Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

Obesity is a global health concern with numerous comorbidities, including cardiovascular diseases, type 2 diabetes, and certain cancers. Carotenoids, found in a variety of natural sources like fruits and vegetables, are known for their potential health benefits. Emerging research suggests that certain carotenoids may play a major role in combating obesity through mechanisms involving inflammation, oxidative stress, and lipid metabolism. Understanding the influence of carotenoids on metabolic health could offer valuable revelation about obesity management strategies.

To summarize the main findings on carotenoids that help in the management and prevention of obesity, exploring their potential benefits in weight management, metabolic health, and overall well-being.

An extensive literature survey was done on the management of obesity using PubMed, Elsevier, ScienceDirect, and Springer. The results were then filtered based on the titles, abstracts, and accessibility of the complete texts. The search engine Google Scholar was accessed for the literature data mining.

This review highlights the diverse functions of carotenoids, such as their antioxidant properties, anti-inflammatory effects, and regulation of lipid metabolism, which contribute to their potential role in combating obesity. Studies suggest that carotenoids may help reduce adiposity, lipid accumulation, improve insulin sensitivity, and promote overall metabolic health, making them promising candidates for obesity management.

Obesity is synonymous with the appearance of major diseases and an overall decline in physical and mental performance. Overall, the findings of this review endorse the possible application of carotenoids as a nutritional supplement for the management and prevention of obesity. Further research is needed to clarify the mechanisms underlying the beneficial impacts of carotenoids on obesity-related consequences and to optimize their utilization in clinical practice and public health campaigns.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X310316240610111659
2024-07-04
2025-10-11
Loading full text...

Full text loading...

References

  1. AfshinA. ForouzanfarM.H. ReitsmaM.B. SurP. EstepK. LeeA. MarczakL. MokdadA.H. Moradi-LakehM. NaghaviM. SalamaJ.S. VosT. AbateK.H. AbbafatiC. AhmedM.B. Al-AlyZ. AlkerwiA. Al-RaddadiR. AmareA.T. AmberbirA. AmegahA.K. AminiE. AmrockS.M. AnjanaR.M. ÄrnlövJ. AsayeshH. BanerjeeA. BaracA. BayeE. BennettD.A. BeyeneA.S. BiadgilignS. BiryukovS. BjertnessE. BoneyaD.J. Campos-NonatoI. CarreroJ.J. CecilioP. CercyK. CiobanuL.G. CornabyL. DamtewS.A. DandonaL. DandonaR. DharmaratneS.D. DuncanB.B. EshratiB. EsteghamatiA. FeiginV.L. FernandesJ.C. FürstT. GebrehiwotT.T. GoldA. GonaP.N. GotoA. HabtewoldT.D. HadushK.T. Hafezi-NejadN. HayS.I. HorinoM. IslamiF. KamalR. KasaeianA. KatikireddiS.V. KengneA.P. KesavachandranC.N. KhaderY.S. KhangY.H. KhubchandaniJ. KimD. KimY.J. KinfuY. KosenS. KuT. DefoB.K. KumarG.A. LarsonH.J. LeinsaluM. LiangX. LimS.S. LiuP. LopezA.D. LozanoR. MajeedA. MalekzadehR. MaltaD.C. MazidiM. McAlindenC. McGarveyS.T. MengistuD.T. MensahG.A. MensinkG.B.M. MezgebeH.B. MirrakhimovE.M. MuellerU.O. NoubiapJ.J. ObermeyerC.M. OgboF.A. OwolabiM.O. PattonG.C. PourmalekF. QorbaniM. RafayA. RaiR.K. RanabhatC.L. ReinigN. SafiriS. SalomonJ.A. SanabriaJ.R. SantosI.S. SartoriusB. SawhneyM. SchmidhuberJ. SchutteA.E. SchmidtM.I. SepanlouS.G. ShamsizadehM. SheikhbahaeiS. ShinM.J. ShiriR. ShiueI. RobaH.S. SilvaD.A.S. SilverbergJ.I. SinghJ.A. StrangesS. SwaminathanS. Tabarés-SeisdedosR. TadeseF. TedlaB.A. TegegneB.S. TerkawiA.S. ThakurJ.S. TonelliM. Topor-MadryR. TyrovolasS. UkwajaK.N. UthmanO.A. VaezghasemiM. VasankariT. VlassovV.V. VollsetS.E. WeiderpassE. WerdeckerA. WesanaJ. WestermanR. YanoY. YonemotoN. YongaG. ZaidiZ. ZenebeZ.M. ZipkinB. MurrayC.J.L. Health effects of overweight and obesity in 195 countries over 25 years.N. Engl. J. Med.20173771132710.1056/NEJMoa161436228604169
    [Google Scholar]
  2. AhirwarR. MondalP.R. Prevalence of obesity in India: A systematic reviewDiabetes Metab Syndr.201913318321
    [Google Scholar]
  3. SahaA. MandalB. MuhammadT. BarmanP. AhmedW. Gender-specific determinants of overweight and obesity among older adults in India: Evidence from a cross-sectional survey, 2017-18.BMC Public Health2023231231310.1186/s12889‑023‑17156‑837993827
