BindlishI. ShrivastavaM. Sentiment analysis of code-mixed languages leveraging resource rich languages.19th International ConferenceCICLing 2018 Hanoi, Vietnam, March 18–24201810411410.1007/978‑3‑031‑23804‑8_9
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558312258240911111028
Loading
/content/journals/rascs/10.2174/0126662558312258240911111028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test