Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

Introduction

Algae extracts are utilized as biofertilizers instead of chemical fertilizers in agriculture. Further, algae are known to possess a high content of plant hormones, such as gibberellin, salicylic acid, abscisic acid, and brassinosteroids.

Objective

The main objective of this study was to increase the extraction yield and simultaneously extract hormones required for plant growth from using Magnetic recoverable ionic liquid (IL).

Methods

In this study, extraction was performed by acidic digestion with acetic acid and then alkaline digestion with potassium hydroxide.

Results

The results showed the ionic liquid effect in extraction yield by 266 percent. The extracted phytohormones were analyzed using high-performance liquid chromatography (HPLC) methods. High levels of gibberellin, salicylic acid, abscisic acid, and brassinosteroids in improved algae extraction showed that seaweed extract could be used as environmentally friendly liquid bio-fertilizers to replace chemical fertilizers and could play a crucial role in organic farming for sustainable agriculture. Additionally, the recoverability of ionic liquid eight times with negligible leaching proved the introduced procedure to be cost-effective.

Conclusion

The reported procedure for algae extraction improved by using an acidic/primary ionic liquid environment. This procedure is economical because of the simple reusability of ionic liquid features.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X315517240626065435
2024-07-26
2025-10-11
Loading full text...

Full text loading...