    [Google Scholar]
  4. ChooiY.C. DingC. MagkosF. The epidemiology of obesity.Metabolism20199261010.1016/j.metabol.2018.09.00530253139
    [Google Scholar]
  5. Córdova VillalobosJ.Á. [Obesity: the real pandemic of the 21(st) century].Cir. Cir.201684535135527601182
    [Google Scholar]
  6. BlüherM. Obesity: Global epidemiology and pathogenesis. Nat Rev Endocrinol2019155288298
    [Google Scholar]
  7. PopkinB.M. Using research on the obesity pandemic as a guide to a unified vision of nutrition.Public Health Nutr.200586a72472910.1079/PHN200577616236207
    [Google Scholar]
  8. Obesity Update 2017.2017Available from: https://www.oecd.org/els/health-systems/Obesity-Update-2017.pdf(accessed on 22-5-2024)
  9. StanawayJ.D. AfshinA. GakidouE. LimS.S. AbateD. AbateK.H. AbbafatiC. AbbasiN. AbbastabarH. Abd-AllahF. AbdelaJ. AbdelalimA. AbdollahpourI. AbdulkaderR.S. AbebeM. AbebeZ. AberaS.F. AbilO.Z. AbrahaH.N. AbrhamA.R. Abu-RaddadL.J. Abu-RmeilehN.M.E. AccrombessiM.M.K. AcharyaD. AcharyaP. AdamuA.A. AdaneA.A. AdebayoO.M. AdedoyinR.A. AdekanmbiV. AdemiZ. AdetokunbohO.O. AdibM.G. AdmasieA. AdsuarJ.C. AfanviK.A. AfaridehM. AgarwalG. AggarwalA. AghayanS.A. AgrawalA. AgrawalS. AhmadiA. AhmadiM. AhmadiehH. AhmedM.B. AichourA.N. AichourI. AichourM.T.E. AkbariM.E. AkinyemijuT. AkseerN. Al-AlyZ. Al-EyadhyA. Al-MekhlafiH.M. AlahdabF. AlamK. AlamS. AlamT. AlashiA. AlavianS.M. AleneK.A. AliK. AliS.M. AlijanzadehM. Alizadeh-NavaeiR. AljunidS.M. AlkerwiA. AllaF. AlsharifU. AltirkawiK. Alvis-GuzmanN. AmareA.T. AmmarW. AnberN.H. AndersonJ.A. AndreiC.L. AndroudiS. AnimutM.D. AnjomshoaM. AnshaM.G. AntóJ.M. AntonioC.A.T. AnwariP. AppiahL.T. AppiahS.C.Y. ArablooJ. AremuO. ÄrnlövJ. ArtamanA. AryalK.K. AsayeshH. AtaroZ. AusloosM. AvokpahoE.F.G.A. AwasthiA. Ayala QuintanillaB.P. AyerR. AyukT.B. AzzopardiP.S. BabazadehA. BadaliH. BadawiA. BalakrishnanK. BaliA.G. BallK. BallewS.H. BanachM. BanoubJ.A.M. BaracA. Barker-ColloS.L. BärnighausenT.W. BarreroL.H. BasuS. BauneB.T. Bazargan-HejaziS. BediN. BeghiE. BehzadifarM. BehzadifarM. BéjotY. BekeleB.B. BekruE.T. BelayE. BelayY.A. BellM.L. BelloA.K. BennettD.A. BensenorI.M. BergeronG. BerhaneA. BernabeE. BernsteinR.S. BeuranM. BeyranvandT. BhalaN. BhallaA. BhattaraiS. BhuttaZ.A. BiadgoB. BijaniA. BikbovB. BilanoV. BililignN. Bin SayeedM.S. BisanzioD. BiswasT. BjørgeT. BlackerB.F. BleyerA. BorschmannR. Bou-OrmI.R. BoufousS. BourneR. BradyO.J. BrauerM. BrazinovaA. BreitbordeN.J.K. BrennerH. BrikoA.N. BrittonG. BrughaT. BuchbinderR. BurnettR.T. BusseR. ButtZ.A. CahillL.E. Cahuana-HurtadoL. Campos-NonatoI.R. CárdenasR. CarrerasG. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. Castillo RivasJ. CastroF. Catalá-LópezF. CauseyK. CercyK.M. CerinE. ChaiahY. ChangH-Y. ChangJ-C. ChangK-L. CharlsonF.J. ChattopadhyayA. ChattuV.K. CheeM.L. ChengC-Y. ChewA. ChiangP.P-C. Chimed-OchirO. ChinK.L. ChitheerA. ChoiJ-Y.J. ChowdhuryR. ChristensenH. ChristopherD.J. ChungS-C. CicuttiniF.M. CirilloM. CohenA.J. Collado-MateoD. CooperC. CooperO.R. CoreshJ. CornabyL. CortesiP.A. CortinovisM. CostaM. CousinE. CriquiM.H. CromwellE.A. CundiffD.K. DabaA.K. DachewB.A. DadiA.F. DamascenoA.A.M. DandonaL. DandonaR. DarbyS.C. DarganP.I. DaryaniA. Das GuptaR. Das NevesJ. DasaT.T. DashA.P. DavitoiuD.V. DavletovK. De la Cruz-GóngoraV. De La HozF.P. De LeoD. De NeveJ-W. DegenhardtL. DeiparineS. DellavalleR.P. DemozG.T. Denova-GutiérrezE. DeribeK. DervenisN. DeshpandeA. Des JarlaisD.C. DessieG.A. DeveberG.A. DeyS. DharmaratneS.D. DhimalM. DinberuM.T. DingE.L. DiroH.D. DjalaliniaS. DoH.P. DokovaK. DokuD.T. DoyleK.E. DriscollT.R. DubeyM. DubljaninE. DukenE.E. DuncanB.B. DuraesA.R. EbertN. EbrahimiH. EbrahimpourS. EdvardssonD. EffiongA. EggenA.E. El BcheraouiC. El-KhatibZ. ElyazarI.R. EnayatiA. EndriesA.Y. ErB. ErskineH.E. EskandariehS. EsteghamatiA. EstepK. FakhimH. FaramarziM. FareedM. FaridT.A. FarinhaC.S.E. FarioliA. FaroA. FarvidM.S. FarzaeiM.H. FatimaB. FayK.A. FazaeliA.A. FeiginV.L. FeiglA.B. FereshtehnejadS-M. FernandesE. FernandesJ.C. FerraraG. FerrariA.J. FerreiraM.L. FilipI. FingerJ.D. FischerF. FoigtN.A. ForemanK.J. FukumotoT. FullmanN. FürstT. FurtadoJ.M. FutranN.D. GallS. GallusS. GamkrelidzeA. GanjiM. Garcia-BasteiroA.L. GardnerW.M. GebreA.K. GebremedhinA.T. GebremichaelT.G. GelanoT.F. GeleijnseJ.M. GeramoY.C.D. GethingP.W. GezaeK.E. GhadimiR. GhadiriK. Ghasemi