Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Remote sensing technology is a powerful tool for a wide range of applications, from medical diagnoses to environmental monitoring. Quality inspection, inventory management, environmental monitoring, supply chain analysis, and predictive maintenance are just a few of the many industrial uses for remote sensing image classification using deep learning. It's a tool for lowering production costs without sacrificing quality or long-term viability. Remote sensing image classification with deep learning aids production and sustainability by offering data-driven decision-making and useful insights. In this paper, we review the application of deep learning techniques in the field of remote sensing data analysis. This paper aims to investigate several techniques for visualising model decisions and to attribute them to specific aspects within the dataset. The proposed techniques include deep convolutional neural networks (CNNs) with saliency stream and RGB stream fusion techniques. In addition, we also discuss the use of extreme learning machine (ELM) classifiers with fused features as input for results. Finally, we discuss the performance of the proposed techniques on the UC Merced Land-Use dataset, Aerial Image dataset (AID), and NWPU-RESISC45 datasets. The results of the experiments demonstrate that the proposed techniques outperform other existing techniques. Additionally, the fused features from different streams improve the performance of the model significantly. This paper focused on information on various related research works and their models, including datasets. The main purpose is to make the already existing bridge between social life and the computer system even more robust.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558312821240804183436
2024-08-13
2025-09-10
Loading full text...

Full text loading...

References

  1. ZhangB. ChenZ. PengD. BenediktssonJ.A. LiuB. ZouL. LiJ. PlazaA. Remotely sensed big data: Evolution in model development for information extraction [point of view].Proc. IEEE2019107122294230110.1109/JPROC.2019.2948454
    [Google Scholar]
  2. RoganJ. ChenD. Remote sensing technology for mapping and monitoring land-cover and land-use change.Prog. Plann.200461430132510.1016/S0305‑9006(03)00066‑7
    [Google Scholar]
  3. RoganJ. Deep learning activities on remote sensed hyperspectral images.International Conference on Artificial Intelligence and Data Processing (IDAP)28-30 September 2018, Malatya, Turkey, pp. 1-4.
    [Google Scholar]
  4. ZhangB. WuY. ZhaoB. ChanussotJ. HongD. YaoJ. GaoL. Progress and challenges in intelligent remote sensing satellite systems.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.2022151814182210.1109/JSTARS.2022.3148139
    [Google Scholar]
  5. HuangX. Intelligent remote monitoring and manufacturing system of production line based on industrial Internet of Things.Comput. Commun.202015042142810.1016/j.comcom.2019.12.011
    [Google Scholar]
  6. GhassemianH. A review of remote sensing image fusion methods.Inf. Fusion201632758910.1016/j.inffus.2016.03.003
    [Google Scholar]
  7. MomeniK. MartinsuoM. Remote monitoring in industrial services: Need-to-have instead of nice-to-have.J. Bus. Ind. Mark.201833679280310.1108/JBIM‑10‑2015‑0187
    [Google Scholar]
  8. KongL. PengX. ChenY. WangP. XuM. Multi-sensor measurement and data fusion technology for manufacturing process monitoring: A literature review.Int. J. Extreme Manuf.20202202200110.1088/2631‑7990/ab7ae6
    [Google Scholar]
  9. CoadyJ. ToalD. NeweT. DoolyG. Remote acoustic analysis for tool condition monitoring.Procedia Manuf.20193884084710.1016/j.promfg.2020.01.165
    [Google Scholar]
  10. HanH LiC QiuX Multi-modal remote sensing image matching method based on deep learning technology.J. Phys.: Conf. Ser.2021208303209310.1088/1742‑6596/2083/3/032093
    [Google Scholar]
  11. Camps-VallsG. TuiaD. BruzzoneL. BenediktssonJ.A. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods.IEEE Signal Process. Mag.2014311455410.1109/MSP.2013.2279179
    [Google Scholar]
  12. CaiW. WeiZ. LiuR. ZhuangY. WangY. NingX. Remote sensing image recognition based on multi-attention residual fusion networks.ASP Transac Pattern Recogn Intell Syst2021111810.52810/TPRIS.2021.100005
    [Google Scholar]
  13. BidariI. ChickerurS. RanmaleH. TalawarS. RamadurgH. TalikotiR. Hyperspectral imagery classification using deep learning.2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).27-28 July 2020, London, UK10.1109/WorldS450073.2020.9210332
    [Google Scholar]
  14. WanL. LiS. ChenY. HeZ. ShiY. Application of deep learning in land use classification for soil erosion using remote sensing.Front. Earth Sci. (Lausanne)20221084953110.3389/feart.2022.849531