References

  1. JhaA. PathaniaD. Sonu, DamathiaB. RaizadaP. RustagiS. SinghP. RaniG.M ChaudharyV. Panorama of biogenic nano-fertilizers: A road to sustainable agriculture.Environ. Res.202323511645610.1016/j.envres.2023.116456 37343760
    [Google Scholar]
  2. KalitaP. AhmadA.B. SenS. DekaB. HazarikaQ.K. KapilM.J. PachuauL. High value compounds and bioactivity of rice bran, rice bran protein: A review.Recent Adv. Food Nutr. Agric.2023141264010.2174/2772574X14666221227151558 36578259
    [Google Scholar]
  3. SreedeviA. Phytochemical, in vitro and in silico screening of roots of Jasminum auriculatum for antioxidant activity.Eurasian Chem. Communi.202248768777
    [Google Scholar]
  4. PatelR. PandyaK.Y. JasraiR.T. BrahmbhattN. A review: Scope of utilizing seaweed as a biofertilizer in agriculture.Int. J. Adv. Res.2017572046205410.21474/IJAR01/4941
    [Google Scholar]
  5. MishraN. GuptaE. SinghP. SoniS. NoorU. Insight on vernonia plant for its pharmacological properties: A review.Recent Adv. Food Nutr. Agric.2023142849310.2174/2212798412666230330164954 37787150
    [Google Scholar]
  6. SuY. 13 - Phytohormonal quantification based on biological principles.Hormone Metabolism and Signaling in Plants. LiJ. LiC. SmithS.M. Academic Press201743147010.1016/B978‑0‑12‑811562‑6.00013‑X
    [Google Scholar]
  7. Ali Rajabiyan, Luigi Vaccaro, Ahmady A.Z. Nano-hydroxyapatite isolation and characterisation of echinometra mathaei from the persian gulf.Trop. Life Sci. Res.202334224325410.21315/tlsr2023.34.2.12 38144377
    [Google Scholar]
  8. RashadS. El-ChaghabyG.A. Marine algae in Egypt: Distribution, phytochemical composition and biological uses as bioactive resources (a review).Egypt. J. Aquat. Biol. Fish.202024514716010.21608/ejabf.2020.103630
    [Google Scholar]
  9. AliO. RamsubhagA. JayaramanJ. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment.PLoS One2019145e021671010.1371/journal.pone.0216710 31086398
    [Google Scholar]
  10. RamyaS.S. NagarajS. VijayanandN. Biofertilizing efficiency of brown and green algae on growth, biochemical and yield parameters of Cyamopsis tetragonolaba (L.) Taub.Rec Res Sci Tech2010254552
    [Google Scholar]
  11. BoobalanB. Biofertilizing efficiency of Sargassum polycystum extract on growth and biochemical composition of Vigna radiata and Vigna mungo.Asian Pac. J. Reprod.20187
    [Google Scholar]
  12. BattahM. MostfaM. EladelH. SororA. TantawyM. Physiological response of fenugreek (Trigonella foenum-graecum L.) plant treated by farmyard manure and two selected seaweeds as biofertilizers.Benha J. Appl. Sci.20216211512410.21608/bjas.2021.168294
    [Google Scholar]
  13. AmeriA. ShushizadehM.R. Bagher NabaviS.M. EspereF. Zarei AhmadyA. Antibacterial evaluation and biochemical characterization of Thais savignyi gastropod extracts from the Persian Gulf.Jundishapur J. Nat. Pharm. Prod.201712210.5812/jjnpp.13942
    [Google Scholar]
  14. AzmirJ. ZaidulI.S.M. RahmanM.M. SharifK.M. MohamedA. SahenaF. JahurulM.H.A. GhafoorK. NorulainiN.A.N. OmarA.K.M. Techniques for extraction of bioactive compounds from plant materials: A review.J. Food Eng.2013117442643610.1016/j.jfoodeng.2013.01.014
    [Google Scholar]
  15. SadeghiA. RajabiyanA. NabizadeN. Meygoli NezhadN. Zarei-AhmadyA. Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies.Int. J. Biol. Macromol.2024266Pt 113114710.1016/j.ijbiomac.2024.131147 38537857
    [Google Scholar]
  16. RajabiyanA. Shakiba MaramN. GhatramiE.R. Zarei AhmadyA. Preparation of magnetic methotrexate nanocarrier coated with extracted hydroxyapatite of sea urchin (Echinometra mathaei).Main Group Chem.202120444746110.3233/MGC‑210043
    [Google Scholar]
  17. IriantoI. NaryaningsihA. TrisnawatiN.W. AstutiA. KomariyahK. QomariyahL. ChaidirC. SaputriA. WulandariR. RizkiyahD.N. PutraN.R. From sea to solution: A review of green extraction approaches for unlocking the potential of brown algae.S. Afr. J. Chem. Eng.20244812110.1016/j.sajce.2024.01.001
    [Google Scholar]
  18. KadamS.U. TiwariB.K. SmythT.J. O’DonnellC.P. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology.Ultrason. Sonochem.20152330831610.1016/j.ultsonch.2014.10.007 25453215
    [Google Scholar]
  19. KadamS.U. TiwariB.K. O’ConnellS. O’DonnellC.P. Effect of ultrasound pretreatment on the extraction kinetics of bioactives from brown seaweed (Ascophyllum nodosum).Sep. Sci. Technol.201550567067510.1080/01496395.2014.960050
    [Google Scholar]
  20. YuanY. MacquarrieD. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity.Carbohydr. Polym.201512910110710.1016/j.carbpol.2015.04.057 26050894
    [Google Scholar]
  21. YuanY. ZhangJ. FanJ. ClarkJ. ShenP. LiY. ZhangC. Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase.Food Res. Int.201811328829710.1016/j.foodres.2018.07.021 30195523
    [Google Scholar]
  22. SadeghiA. RajabiyanA. Meygoli NezhadN. NabizadeN. AlvaniA. Zarei-AhmadyA. A review on Persian Gulf brown algae as potential source for anticancer drugs.Algal Res.20247910344610.1016/j.algal.2024.103446
    [Google Scholar]
  23. SharmaH.S.S. FlemingC. SelbyC. RaoJ.R. MartinT. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses.J. Appl. Phycol.201426146549010.1007/s10811‑013‑0101‑9
    [Google Scholar]
  24. JanninL. ArkounM. EtienneP. LaînéP. GouxD. GarnicaM. FuentesM. FranciscoS.S. BaigorriR. CruzF. HoudusseF. Garcia-MinaJ-M. YvinJ-C. OurryA. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: Microarray analysis and physiological characterization of N, C, and S metabolisms.J. Plant Growth Regul.2013321315210.1007/s00344‑012‑9273‑9
    [Google Scholar]