FalavarjaniK. Ghasemi-KasmanM. GhimireM. GhoshR. GhoshalA.G. GiampaoliS. GillP.S. GillT.K. GillumR.F. GinawiI.A. GiussaniG. GnedovskayaE.V. GodwinW.W. GoliS. Gómez-DantésH. GonaP.N. GopalaniS.V. GoulartA.C. GradaA. GramsM.E. GrossoG. GugnaniH.C. GuoY. GuptaR. GuptaR. GuptaT. GutiérrezR.A. Gutiérrez-TorresD.S. HaagsmaJ.A. HabtewoldT.D. HachinskiV. Hafezi-NejadN. HagosT.B. HailegiyorgisT.T. HailuG.B. Haj-MirzaianA. Haj-MirzaianA. HamadehR.R. HamidiS. HandalA.J. HankeyG.J. HaoY. HarbH.L. HarikrishnanS. HaroJ.M. HassankhaniH. HassenH.Y. HavmoellerR. HawleyC.N. HayS.I. Hedayatizadeh-OmranA. HeibatiB. HeidariB. HeidariM. HendrieD. HenokA. Heredia-PiI. HerteliuC. HeydarpourF. HeydarpourS. HibstuD.T. HigaziT.B. HilaweE.H. HoekH.W. HoffmanH.J. HoleM.K. Homaie RadE. HoogarP. HosgoodH.D. HosseiniS.M. HosseinzadehM. HostiucM. HostiucS. HoyD.G. HsairiM. HsiaoT. HuG. HuH. HuangJ.J. HussenM.A. HuynhC.K. IburgK.M. IkedaN. IlesanmiO.S. IqbalU. IrvaniS.S.N. IrvineC.M.S. IslamS.M.S. IslamiF. JacksonM.D. JacobsenK.H. JahangiryL. JahanmehrN. JainS.K. JakovljevicM. JamesS.L. JassalS.K. JayatillekeA.U. JeemonP. JhaR.P. JhaV. JiJ.S. JonasJ.B. JonnagaddalaJ. Jorjoran ShushtariZ. JoshiA. JozwiakJ.J. JürissonM. KabirZ. KahsayA. KalaniR. KanchanT. KantS. KarC. KaramiM. Karami MatinB. KarchA. KaremaC. KarimiN. KarimiS.M. KasaeianA. KassaD.H. KassaG.M. KassaT.D. KassebaumN.J. KatikireddiS.V. KaulA. KawakamiN. KazemiZ. KaryaniA.K. KefaleA.T. KeiyoroP.N. KempG.R. KengneA.P. KerenA. KesavachandranC.N. KhaderY.S. KhafaeiB. KhafaieM.A. KhajaviA. KhalidN. KhalilI.A. KhanG. KhanM.S. KhanM.A. KhangY-H. KhaterM.M. KhazaeiM. KhazaieH. KhojaA.T. KhosraviA. KhosraviM.H. KiadaliriA.A. KiirithioD.N. KimC-I. KimD. KimY-E. KimY.J. KimokotiR.W. KinfuY. KisaA. Kissimova-SkarbekK. KivimäkiM. KnibbsL.D. KnudsenA.K.S. KochharS. KokuboY. KololaT. KopecJ.A. KosenS. KoulP.A. KoyanagiA. KravchenkoM.A. KrishanK. KrohnK.J. KromhoutH. Kuate DefoB. Kucuk BicerB. KumarG.A. KumarM. KuzinI. KyuH.H. LachatC. LadD.P. LadS.D. LafranconiA. LallooR. LallukkaT. LamiF.H. LangJ.J. LansinghV.C. LarsonS.L. LatifiA. LazarusJ.V. LeeP.H. LeighJ. LeiliM. LeshargieC.T. LeungJ. LeviM. LewyckaS. LiS. LiY. LiangJ. LiangX. LiaoY. LibenM.L. LimL-L. LinnS. LiuS. LodhaR. LogroscinoG. LopezA.D. LorkowskiS. LotufoP.A. LozanoR. LucasT.C.D. LuneviciusR. MaS. MacarayanE.R.K. MachadoÍ.E. MadottoF. MaiH.T. MajdanM. MajdzadehR. MajeedA. MalekzadehR. MaltaD.C. MamunA.A. MandaA-L. ManguerraH. MansourniaM.A. MantovaniL.G. MaravillaJ.C. MarcenesW. MarksA. MartinR.V. MartinsS.C.O. Martins-MeloF.R. MärzW. MarzanM.B. MassenburgB.B. MathurM.R. MathurP. MatsushitaK. MaulikP.K. MazidiM. McAlindenC. McGrathJ.J. McKeeM. MehrotraR. MehtaK.M. MehtaV. MeierT. MekonnenF.A. MelakuY.A. MeleseA. MelkuM. MemiahP.T.N. MemishZ.A. MendozaW. MengistuD.T. MensahG.A. MensinkG.B.M. MeretaS.T. MeretojaA. MeretojaT.J. MestrovicT. MezgebeH.B. MiazgowskiB. MiazgowskiT. MillearA.I. MillerT.R. Miller-PetrieM.K. MiniG.K. MirarefinM. MiricaA. MirrakhimovE.M. MisganawA.T. MitikuH. MoazenB. MohajerB. MohammadK.A. MohammadiM. MohammadifardN. Mohammadnia-AfrouziM. MohammedS. MohebiF. MokdadA.H. MolokhiaM. MomenihaF. MonastaL. MoodleyY. MoradiG. Moradi-LakehM. MoradinazarM. MoragaP. MorawskaL. Morgado-Da-CostaJ. MorrisonS.D. MoschosM.M. MouodiS. MousaviS.M. MozaffarianD. MrutsK.B. MucheA.A. MuchieK.F. MuellerU.O. MuhammedO.S. MukhopadhyayS. MullerK. MusaK.I. MustafaG. NabhanA.F. NaghaviM. NaheedA. NahvijouA. NaikG. NaikN. NajafiF. NangiaV. NansseuJ.R. NascimentoB.R. NealB. NeamatiN. NegoiI. NegoiR.I. NeupaneS. NewtonC.R.J. NgunjiriJ.W. NguyenA.Q. NguyenG. NguyenH.T. NguyenH.L.T. NguyenH.T. NguyenM. NguyenN.B. NicholsE. NieJ. NingrumD.N.A. NirayoY.L. NishiN. NixonM.R. NojomiM. NomuraS. NorheimO.F. NorooziM. NorrvingB. NoubiapJ.J. NouriH.R. Nourollahpour ShiadehM. NowrooziM.R. NsoesieE.O. NyasuluP.S. ObermeyerC.M. OdellC.M. Ofori-AsensoR. OgboF.A. OhI-H. OladimejiO. OlagunjuA.T. OlagunjuT.O. OlivaresP.R. OlsenH.E. OlusanyaB.O. OlusanyaJ.O. OngK.L. OngS.K. OrenE. OrpanaH.M. OrtizA. OtaE. OtstavnovS.S. ØverlandS. OwolabiM.O. P AM. PacellaR. PakhareA.P. PakpourA.H. PanaA. Panda-JonasS. ParkE-K. ParryC.D.H. ParsianH. PatelS. PatiS. PatilS.T. PatleA. PattonG.C. PaudelD. PaulsonK.R. Paz