    [Google Scholar]
  15. ChenJ YangH XuR. Application and analysis of remote sensing image processing technology in robotic power inspection.J. Robotics2023202311110.1155/2023/9943372
    [Google Scholar]
  16. MatikainenL. LehtomäkiM. AhokasE. HyyppäJ. KarjalainenM. JaakkolaA. KukkoA. HeinonenT. Remote sensing methods for power line corridor surveys.ISPRS J. Photogramm. Remote Sens.2016119103110.1016/j.isprsjprs.2016.04.011
    [Google Scholar]
  17. PowersC. HanlonR. SchmaleD.III Tracking of a fluorescent dye in a freshwater lake with an unmanned surface vehicle and an unmanned aircraft system.Remote Sens. (Basel)20181018110.3390/rs10010081
    [Google Scholar]
  18. LiZ. WalkerR. HaywardR. MejiasL. Advances in vegetation management for power line corridor monitoring using aerial remote sensing techniques.1st International Conference on Applied Robotics for the Power Industry.05-07 October 2010, Montreal, QC, Canada, pp. 1-6.10.1109/CARPI.2010.5624431
    [Google Scholar]
  19. ChapmanS. MerzT. ChanA. JackwayP. HrabarS. DreccerM. HollandE. ZhengB. LingT. Jimenez-BerniJ. Pheno-copter: A low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping.Agronomy (Basel)20144227930110.3390/agronomy4020279
    [Google Scholar]
  20. SandersK.T. MasriS.F. The energy-water agriculture nexus: The past, present and future of holistic resource management via remote sensing technologies.J. Clean. Prod.2016117738810.1016/j.jclepro.2016.01.034
    [Google Scholar]
  21. DaneshmandM. BiliciO. BolotnikovaA. AnbarjafariG. Medical robots with potential applications in participatory and opportunistic remote sensing: A review.Robot. Auton. Syst.20179516018010.1016/j.robot.2017.06.009
    [Google Scholar]
  22. ZormpasA. MoirogiorgouK. KalaitzakisK. PlokamakisG.A. PartsinevelosP. GiakosG. Power transmission lines inspection using properly equipped unmanned aerial vehicle (UAV).IEEE International Conference On Imaging Systems And Techniques (IST).16 December 2018, rakow, Poland, pp. 1-5.
    [Google Scholar]
  23. HuntE.R.Jr DaughtryC.S.T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?Int. J. Remote Sens.20183915-165345537610.1080/01431161.2017.1410300
    [Google Scholar]
  24. VarelaS. DhoddaP. HsuW. PrasadP.V. AssefaY. PeraltaN. GriffinT. ShardaA. FergusonA. CiampittiI. Early-season stand count determination in corn via integration of imagery from unmanned aerial systems (UAS) and supervised learning techniques.Remote Sens. (Basel)201810234310.3390/rs10020343
    [Google Scholar]
  25. MirallèsF. HamelinP. LambertG. LavoieS. PouliotN. MontfrondM. LineDrone technology: Landing an unmanned aerial vehicle on a power line.IEEE International Conference on Robotics and Automation (ICRA)21-25 May 2018, Brisbane, QLD, Australia, pp. 6545-52.10.1109/ICRA.2018.8461250
    [Google Scholar]
  26. FranklinS.E. AhmedO.S. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data.Int. J. Remote Sens.20183915-165236524510.1080/01431161.2017.1363442
    [Google Scholar]
  27. MogiliU.M.R. DeepakB.B.V.L. Review on application of drone systems in precision agriculture.Procedia Comput. Sci.201813350250910.1016/j.procs.2018.07.063
    [Google Scholar]
  28. PerezD. MazaI. CaballeroF. ScarlattiD. CasadoE. OlleroA. A ground control station for a multi-UAV surveillance system: Design and validation in field experiments.J. Intell. Robot. Syst.2013691-411913010.1007/s10846‑012‑9759‑5
    [Google Scholar]
  29. ZhangR. YangB. XiaoW. LiangF. LiuY. WangZ. Automatic extraction of high-voltage power transmission objects from UAV lidar point clouds.Remote Sens. (Basel)20191122260010.3390/rs11222600
    [Google Scholar]
  30. FerozS. Abu DabousS. Uav-based remote sensing applications for bridge condition assessment.Remote Sens. (Basel)2021139180910.3390/rs13091809
    [Google Scholar]
  31. MaL. LiM. TongL. WangY. ChengL. Using unmanned aerial vehicle for remote sensing application.21st International Conference on Geoinformatics20-22 June 2013, Kaifeng, China, pp. 1-5.10.1109/Geoinformatics.2013.6626078
    [Google Scholar]
  32. AlsalamB.H.Y. MortonK. CampbellD. GonzalezF. Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture.IEEE Aerospace Conference04-11 March 2017, Big Sky, MT, USA, pp. 1-12.10.1109/AERO.2017.7943593
    [Google Scholar]
  33. López-GranadosF. Weed detection for site‐specific weed management: Mapping and real‐time approaches.Weed Res.201151111110.1111/j.1365‑3180.2010.00829.x
    [Google Scholar]
  34. ApostolidisS.D. KapoutsisP.C. KapoutsisA.C. KosmatopoulosE.B. Cooperative multi-UAV coverage mission planning platform for remote sensing applications.Auton. Robots202246237340010.1007/s10514‑021‑10028‑3
    [Google Scholar]