  25. CraigieJ.S. Seaweed extract stimuli in plant science and agriculture.J. Appl. Phycol.201123337139310.1007/s10811‑010‑9560‑4
    [Google Scholar]
  26. KarmI.F.A. DwaishA.S. DakhilO.A.A. Algae extracts as reduction agents for biosynthesis of silver nanoparticles for alternative medicinal compounds.Eurasian Chem. Communi.202249910920
    [Google Scholar]
  27. ShuklaP.S. MantinE.G. AdilM. BajpaiS. CritchleyA.T. PrithivirajB. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management.Front. Plant Sci.20191065510.3389/fpls.2019.00655 31191576
    [Google Scholar]
  28. KhooK.S. OoiC.W. ChewK.W. FooS.C. LimJ.W. TaoY. JiangN. HoS-H. ShowP.L. Permeabilization of Haematococcus pluvialis and solid-liquid extraction of astaxanthin by CO2-based alkyl carbamate ionic liquids.Chem. Eng. J.202141112851010.1016/j.cej.2021.128510
    [Google Scholar]
  29. Zarei-AhmadyA. HeidarizadehF. Specific ionic liquids for the synthesis of acicular goethite nanoparticles.Asian J. Chem.20082016471
    [Google Scholar]
  30. Ibrahim ArifA. Biosynthesis of copper oxide nanoparticles using Aspergillus niger extract and their antibacterial and antioxidant activities.Eur. Chem. Commun.202357598608
    [Google Scholar]
  31. JavaniM. Zarei AhmadyA. SaghanezhadS.J. Green sonochemical synthesis of technical fenitrothion using protic ionic liquid.Iran. J. Chem. Chem. Eng.20234216471
    [Google Scholar]
  32. HeidarizadehF. ZareiA. Bronsted acidic ionic liquid 1-n-butylimidazolium tetrafluoroborate ([hbim] bf4): A green catalyst and recyclable medium for the azidolysis of epoxides.J. Chem. Soc. Pak.2012343593
    [Google Scholar]
  33. ChatzimitakosT. BinellasC. MaidatsiK. StalikasC. Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: Proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals.Anal. Chim. Acta2016910535910.1016/j.aca.2016.01.015 26873468
    [Google Scholar]
  34. Trujillo-RodríguezM.J. J.L. Anderson In situ formation of hydrophobic magnetic ionic liquids for dispersive liquid-liquid microextraction.J. Chromatogr. A2019158881610.1016/j.talanta.2017.01.079 28340720
    [Google Scholar]
  35. AkbariA. Tri(1-butyl-3-methylimidazolium) gadolinium hexachloride, ([bmim]3[GdCl6]), a magnetic ionic liquid as a green salt and reusable catalyst for the synthesis of tetrasubstituted imidazoles.Tetrahedron Lett.201657343143410.1016/j.tetlet.2015.12.053
    [Google Scholar]
  36. WangY. SunY. XuB. LiX. WangX. ZhangH. SongD. Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid–liquid microextraction for the determination of triazine herbicides in oilseeds.Anal. Chim. Acta2015888677410.1016/j.aca.2015.07.028 26320960
    [Google Scholar]
  37. FengX. ZhangW. ZhangT. YaoS. Systematic investigation for extraction and separation of polyphenols in tea leaves by magnetic ionic liquids.J. Sci. Food Agric.201898124550456010.1002/jsfa.8983 29485198
    [Google Scholar]
  38. Persian Gulf MapAvailable from: https://ian.macky.net/pat/map/ir/ir_blk.gif
    [Google Scholar]
  39. KeshavarzM. KaramiB. AhmadyA.Z. GhaediA. VafaeiH. [bmim]BF4/[Cu(Im12)2]CuCl2 as a novel catalytic reaction medium for click cyclization.C. R. Chim.201317657057610.1016/j.crci.2013.02.011
    [Google Scholar]
  40. HouX.D. LiuQ.P. SmithT.J. LiN. ZongM.H. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids.PLoS One201383e5914510.1371/journal.pone.0059145 23554985
    [Google Scholar]
  41. GouveiaW. JorgeT.F. MartinsS. MeirelesM. CarolinoM. CruzC. AlmeidaT.V. AraújoM.E.M. Toxicity of ionic liquids prepared from biomaterials.Chemosphere2014104515610.1016/j.chemosphere.2013.10.055 24268343
    [Google Scholar]
  42. MeederM.B. Process to elaborate a biostimulant based on seaweeds.U.S. Patent 20150351408A12014
  43. Calla-QuispeE. RoblesJ. ArecheC. SepulvedaB. Are ionic liquids better extracting agents than toxic volatile organic solvents? A combination of ionic liquids, microwave and LC/MS/MS, applied to the lichen Stereocaulon glareosum.Front Chem.2020845010.3389/fchem.2020.00450 32548092
    [Google Scholar]
  44. HauJ. RiedikerS. VargaN. StadlerR.H. Determination of the plant growth regulator chlormequat in food by liquid chromatography–electrospray ionisation tandem mass spectrometry.J. Chromatogr. A20008781778610.1016/S0021‑9673(00)00286‑7 10843547
    [Google Scholar]
  45. PathakV.M. VermaV.K. RawatB.S. KaurB. BabuN. SharmaA. DewaliS. YadavM. KumariR. SinghS. MohapatraA. PandeyV. RanaN. CunillJ.M. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review.Front. Microbiol.20221396261910.3389/fmicb.2022.962619 36060785
    [Google Scholar]
  46. FernándezJ.A. AyastuyM.E. BelladonnaD.P. ComezañaM.M. ContrerasJ. de Maria MourãoI. OrdenL. RodríguezR.A. Current trends in organic vegetable crop production: Practices and techniques.Horticulturae202281089310.3390/horticulturae8100893
    [Google Scholar]
  47. El-BeltagiH.S. MohamedA.A. MohamedH.I. RamadanK.M.A. BarqawiA.A. MansourA.T. Phytochemical and potential properties of seaweeds and their recent applications: A review.Mar. Drugs202220634210.3390/md20060342 35736145
    [Google Scholar]
  48. AliA.H. SaidE.M. AbdelgawadZ.A. The role of seaweed extract on improvement drought tolerance of wheat revealed by osmoprotectants and DNA (cpDNA) markers.Braz. J. Bot.202245385786710.1007/s40415‑022‑00820‑5
    [Google Scholar]
  49. NoritomiH. Increase in thermal stability of proteins by aprotic ionic liquids.Ionic Liquids-New Aspects for the Future.IntechOpen201310.5772/51231
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X315517240626065435
Loading
/content/journals/rafna/10.2174/012772574X315517240626065435
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test