BallesterosW.C. PearceN. PereiraA. PereiraD.M. PericoN. PesudovsK. PetzoldM. PhamH.Q. PhillipsM.R. PillayJ.D. PiradovM.A. PirsahebM. PischonT. PishgarF. Plana-RipollO. PlassD. PolinderS. PolkinghorneK.R. PostmaM.J. PoultonR. PourshamsA. PoustchiH. PrabhakaranD. PrakashS. PrasadN. PurcellC.A. PurwarM.B. QorbaniM. RadfarA. RafayA. RafieiA. RahimF. RahimiZ. Rahimi-MovagharA. Rahimi-MovagharV. RahmanM. RahmanM.H. RahmanM.A. RaiR.K. RajatiF. RajsicS. RajuS.B. RamU. RanabhatC.L. RanjanP. RathG.K. RawafD.L. RawafS. ReddyK.S. RehmC.D. RehmJ. ReinerR.C.Jr ReitsmaM.B. RemuzziG. RenzahoA.M.N. ResnikoffS. Reynales-ShigematsuL.M. RezaeiS. RibeiroA.L.P. RiveraJ.A. RobaK.T. Rodríguez-RamírezS. RoeverL. RománY. RonfaniL. RoshandelG. RostamiA. RothG.A. RothenbacherD. RoyA. RubagottiE. RushtonL. SabanayagamC. SachdevP.S. SaddikB. SadeghiE. Saeedi MoghaddamS. SafariH. SafariY. Safari-FaramaniR. SafdarianM. SafiS. SafiriS. SagarR. SahebkarA. SahraianM.A. SajadiH.S. SalamN. SalamatiP. SaleemZ. SalimiY. SalimzadehH. SalomonJ.A. SalviD.D. SalzI. SamyA.M. SanabriaJ. Sanchez-NiñoM.D. Sánchez-PimientaT.G. SandersT. SangY. SantomauroD.F. SantosI.S. SantosJ.V. Santric MilicevicM.M. Sao JoseB.P. SardanaM. SarkerA.R. Sarmiento-SuárezR. SarrafzadeganN. SartoriusB. SarviS. SathianB. SatpathyM. SawantA.R. SawhneyM. SaylanM. SayyahM. SchaeffnerE. SchmidtM.I. SchneiderI.J.C. SchöttkerB. SchutteA.E. SchwebelD.C. SchwendickeF. ScottJ.G. SeedatS. SekerijaM. SepanlouS.G. SerreM.L. Serván-MoriE. SeyedmousaviS. ShabaninejadH. ShaddickG. ShafieesabetA. ShahbaziM. ShaheenA.A. ShaikhM.A. Shamah LevyT. Shams-BeyranvandM. ShamsiM. SharafiH. SharafiK. SharifM. Sharif-AlhoseiniM. SharifiH. SharmaJ. SharmaM. SharmaR. SheJ. SheikhA. ShiP. ShibuyaK. ShiferawM.S. ShigematsuM. ShinM-J. ShiriR. ShirkoohiR. ShiueI. ShokranehF. ShomanH. ShrimeM.G. ShuplerM.S. SiS. SiabaniS. SibaiA.M. SiddiqiT.J. SigfusdottirI.D. SigurvinsdottirR. SilvaD.A.S. SilvaJ.P. SilveiraD.G.A. SinghJ.A. SinghN.P. SinghV. SinhaD.N. SkiadaresiE. SkirbekkV. SmithD.L. SmithM. SobaihB.H. SobhaniS. SomayajiR. SoofiM. SorensenR.J.D. SorianoJ.B. SoyiriI.N. SpinelliA. SposatoL.A. SreeramareddyC.T. SrinivasanV. StarodubovV.I. StecklingN. SteinD.J. SteinM.B. StevanovicG. StockfeltL. StokesM.A. SturuaL. SubartM.L. SudaryantoA. SufiyanM.B. SuloG. SunguyaB.F. SurP.J. SykesB.L. SzoekeC.E.I. Tabarés-SeisdedosR. TabuchiT. TadakamadlaS.K. TakahashiK. TandonN. TassewS.G. TavakkoliM. TaveiraN. Tehrani-BanihashemiA. TekalignT.G. TekelemedhinS.W. TekleM.G. TemesgenH. TemsahM-H. TemsahO. TerkawiA.S. TessemaB. TeweldemedhinM. ThankappanK.R. TheisA. ThirunavukkarasuS. ThomasH.J. ThomasM.L. ThomasN. ThurstonG.D. TilahunB. TillmannT. ToQ.G. TobollikM. TonelliM. Topor-MadryR. TorreA.E. Tortajada-GirbésM. TouvierM. Tovani-PaloneM.R. TowbinJ.A. TranB.X. TranK.B. TruelsenT.C. TruongN.T. TsadikA.G. Tudor CarL. TuzcuE.M. TymesonH.D. TyrovolasS. UkwajaK.N. UllahI. UpdikeR.L. UsmanM.S. UthmanO.A. VaduganathanM. VaeziA. ValdezP.R. Van DonkelaarA. VaravikovaE. VarugheseS. VasankariT.J. VenkateswaranV. VenketasubramanianN. VillafainaS. ViolanteF.S. VladimirovS.K. VlassovV. VollsetS.E. VosT. VosoughiK. VuG.T. VujcicI.S. WagnewF.S. WaheedY. WallerS.G. WalsonJ.L. WangY. WangY. WangY-P. WeiderpassE. WeintraubR.G. WeldegebrealF. WerdeckerA. WerknehA.A. WestJ.J. WestermanR. WhitefordH.A. WideckaJ. WijeratneT. WinklerA.S. WiyehA.B. WiysongeC.S. WolfeC.D.A. WongT.Y. WuS. XavierD. XuG. YadgirS. YadollahpourA. Yahyazadeh JabbariS.H. YamadaT. YanL.L. YanoY. YaseriM. YasinY.J. YeshanehA. YimerE.M. YipP. YismaE. YonemotoN. YoonS-J. YotebiengM. YounisM.Z. YousefifardM. YuC. ZaidiZ. ZamanS.B. ZamaniM. Zavala-ArciniegaL. ZhangA.L. ZhangH. ZhangK. ZhouM. ZimsenS.R.M. ZodpeyS. MurrayC.J.L. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet2018392101591923199410.1016/S0140‑6736(18)32225‑630496105
    [Google Scholar]
  10. MittalM. JainV. Management of obesity and its complications in children and adolescents.Indian J Pediatr.2021881212221234
    [Google Scholar]
  11. AnandacoomarasamyA. CatersonI. SambrookP. FransenM. MarchL. The impact of obesity on the musculoskeletal system.Int. J. Obes.200832221122210.1038/sj.ijo.080371517848940
    [Google Scholar]