  35. BansodB. SinghR. ThakurR. SinghalG. A comparision between satellite based and drone based remote sensing technology to achieve sustainable development: A review.J. Agric. Environ. Int. Dev.2017111383407
    [Google Scholar]
  36. ShresthaA. MahmoodA. Review of deep learning algorithms and architectures.IEEE Access20197530405306510.1109/ACCESS.2019.2912200
    [Google Scholar]
  37. BallJ.E. AndersonD.T. ChanC.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community.J. Appl. Remote Sens.2017114110.1117/1.JRS.11.042609
    [Google Scholar]
  38. VermaH VidyarthiA ChitreAV WanjaleKH AnushaM MajrashiA Local binary patterns based on neighbor-center difference image for color texture classification with machine learning techniques.Wireless Commun Mob Comput202220221411110.1155/2022/1191492
    [Google Scholar]
  39. YeZ. HsuS.C. Predicting real-time deformation of structure in fire using machine learning with CFD and FEM.Autom. Construct.202214310457410.1016/j.autcon.2022.104574
    [Google Scholar]
  40. LynnR. HeluM. SatiM. TuckerT. KurfessT. The state of integrated computer-aided manufacturing/computer numerical control: Prior development and the path toward a smarter computer numerical controller.Smart Sustain. Manuf. Syst.2020422019004610.1520/SSMS20190046
    [Google Scholar]
  41. KusakinaN. OrlovS. KravetsO.J. Convolutional neural network for detecting anomalies in the control system of a machine-building enterprise.IOP Conf. Ser.: Mater. Sci. Eng.202086205202010.1088/1757‑899X/862/5/052020
    [Google Scholar]
  42. NazM.I. RajperS. AliA. KhanM.F. AsifR. MehmoodM.H. Framework of Decision Support System For Effective Resource Management.International Conference on Business Analytics for Technology and Security (ICBATS)07-08 March 2023, Dubai, United Arab Emirates, pp. 1-7.10.1109/ICBATS57792.2023.10111307
    [Google Scholar]
  43. AlvesT. DasR. MorrisT. Embedding encryption and machine learning intrusion prevention systems on programmable logic controllers.IEEE Embed. Syst. Lett.20181039910210.1109/LES.2018.2823906
    [Google Scholar]
  44. OzdemirM.A. Virtual Reality (VR) and Augmented Reality (AR) technologies for accessibility and marketing in the tourism industry.ICT Tools and Applications for Accessible Tourism.Pennsylvania, United StatesIGI Global2021
    [Google Scholar]
  45. HurstW. MendozaF.R. TekinerdoganB. Augmented reality in precision farming: Concepts and applications.Smart Cities2021441454146810.3390/smartcities4040077
    [Google Scholar]
  46. BejigaM. ZeggadaA. NouffidjA. MelganiF. A convolutional neural network approach for assisting avalanche search and rescue operations with UAV imagery.Remote Sens. (Basel)20179210010.3390/rs9020100
    [Google Scholar]
  47. MartínezA. BelmonteL.M. GarcíaA.S. Fernández-CaballeroA. MoralesR. Facial emotion recognition from an unmanned flying social robot for home care of dependent people.Electronics (Basel)202110786810.3390/electronics10070868
    [Google Scholar]
  48. RefaaiMR DattuVS GireeshN DixitE SandeepC ChristopherD Application of IoT-based drones in precision agriculture for pest control.Advances Mater Sci Eng202220221711210.1155/2022/1160258
    [Google Scholar]
  49. AgostinelliF. HoffmanM. SadowskiP. BaldiP. Learning activation functions to improve deep neural networks.arXiv:1412.68302014
    [Google Scholar]
  50. BaldiP. SadowskiP. The dropout learning algorithm.Artif. Intell.20142107812210.1016/j.artint.2014.02.00424771879
    [Google Scholar]
  51. SheykhmousaM. MahdianpariM. GhanbariH. MohammadimaneshF. GhamisiP. HomayouniS. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.2020136308632510.1109/JSTARS.2020.3026724
    [Google Scholar]
  52. LinM. YangG. ZhangH. Transition is a process: Pair-to-video change detection networks for very high resolution remote sensing images.IEEE Trans. Image Process.2022PP577137015527
    [Google Scholar]
  53. FanJ. ChenT. LuS. Unsupervised feature learning for land-use scene recognition.IEEE Trans. Geosci. Remote Sens.20175542250226110.1109/TGRS.2016.2640186
    [Google Scholar]
  54. LuX. ZhengX. YuanY. Remote sensing scene classification by unsupervised representation learning.IEEE Trans. Geosci. Remote Sens.20175595148515710.1109/TGRS.2017.2702596
    [Google Scholar]
  55. YuY LiuF. A two-stream deep fusion framework for high-resolution aerial scene classification.Comput Intell Neurosci20182018863936710.1155/2018/8639367
    [Google Scholar]
  56. ZhangX. WangQ. ChenG. DaiF. ZhuK. GongY. XieY. An object-based supervised classification framework for very-high-resolution remote sensing images using convolutional neural networks.Remote Sens. Lett.20189437338210.1080/2150704X.2017.1422873
    [Google Scholar]
  57. ChenJ. WangC. MaZ. ChenJ. HeD. AcklandS. Remote sensing scene classification based on convolutional neural networks pre-trained using attention-guided sparse filters.Remote Sens. (Basel)201810229010.3390/rs10020290
    [Google Scholar]
  58. HuangB. ZhaoB. SongY. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery.Remote Sens. Environ.2018214738610.1016/j.rse.2018.04.050
    [Google Scholar]
  59. ChengG. YangC. YaoX. GuoL. HanJ. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs.IEEE Trans. Geosci. Remote Sens.20185652811282110.1109/TGRS.2017.2783902
    [Google Scholar]
  60. LiuY. HuangC. Scene classification via triplet networks.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.201811122023710.1109/JSTARS.2017.2761800
    [Google Scholar]
  61. ZhangW. TangP. ZhaoL. Remote sensing image scene classification using CNN-CapsNet.Remote Sens. (Basel)201911549410.3390/rs11050494
    [Google Scholar]
  62. SongS. YuH. MiaoZ. ZhangQ. LinY. WangS. Domain adaptation for convolutional neural networks-based remote sensing scene classification.IEEE Geosci. Remote Sens. Lett.20191681324132810.1109/LGRS.2019.2896411
    [Google Scholar]
  63. XieJ. HeN. FangL. PlazaA. Scale-free convolutional neural network for remote sensing scene classification.IEEE Trans. Geosci. Remote Sens.20195796916692810.1109/TGRS.2019.2909695
    [Google Scholar]
  64. LiF. FengR. HanW. WangL. High-resolution remote sensing image scene classification via key filter bank based on convolutional neural network.IEEE Trans. Geosci. Remote Sens.202058118077809210.1109/TGRS.2020.2987060
    [Google Scholar]
  65. LiF. FengR. HanW. WangL. An augmentation attention mechanism for high-spatial-resolution remote sensing image scene classification.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.2020133862387810.1109/JSTARS.2020.3006241
    [Google Scholar]
  66. Fraga-LamasP. RamosL. Mondéjar-GuerraV. Fernández-CaramésT.M. A review on IoT deep learning UAV systems for autonomous obstacle detection and collision avoidance.Remote Sens. (Basel)20191118214410.3390/rs11182144
    [Google Scholar]
  67. LiZ. ZhangY. WuH. SuzukiS. NamikiA. WangW. Design and application of a UAV autonomous inspection system for high-voltage power transmission lines.Remote Sens. (Basel)202315386510.3390/rs15030865
    [Google Scholar]
  68. BejigaM.B. ZeggadaA. MelganiF. Convolutional neural networks for near real-time object detection from UAV imagery in avalanche search and rescue operations.IEEE International Geoscience and Remote Sensing Symposium (IGARSS)10-15 July 2016, Beijing, China, pp. 693-6.10.1109/IGARSS.2016.7729174
    [Google Scholar]
  69. GhanbariH. MahdianpariM. HomayouniS. MohammadimaneshF. A meta-analysis of convolutional neural networks for remote sensing applications.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.2021143602361310.1109/JSTARS.2021.3065569
    [Google Scholar]
  70. HuangH. LanY. YangA. ZhangY. WenS. DengJ. Deep learning versus Object-based Image Analysis (OBIA) in weed mapping of UAV imagery.Int. J. Remote Sens.20204193446347910.1080/01431161.2019.1706112
    [Google Scholar]
  71. NguyenV.N. JenssenR. RoversoD. Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning.Int. J. Electr. Power Energy Syst.20189910712010.1016/j.ijepes.2017.12.016
    [Google Scholar]
  72. XiY. JiaW. ZhengJ. FanX. XieY. RenJ. HeX. DRL-GAN: Dual-stream representation learning GAN for low-resolution image classification in UAV applications.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.2021141705171610.1109/JSTARS.2020.3043109
    [Google Scholar]
  73. ChenW. LiY. ZhaoZ. Transmission line vibration damper detection using multi-granularity conditional generative adversarial nets based on uav inspection images.Sensors (Basel)2022225188610.3390/s2205188635271033
    [Google Scholar]
  74. WengQ. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends.ISPRS J. Photogramm. Remote Sens.200964433534410.1016/j.isprsjprs.2009.03.007
    [Google Scholar]
  75. YuanQ. ShenH. LiT. LiZ. LiS. JiangY. XuH. TanW. YangQ. WangJ. GaoJ. ZhangL. Deep learning in environmental remote sensing: Achievements and challenges.Remote Sens. Environ.202024111171610.1016/j.rse.2020.111716
    [Google Scholar]
  76. CoveneyS. RobertsK. Lightweight UAV digital elevation models and orthoimagery for environmental applications: Data accuracy evaluation and potential for river flood risk modelling.Int. J. Remote Sens.2017388-103159318010.1080/01431161.2017.1292074
    [Google Scholar]
  77. SinghS. SajwanM. SinghG. DixitA.K. MehtaA. Efficient surface detection for assisting Collaborative Robots.Robot. Auton. Syst.202316110433910.1016/j.robot.2022.104339
    [Google Scholar]
  78. AasenH. HonkavaaraE. LucieerA. Zarco-TejadaP.J. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows.Remote Sens. (Basel)2018107109110.3390/rs10071091
    [Google Scholar]