  12. AnsteyK.J. CherbuinN. BudgeM. YoungJ. Body mass index in midlife and late‐life as a risk factor for dementia: A meta‐analysis of prospective studies.Obes. Rev.2011125e426e43710.1111/j.1467‑789X.2010.00825.x21348917
    [Google Scholar]
  13. ButlandB. JebbS. KopelmanP. McphersonK. Joint statement published by the United Kingdom’s Prime Minister and United States’ President’s top-level advisory councils on science and technology.2024Available from:www.foresight.gov.uk(accessed on 22-5-2024)
  14. RobertoC.A. SwinburnB. HawkesC. HuangT.T.K. CostaS.A. AsheM. Patchy progress on obesity prevention: Emerging examples, entrenched barriers, and new thinking.Lancet.201538524002409
    [Google Scholar]
  15. SwinburnB.A. SacksG. HallK.D. McPhersonK. FinegoodD.T. MoodieM.L. The global obesity pandemic: Shaped by global drivers and local environments.lancet2011 378979380481410.1016/S0140‑6736(11)60813‑1
    [Google Scholar]
  16. WHOObesity and overweight.2024Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight(accessed on 22-5-2024)
  17. KimS.H. DesprésJ.P. KohK.K. Obesity and cardiovascular disease: Friend or foe?Eur. Heart J.201637483560356810.1093/eurheartj/ehv50926685971
    [Google Scholar]
  18. YaoT.C. TsaiH.J. ChangS.W. ChungR.H. HsuJ.Y. TsaiM.H. LiaoS.L. HuaM.C. LaiS.H. ChenL.C. YehK.W. TsengY.L. LinW.C. ChangS.C. HuangJ.L. Obesity disproportionately impacts lung volumes, airflow and exhaled nitric oxide in children.PLoS One2017124e017469110.1371/journal.pone.017469128376119
    [Google Scholar]
  19. KellyS.P. GraubardB.I. AndreottiG. YounesN. ClearyS.D. CookM.B. Prediagnostic body mass index trajectories in relation to prostate cancer incidence and mortality in the PLCO cancer screening trial.J. Natl. Cancer Inst.2016109310927754927
    [Google Scholar]
  20. MehtaN.K. PatelS.A. AliM.K. Venkat NarayanK.M. Preventing disability: The influence of modifiable risk factors on state and national disability prevalence.Health Aff. (Millwood)201736462663510.1377/hlthaff.2016.128128373327
    [Google Scholar]
  21. Abou AbbasL. SalamehP. NasserW. NasserZ. GodinI. Obesity and symptoms of depression among adults in selected countries of the M iddle E ast: A systematic review and meta‐analysis.Clin. Obes.20155121110.1111/cob.1208225504829
    [Google Scholar]
  22. PrattL.A. BrodyD.J. Depression and obesity in the U.S. adult household population, 2005-2010.NCHS Data Brief20141671825321386
    [Google Scholar]
  23. MaciosekM.V. LaFranceA.B. DehmerS.P. McGreeD.A. FlottemeschT.J. XuZ. SolbergL.I. Updated priorities among effective clinical preventive services.Ann. Fam. Med.2017151142210.1370/afm.201728376457
    [Google Scholar]
  24. SidneyS. QuesenberryC.P.Jr JaffeM.G. SorelM. Nguyen-HuynhM.N. KushiL.H. GoA.S. RanaJ.S. Recent trends in cardiovascular mortality in the united states and public health goals.JAMA Cardiol.20161559459910.1001/jamacardio.2016.132627438477
    [Google Scholar]
  25. MaokaT. Carotenoids as natural functional pigments.J Nat Med.2020741116
    [Google Scholar]
  26. BonetM.L. CanasJ.A. RibotJ. PalouA. Carotenoids in adipose tissue biology and obesity.Subcell. Biochem.20167937741410.1007/978‑3‑319‑39126‑7_1527485231
    [Google Scholar]
  27. MounienL. TourniaireF. LandrierJ.F. Anti-obesity effect of carotenoids: Direct impact on adipose tissue and adipose tissue-driven indirect effects.Nutrients2019117156210.3390/nu1107156231373317
    [Google Scholar]
  28. GrossmanA.R. LohrM. ImC.S. Chlamydomonas reinhardtii in the landscape of pigments.Annu. Rev. Genet.200438111917310.1146/annurev.genet.38.072902.09232815568974
    [Google Scholar]
  29. DouceR. JoyardJ. Biosynthesis of Thylakoid Membrane Lipids.Oxygenic Photosynthesis: The Light Reactions Berlin, HeidelbergSpringer199669101
    [Google Scholar]
  30. GoodwinT.W. The Biochemistry of the Carotenoids.DordrechtSpringer Netherlands198410.1007/978‑94‑009‑5542‑4
    [Google Scholar]
  31. EggersdorferM. WyssA. Carotenoids in human nutrition and health.Arch Biochem Biophys.20186521826
    [Google Scholar]
  32. RaoA. RaoL. Carotenoids and human health.Pharmacol. Res.200755320721610.1016/j.phrs.2007.01.01217349800
    [Google Scholar]
  33. RochaH.R. CoelhoM.C. GomesA.M. PintadoM.E. Carotenoids diet: Digestion, gut microbiota modulation, and inflammatory diseases.Nutrients202315102265
    [Google Scholar]