  79. BarrientosA. ColoradoJ. CerroJ. MartinezA. RossiC. SanzD. ValenteJ. Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots.J. Field Robot.201128566768910.1002/rob.20403
    [Google Scholar]
  80. PajaresG. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs).Photogramm. Eng. Remote Sensing201581428133010.14358/PERS.81.4.281
    [Google Scholar]
  81. DashA YeJ WangG. A review of Generative Adversarial Networks (GANs) and its applications in a wide variety of disciplines -- From Medical to Remote Sensing.arXiv:2110.014422021
    [Google Scholar]
  82. YadavH. VasaJ. PatelR. GAN (Generative Adversarial Network)-based image super-resolution: A technical perspective.IOT with Smart SystemsBerlin, HeidelbergSpringer Link20232839310.1007/978‑981‑99‑3761‑5_27
    [Google Scholar]
  83. LiangH. BaoW. ShenX. Adaptive weighting feature fusion approach based on generative adversarial network for hyperspectral image classification.Remote Sens. (Basel)202113219810.3390/rs13020198
    [Google Scholar]
  84. KhanA. ZhijiangZ. YuY. KhanM.A. YanK. AzizK. Gan-Holo: Generative adversarial networks-based generated holography using deep learning.Complexity202120211710.1155/2021/6662161
    [Google Scholar]
  85. ThapaA. HoranontT. NeupaneB. AryalJ. Deep learning for remote sensing image scene classification: A review and meta-analysis.Remote Sens. (Basel)20231519480410.3390/rs15194804
    [Google Scholar]
  86. JiangB. AnX. XuS. ChenZ. Intelligent image semantic segmentation: A review through deep learning techniques for remote sensing image analysis.Photonirvachak (Dehra Dun)20222022114
    [Google Scholar]
  87. DaiM. JiangY. YangF. XuX. ZhaoW. DaoM.H. LiuY. SLMGAN: Single-layer metasurface design with symmetrical free-form patterns using generative adversarial networks.Appl. Soft Comput.202213010964610.1016/j.asoc.2022.109646
    [Google Scholar]
  88. ZhouS. WangY. JiaW. WangM. WuY. QiaoR. WuZ. Automatic responsive-generation of 3D urban morphology coupled with local climate zones using generative adversarial network.Build. Environ.202324511085510.1016/j.buildenv.2023.110855
    [Google Scholar]
  89. Montesinos-LópezA. Crespo-HerreraL. DreisigackerS. GerardG. VitaleP. Saint PierreC. GovindanV. TarekegnZ.T. FloresM.C. Pérez-RodríguezP. Ramos-PulidoS. LillemoM. LiH. Montesinos-LópezO.A. CrossaJ. Deep learning methods improve genomic prediction of wheat breeding.Front. Plant Sci.202415132409010.3389/fpls.2024.132409038504889
    [Google Scholar]
  90. UzalL.C. GrinblatG.L. NamíasR. LareseM.G. BianchiJ.S. MorandiE.N. GranittoP.M. Seed-per-pod estimation for plant breeding using deep learning.Comput. Electron. Agric.201815019620410.1016/j.compag.2018.04.024
    [Google Scholar]
  91. MoeinizadeS. PhamH. HanY. DobbelsA. HuG. An applied deep learning approach for estimating soybean relative maturity from UAV imagery to aid plant breeding decisions.Mach Learn Appl2022710023310.1016/j.mlwa.2021.100233
    [Google Scholar]
  92. DelavarpourN. KoparanC. NowatzkiJ. BajwaS. SunX. A technical study on UAV characteristics for precision agriculture applications and associated practical challenges.Remote Sens. (Basel)2021136120410.3390/rs13061204
    [Google Scholar]
  93. Al-TurjmanF. ZahmatkeshH. A comprehensive review on the use of AI in UAV communications: Enabling technologies, applications, and challenges.Unmanned Aerial Vehicles in Smart CitiesBerlin, HeidelbergSpringer Link2020126
    [Google Scholar]
  94. ColominaI. MolinaP. Unmanned aerial systems for photogrammetry and remote sensing: A review.ISPRS J. Photogramm. Remote Sens.201492799710.1016/j.isprsjprs.2014.02.013
    [Google Scholar]
  95. HardinP.J. JensenR.R. Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities.GIsci. Remote Sens.20114819911110.2747/1548‑1603.48.1.99
    [Google Scholar]
  96. AlhassanA.B. ZhangX. ShenH. XuH. Power transmission line inspection robots: A review, trends and challenges for future research.Int. J. Electr. Power Energy Syst.202011810586210.1016/j.ijepes.2020.105862
    [Google Scholar]
  97. LiuP. ChenA.Y. HuangY.N. HanJ.Y. LaiJ.S. KangS.C. WuT-H. WenM-C. TsaiM-H. A review of rotorcraft Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering.Smart Struct. Syst.20141361065109410.12989/sss.2014.13.6.1065
    [Google Scholar]
  98. AmarasingamN. Ashan SalgadoeA.S. PowellK. GonzalezL.F. NatarajanS. A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops.Remote Sens. Appl. Soc. Environ.20222610071210.1016/j.rsase.2022.100712
    [Google Scholar]
  99. Mohd NoorN. AbdullahA. HashimM. Remote sensing UAV/drones and its applications for urban areas: A review.IOP Conf. Ser: Earth Environ Sci.2018169012003
    [Google Scholar]
  100. PapadimitroulasP. BrockiL. Christopher ChungN. MarchadourW. VermetF. GaubertL. EleftheriadisV. PlachourisD. VisvikisD. KagadisG.C. HattM. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization.Phys. Med.20218310812110.1016/j.ejmp.2021.03.00933765601
    [Google Scholar]
  101. SaeedW. OmlinC. ExplainableA.I. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities.Knowl. Base. Syst.202326311027310.1016/j.knosys.2023.110273
    [Google Scholar]
  102. AntoniadiA.M. DuY. GuendouzY. WeiL. MazoC. BeckerB.A. MooneyC. Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: A systematic review.Appl. Sci. (Basel)20211111508810.3390/app11115088
    [Google Scholar]
  103. DhillonA. VermaG.K. Convolutional neural network: A review of models, methodologies and applications to object detection.Progress Artif Intell2020928511210.1007/s13748‑019‑00203‑0
    [Google Scholar]
  104. KattenbornT. LeitloffJ. SchieferF. HinzS. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing.ISPRS J. Photogramm. Remote Sens.2021173244910.1016/j.isprsjprs.2020.12.010
    [Google Scholar]
  105. KussulN. ShelestovA. LavreniukM. ButkoI. SkakunS. Deep learning approach for large scale land cover mapping based on remote sensing data fusion.IEEE International Geoscience And Remote Sensing Symposium (IGARSS).03 November 2016, Beijing, China, pp. 198-201.
    [Google Scholar]
  106. WadouxA.M.J.C. PadarianJ. MinasnyB. Multi-source data integration for soil mapping using deep learning.Soil (Gottingen)20195110711910.5194/soil‑5‑107‑2019
    [Google Scholar]
  107. AcharyaBS BhandariM BandiniF PizarroA PerksM JoshiDR Unmanned aerial vehicles in hydrology and water management: Applications, challenges, and perspectives.Water Resources Res.20215111e2021WR029925
    [Google Scholar]
  108. YuanC. ZhangY. LiuZ. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques.Can. J. For. Res.201545778379210.1139/cjfr‑2014‑0347
    [Google Scholar]
  109. AslanM.F. DurduA. SabanciK. RopelewskaE. GültekinS.S. A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses.Appl. Sci. (Basel)2022123104710.3390/app12031047
    [Google Scholar]
  110. FerrickA. FishJ. VenatorE. LeeG.S. UAV obstacle avoidance using image processing techniques.IEEE International Conference on Technologies for Ppractical Robot Applications (TePRA).14 June 2012, Woburn, MA, USA, pp. 73-78.
    [Google Scholar]
  111. BouguettayaA. ZarzourH. KechidaA. TaberkitA.M. Deep learning techniques to classify agricultural crops through UAV imagery: A review.Neural Comput. Appl.202234129511953610.1007/s00521‑022‑07104‑935281624
    [Google Scholar]
  112. StrasburgJ.D. HarperW.W. Impact of atmospheric turbulence on beam propagation.Laser Systems Technology 2 (Proceedings of Spie)St. Bellingham, WASociety of Photo Optical2004
    [Google Scholar]
  113. LeonardK.R. HoweJ. OxfordD.E. Simulation of atmospheric turbulence effects and mitigation algorithms on stand-off automatic facial recognition.Proceedings Volume 8546, Optics and Photonics for Counterterrorism, Crime Fighting, and Defence VIII; 85460O.30 October 2012, Edinburgh, United Kingdom.10.1117/12.979480
    [Google Scholar]
  114. MaoZ. JaiswalA. WangZ. ChanS.H. Single frame atmospheric turbulence mitigation: A benchmark study and a new physics-inspired transformer model.Computer Vision – ECCVBerlin, HeidelbergComputer Vision – ECCV20224304610.1007/978‑3‑031‑19800‑7_25
    [Google Scholar]
  115. AbdukirimA. RenY. TaoZ. LiuS. LiY. DengH. RaoR. Effects of atmospheric coherent time on inverse synthetic aperture ladar imaging through atmospheric turbulence.Remote Sens. (Basel)20231511288310.3390/rs15112883
    [Google Scholar]
  116. WuY.T. Porté-AgelF. Atmospheric turbulence effects on wind-turbine wakes: An LES study.Energies20125125340536210.3390/en5125340
    [Google Scholar]
  117. PresennakumarB. KumarA. RaoD.R. NairS.M. VasudevanpillaiM.S. VeerabuthiranS. Effects of the atmosphere on image quality in the imaging lidar system.AIP Conf. Proc.20181968103007110.1117/12.694584
    [Google Scholar]
  118. Pi-Fuei Hsieh LeeL.C. Nai-Yu Chen Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing.IEEE Trans. Geosci. Remote Sens.200139122657266310.1109/36.975000
    [Google Scholar]
  119. BothaE. BrandoV. DekkerA. Effects of per-pixel variability on uncertainties in bathymetric retrievals from high-resolution satellite images.Remote Sens. (Basel)20168645910.3390/rs8060459
    [Google Scholar]
  120. GalaktionovI. KudryashovA. SheldakovaJ. SamarkinV. NikitinA. Laser beam atmospheric propagation modelling for aerospace LIDAR applications.Atmosphere2021127918
    [Google Scholar]
  121. GalaktionovI. KudryashovA. SheldakovaJ. ByalkoA. BorsoniG. Laser beam propagation and wavefront correction in turbid media.SPIE Unconventional Imaging and Wavefront Sensing 20154 September 2015, San Diego, California, United States.