  34. GruneT. LietzG. PalouA. RossA.C. StahlW. TangG. ThurnhamD. YinS. BiesalskiH.K. β-carotene is an important vitamin A source for humans.J. Nutr.2010140122268S2285S10.3945/jn.109.11902420980645
    [Google Scholar]
  35. NagaoA. Kotake-NaraE. HaseM. Effects of fats and oils on the bioaccessibility of carotenoids and vitamin E in vegetables.Biosci. Biotechnol. Biochem.20137751055106010.1271/bbb.13002523649270
    [Google Scholar]
  36. MolteniC. La MottaC. ValoppiF. Improving the bioaccessibility and bioavailability of carotenoids by means of nanostructured delivery systems: A comprehensive review.Antioxidants20221110193110.3390/antiox1110193136290651
    [Google Scholar]
  37. GersterH. The potential role of lycopene for human health.J. Am. Coll. Nutr.199716210912610.1080/07315724.1997.107186619100211
    [Google Scholar]
  38. CoronelJ. PinosI. AmengualJ. β-carotene in obesity research: Technical considerations and current status of the field.Nutrients201911484210.3390/nu1104084231013923
    [Google Scholar]
  39. SainiR.K. SivanesanI. KeumY.S. Emerging roles of carotenoids in the survival and adaptations of microbes.Indian J. Microbiol.201959112512710.1007/s12088‑018‑0772‑730728643
    [Google Scholar]
  40. Pérez-gálvezA. VieraI. RocaM. Carotenoids and chlorophylls as antioxidants.Antioxidants.202096139
    [Google Scholar]
  41. MordiR.C. AdemosunO.T. AjanakuC.O. OlanrewajuI.O. WaltonJ.C. Free radical mediated oxidative degradation of carotenes and xanthophylls.Molecules2020255103810.3390/molecules25051038
    [Google Scholar]
  42. SathasivamR. KiJ.S. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries.>Mar Drugs20181612610.3390/md16010026
    [Google Scholar]
  43. Expert Group on Vitamins and MineralsSafe Upper Levels for Vitamins and Minerals.LondonFood Standards Agency2003
    [Google Scholar]
  44. MüllerH. Die tägliche Aufnahme von Carotinoiden (Carotine und Xanthophylle) aus Gesamtnahrungsproben und die Carotinoidgehalte ausgewählter Gemüse- und Obstarten.Z. Ernährungswiss.1996351455010.1007/BF016120278815648
    [Google Scholar]
  45. BöhmV. LietzG. Olmedilla-AlonsoB. PhelanD. ReboulE. BánatiD. BorelP. Corte-RealJ. de LeraA.R. DesmarchelierC. Dulinska-LitewkaJ. LandrierJ.F. MilisavI. NolanJ. PorriniM. RisoP. RoobJ.M. ValanouE. WawrzyniakA. Winklhofer-RoobB.M. RühlR. BohnT. From carotenoid intake to carotenoid blood and tissue concentrations – implications for dietary intake recommendations.Nutr. Rev.202179554457310.1093/nutrit/nuaa00832766681
    [Google Scholar]
  46. FAOCompendium of food additive specifications. Joint FAO/WHO Expert Committee on Food Additives (JECFA), 67th meeting 2006. FAO JECFA Monographs 3.2006Available From: https://openknowledge.fao.org/items/7c8c011d-9b07-4651-9123-7d6efce81806
  47. EdwardsJ.A. Zeaxanthin: Review of toxicological data and acceptable daily intake.J. Ophthalmol.2016201611510.1155/2016/369014026885380
    [Google Scholar]
  48. MustafaA. TrevinoL.M. TurnerC. Pressurized hot ethanol extraction of carotenoids from carrot by-products.Molecules20121721809181810.3390/molecules1702180922328079
    [Google Scholar]
  49. SharmaK.D. KarkiS. ThakurN.S. AttriS. Chemical composition, functional properties and processing of carrot—a review.J. Food Sci. Technol.2012491223210.1007/s13197‑011‑0310‑723572822
    [Google Scholar]
  50. VimalaB. NambisanB. HariprakashB. Retention of carotenoids in orange-fleshed sweet potato during processing.J. Food Sci. Technol.201148452052410.1007/s13197‑011‑0323‑223572783
    [Google Scholar]
  51. Bovell‐BenjaminA.C. Sweet potato: A review of its past, present, and future role in human nutrition.Adv Food Nutr Res200752159
    [Google Scholar]
  52. MartíR. RosellóS. Cebolla-CornejoJ. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention.Cancers (Basel)2016865810.3390/cancers806005827331820
    [Google Scholar]
  53. BramleyP.M. Regulation of carotenoid formation during tomato fruit ripening and development.J. Exp. Bot.2002533772107211310.1093/jxb/erf05912324534
    [Google Scholar]
  54. PereraC.O. YenG.M. Functional Properties of Carotenoids in Human Health.Int. J. Food Prop.200710220123010.1080/10942910601045271
    [Google Scholar]
  55. PlazaL. Sánchez-MorenoC. De AncosB. Elez-MartínezP. Martín-BellosoO. CanoM.P. Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization.Lebensm. Wiss. Technol.201144483483910.1016/j.lwt.2010.12.013