    [Google Scholar]
  122. ParkH. ParkJ.J. BuiP.D. YoonH. GrigoropoulosC.P. LeeD. KoS.H. Laser‐based selective material processing for next‐generation additive manufacturing.Adv. Mater.20232023230758610.1002/adma.20230758637740699
    [Google Scholar]
  123. RezenomY.H. WellmanA.D. TilstraL. MedleyC.D. GilmanS.D. Separation and detection of individual submicron particles by capillary electrophoresis with laser-light-scattering detection.Analyst (Lond.)2007132121215122210.1039/b709509k18318282
    [Google Scholar]
  124. MoriS. BiscariniM. MarzianiA. MarzanoF.S. PierdiccaN. Effects of atmospheric precipitations and turbulence on satellite Ka-band synthetic aperture radar.Active and Passive Microwave Remote Sensing for Environmental Monitoring II; 107880E20 November 2018, Berlin, Germany.10.1117/12.2325616
    [Google Scholar]
  125. ChehriA. JeonG. FofanaI. ImranA. SaadaneR. Accelerating power grid monitoring with flying robots and artificial intelligence.IEEE Commun Standards Mag202154485410.1109/MCOMSTD.0001.2000080
    [Google Scholar]
  126. JungJ. MaedaM. ChangA. BhandariM. AshapureA. Landivar-BowlesJ. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems.Curr. Opin. Biotechnol.202170152210.1016/j.copbio.2020.09.00333038780
    [Google Scholar]
  127. ButilăE.V. BobocR.G. Urban traffic monitoring and analysis using unmanned aerial vehicles (uavs): A systematic literature review.Remote Sens. (Basel)202214362010.3390/rs14030620
    [Google Scholar]
  128. LaiT. A review on Visual-SLAM: Advancements from geometric modelling to learning-based semantic scene understanding using multi-modal sensor fusion.Sensors (Basel)20222219726510.3390/s2219726536236364
    [Google Scholar]
  129. TangQ. LiangJ. ZhuF. A comparative review on multi-modal sensors fusion based on deep learning.Signal Processing202321310916510.1016/j.sigpro.2023.109165
    [Google Scholar]
  130. LiX. YuQ. AlzahraniB. BarnawiA. AlhindiA. AlghazzawiD. MiaoY. Data fusion for intelligent crowd monitoring and management systems: A survey.IEEE Access20219470694708310.1109/ACCESS.2021.3060631
    [Google Scholar]
  131. QiuZ. Martínez-SánchezJ. Arias-SánchezP. RashdiR. External multi-modal imaging sensor calibration for sensor fusion: A review.Inf. Fusion20239710180610.1016/j.inffus.2023.101806
    [Google Scholar]
  132. LiJ. ChenZ. ChenJ. LinQ. Diversity-sensitive generative adversarial network for terrain mapping under limited human intervention.IEEE Trans. Cybern.202151126029604010.1109/TCYB.2019.296208632011273
    [Google Scholar]
  133. WuA.N. StouffsR. BiljeckiF. Generative Adversarial Networks in the built environment: A comprehensive review of the application of GANs across data types and scales.Build. Environ.202222310947710.1016/j.buildenv.2022.109477
    [Google Scholar]
  134. LiB YangZ-p ChenD-q LiangS-y MaH Maneuvering target tracking of UAV based on MN-DDPG and transfer learning.Defence Technol.202117245746610.1016/j.dt.2020.11.014
    [Google Scholar]
  135. FengZ. SongL. DuanJ. HeL. ZhangY. WeiY. FengW. Monitoring wheat powdery mildew based on hyperspectral, thermal infrared, and RGB image data fusion.Sensors (Basel)20212213110.3390/s2201003135009575
    [Google Scholar]
  136. ZhangX. YeP. LeungH. GongK. XiaoG. Object fusion tracking based on visible and infrared images: A comprehensive review.Inf. Fusion20206316618710.1016/j.inffus.2020.05.002
    [Google Scholar]
  137. ShaoZ. CaiJ. Remote sensing image fusion with deep convolutional neural network.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.20181151656166910.1109/JSTARS.2018.2805923
    [Google Scholar]
  138. ChrétienL.P. ThéauJ. MénardP. Visible and thermal infrared remote sensing for the detection of white‐tailed deer using an unmanned aerial system.Wildl. Soc. Bull.201640118119110.1002/wsb.629