    [Google Scholar]
  56. ArimboorR. NatarajanR.B. MenonK.R. ChandrasekharL.P. MoorkothV. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: Analysis and stability—a review.J. Food Sci. Technol.20155231258127110.1007/s13197‑014‑1260‑725745195
    [Google Scholar]
  57. Cervantes-PazB. YahiaE.M. de Jesús Ornelas-PazJ. Victoria-CamposC.I. Ibarra-JunqueraV. Pérez-MartínezJ.D. Escalante-MinakataP. Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening.Food Chem.201414618819610.1016/j.foodchem.2013.09.06024176331
    [Google Scholar]
  58. VarakumarS. KumarY.S. ReddyO.V.S. Carotenoid composition of mango (mangifera indica l.) Wine and its antioxidant activity.J. Food Biochem.20113551538154710.1111/j.1745‑4514.2010.00476.x
    [Google Scholar]
  59. Maldonado-CelisM.E. YahiaE.M. BedoyaR. LandázuriP. LoangoN. AguillónJ. RestrepoB. Guerrero OspinaJ.C. Chemical composition of Mango ( Mangifera indica L.) Fruit: Nutritional and phytochemical compounds.Front. Plant Sci.201910107310.3389/fpls.2019.0107331681339
    [Google Scholar]
  60. YahiaEM. Ornelas-PazJ.J. BrechtJK. García-SolísP. The contribution of mango fruit (Mangifera indica L.) to human nutrition and health.Arabian J. Chem.2023167104860
    [Google Scholar]
  61. Abdel-AalE.S. AkhtarH. ZaheerK. AliR. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health.Nutrients2013541169118510.3390/nu504116923571649
    [Google Scholar]
  62. de OliveiraG.L.R. MedeirosI. NascimentoS.S.C. VianaR.L.S. PortoD.L. RochaH.A.O. AragãoC.F.S. MacielB.L.L. de AssisC.F. MoraisA.H.A. PassosT.S. Antioxidant stability enhancement of carotenoid rich-extract from Cantaloupe melon (Cucumis melo L.) nanoencapsulated in gelatin under different storage conditions.Food Chem.202134812905510.1016/j.foodchem.2021.12905533508595
    [Google Scholar]
  63. Dalla ValleA.Z. MignaniI. SpinardiA. GalvanoF. CiappellanoS. The antioxidant profile of three different peaches cultivars (Prunus persica) and their short-term effect on antioxidant status in human.Eur. Food Res. Technol.2007225216717210.1007/s00217‑006‑0396‑8
    [Google Scholar]
  64. WuJ. FanJ. LiY. CaoK. ChenC. WangX. FangW. ZhuG. WangL. Characterizing of carotenoid diversity in peach fruits affected by the maturation and varieties.J. Food Compos. Anal.202211310471110.1016/j.jfca.2022.104711
    [Google Scholar]
  65. YuanP. UmerM.J. HeN. ZhaoS. LuX. ZhuH. GongC. DiaoW. GebremeskelH. KuangH. LiuW. Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus).BMC Plant Biol.202121120310.1186/s12870‑021‑02965‑z33910512
    [Google Scholar]
  66. ZhaoW. LvP. GuH. Studies on carotenoids in watermelon flesh.Agric. Sci.201347132010.4236/as.2013.47A003
    [Google Scholar]
  67. PereiraA.G. OteroP. EchaveJ. Carreira-CasaisA. ChamorroF. CollazoN. JabouiA. Lourenço-LopesC. Simal-GandaraJ. PrietoM.A. Xanthophylls from the sea: Algae as source of bioactive carotenoids.Mar. Drugs202119418810.3390/md1904018833801636
    [Google Scholar]
  68. SaraswathiK. KavithaC.H.N. Spirulina: Pharmacological activities and health benefits.J. Young Pharm.202315344144710.5530/jyp.2023.15.59
    [Google Scholar]
  69. YokthongwattanaK. SavchenkoT. PolleJ.E.W. MelisA. Isolation and characterization of a xanthophyll-rich fraction from the thylakoid membrane of Dunaliella salina (green algae).Photochem. Photobiol. Sci.20054121028103410.1039/b504814a16307118
    [Google Scholar]
  70. Castellanos-HuertaI. Gómez-VerduzcoG. Tellez-IsaiasG. Ayora-TalaveraG. Bañuelos-HernándezB. Petrone-GarcíaV.M. Fernández-SiurobI. Garcia-CasillasL.A. Velázquez-JuárezG. Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application.Processes (Basel)2022109177610.3390/pr10091776
    [Google Scholar]
  71. GilleA. TrautmannA. PostenC. BrivibaK. Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii.Int. J. Food Sci. Nutr.201667550751310.1080/09637486.2016.118115827146695
    [Google Scholar]
  72. LiZ. KeaslingJ.D. NiyogiK.K. Overlapping photoprotective function of vitamin E and carotenoids in Chlamydomonas. Plant Physiol.2012158131332310.1104/pp.111.18123022080601
    [Google Scholar]
  73. RattayaS. BenjakulS. ProdpranT. Extraction, antioxidative, and antimicrobial activities of brown seaweed extracts, Turbinaria ornata and Sargassum polycystum, grown in Thailand.Int. Aquatic Research20157111610.1007/s40071‑014‑0085‑3