    [Google Scholar]
  139. WalambeR. MaratheA. KotechaK. Multiscale object detection from drone imagery using ensemble transfer learning.Drones (Basel)2021536610.3390/drones5030066
    [Google Scholar]
  140. KieuH.T. LawA.W.K. Remote sensing of coastal hydro-environment with portable unmanned aerial vehicles (pUAVs) a state-of-the-art review.J. Hydro-environment Res.202137324510.1016/j.jher.2021.04.003
    [Google Scholar]
  141. TaylorA.T. BerruetaT.A. MurpheyT.D. Active learning in robotics: A review of control principles.Mechatronics20217710257610.1016/j.mechatronics.2021.102576
    [Google Scholar]
  142. IslamN. RashidM.M. PasandidehF. RayB. MooreS. KadelR. A review of applications and communication technologies for internet of things (Iot) and Unmanned Aerial Vehicle (UAV) based sustainable smart farming.Sustainability (Basel)2021134182110.3390/su13041821
    [Google Scholar]
  143. AsadzadehS. OliveiraW.J. Souza FilhoC.R. UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives.J. Petrol. Sci. Eng.202220810963310.1016/j.petrol.2021.109633
    [Google Scholar]
  144. MehmoodM. ShahzadA. ZafarB. ShabbirA. AliN. Remote sensing image classification: A comprehensive review and applications.Math. Probl. Eng.2022202212410.1155/2022/5880959
    [Google Scholar]
  145. YooM. NaY. SongH. KimG. YunJ. KimS. MoonC. JoK. Motion estimation and hand gesture recognition-based human–UAV interaction approach in real time.Sensors (Basel)2022227251310.3390/s2207251335408128
    [Google Scholar]
  146. CarboneA. SpillerD. FarissiM.S. SasidharanS.T. LatorreF. CurtiF. Hardware-in-the-Loop Simulations of Future Autonomous Space Systems Aided by Artificial Intelligence. The Use of Artificial Intelligence for Space ApplicationsBerlin, HeidelbergSpringer Link20228399
    [Google Scholar]
  147. MohsanS.A.H. OthmanN.Q.H. LiY. AlsharifM.H. KhanM.A. Unmanned Aerial Vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends.Intell. Serv. Robot.202316110913710.1007/s11370‑022‑00452‑436687780
    [Google Scholar]
  148. HarryA. The Future of medicine: Harnessing the power of AI for revolutionizing healthcare.Int J Multidisc Sci Arts202321364710.47709/ijmdsa.v2i1.2395
    [Google Scholar]
  149. FrankeliusP. NorrmanC. JohansenK. Agricultural innovation and the role of institutions: Lessons from the game of drones.J. Agric. Environ. Ethics2019325-668170710.1007/s10806‑017‑9703‑6
    [Google Scholar]
  150. TelliK. KraaO. HimeurY. OuamaneA. BoumehrazM. AtallaS. MansoorW. A comprehensive review of recent research trends on Unmanned Aerial Vehicles (UAVs).Systems202311840010.3390/systems11080400
    [Google Scholar]
  151. ZhangJ. XuS. ZhaoY. SunJ. XuS. ZhangX. Aerial orthoimage generation for UAV remote sensing: Review.Inf. Fusion2023899112010.1016/j.inffus.2022.08.007
    [Google Scholar]
  152. ChengG. XieX. HanJ. GuoL. XiaG.S. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.2020133735375610.1109/JSTARS.2020.3005403
    [Google Scholar]
  153. YouY. ZhangZ. HsiehC.J. DemmelJ. KeutzerK. Fast deep neural network training on distributed systems and cloud TPUs.IEEE Trans. Parallel Distrib. Syst.201930112449246210.1109/TPDS.2019.2913833
    [Google Scholar]
  154. Lopez GarciaA. De LucasJ.M. AntonacciM. Zu CastellW. DavidM. HardtM. Lloret IglesiasL. MoltoG. PlociennikM. TranV. AlicA.S. CaballerM. PlasenciaI.C. CostantiniA. DlugolinskyS. DumaD.C. DonvitoG. GomesJ. Heredia CachaI. ItoK. KozlovV.Y. NguyenG. Orviz FernandezP. SustrZ. WolniewiczP. A cloud-based framework for machine learning workloads and applications.IEEE Access20208186811869210.1109/ACCESS.2020.2964386
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558312821240804183436
Loading
/content/journals/rascs/10.2174/0126662558312821240804183436
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test