    [Google Scholar]
  74. BalasubramaniamV. June ChelynL. VimalaS. Mohd FairulnizalM.N. BrownleeI.A. AminI. Carotenoid composition and antioxidant potential of Eucheuma denticulatum, Sargassum polycystum and Caulerpa lentillifera. Heliyon202068e0465410.1016/j.heliyon.2020.e0465432817893
    [Google Scholar]
  75. YaoR. FuW. DuM. ChenZ.X. LeiA.P. WangJ.X. Carotenoids biosynthesis, accumulation, and applications of a model microalga Euglenagracilis. Mar. Drugs202220849610.3390/md2008049636005499
    [Google Scholar]
  76. KrinskyN.I. GoldsmithT.H. The carotenoids of the flagellated alga, Euglena gracilis.Arch. Biochem. Biophys.196091227127910.1016/0003‑9861(60)90501‑413754347
    [Google Scholar]
  77. GilleA. NeumannU. LouisS. BischoffS.C. BrivibaK. Microalgae as a potential source of carotenoids: Comparative results of an in vitro digestion method and a feeding experiment with C57BL/6J mice.J. Funct. Foods20184928529410.1016/j.jff.2018.08.039
    [Google Scholar]
  78. WilkinsL.G.E. Marques da CunhaL. GlauserG. VallatA. WedekindC. Environmental stress linked to consumption of maternally derived carotenoids in brown trout embryos ( Salmo trutta ).Ecol. Evol.20177145082509310.1002/ece3.307628770048
    [Google Scholar]
  79. ParoliniM. IacobuzioR. PossentiC.D. BassanoB. PennatiR. SainoN. Carotenoid-based skin coloration signals antioxidant defenses in the brown trout (Salmo trutta).Hydrobiologia2018815126728010.1007/s10750‑018‑3571‑6
    [Google Scholar]
  80. VeermanA. Carotenoid metabolism in tetranychus urticae koch (Acari: Tetranychidae).Comp. Biochem. Physiol. B197447110111610.1016/0305‑0491(74)90095‑94810361
    [Google Scholar]
  81. AltincicekB. KovacsJ.L. GerardoN.M. Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae.Biol. Lett.20128225325710.1098/rsbl.2011.070421920958
    [Google Scholar]
  82. SachindraN.M. BhaskarN. MahendrakarN.S. Carotenoids in different body components of Indian shrimps.J. Sci. Food Agric.200585116717210.1002/jsfa.1977
    [Google Scholar]
  83. JeyachandranS. KiyunP. Ihn-SilK. BaskaralingamV. Identification and characterization of bioactive pigment carotenoids from shrimps and their biofilm inhibition.J. Food Process. Preserv.202044104410.1111/jfpp.14728
    [Google Scholar]
  84. ChoubertG. HeinrichO. Carotenoid pigments of the green alga Haematococcus pluvialis: Assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin.Aquaculture19931122-321722610.1016/0044‑8486(93)90447‑7
    [Google Scholar]
  85. Liangy. Astaxanthin-producing green microalga haematococcus pluvialis: From single cell to high value commercial products.Front Plant Sci.201620167
    [Google Scholar]
  86. WirthF. GoldaniL.Z. Epidemiology of Rhodotorula: An emerging pathogen.Interdiscip. Perspect. Infect. Dis.201220121710.1155/2012/46571723091485
    [Google Scholar]
  87. YeehY. Encyclopedia of Food Microbiology.AmsterdamElsevier19991900190510.1006/rwfm.1999.1340
    [Google Scholar]
  88. TangC. WangY. ChenD. ZhangM. XuJ. XuC. LiuJ. KanJ. JinC. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system.Food Res. Int.202317211319210.1016/j.foodres.2023.11319237689942
    [Google Scholar]
  89. CummingsD.E. SchwartzM.W. Genetics and pathophysiology of human obesity.Annu. Rev. Med.200354145347110.1146/annurev.med.54.101601.15240312414915
    [Google Scholar]
  90. GuarinoD. NannipieriM. IervasiG. TaddeiS. BrunoR.M. The role of the autonomic nervous system in the pathophysiology of obesity.Front Physiol.2017866510.3389/fphys.2017.00665
    [Google Scholar]
  91. ThorensB. Glucose sensing and the pathogenesis of obesity and type 2 diabetes.Int. J. Obes.200832S6Suppl. 6S62S7110.1038/ijo.2008.20819079282
    [Google Scholar]
  92. GoossensG.H. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance.Physiol. Behav.200894220621810.1016/j.physbeh.2007.10.01018037457
    [Google Scholar]
  93. ScaglioneR. Di ChiaraT. CarielloT. LicataG. Visceral obesity and metabolic syndrome: Two faces of the same medal?Intern. Emerg. Med.20105211111910.1007/s11739‑009‑0332‑619998063
    [Google Scholar]
  94. CaoH. Adipocytokines in obesity and metabolic disease.J. Endocrinol.20142202T47T5910.1530/JOE‑13‑033924403378
    [Google Scholar]
  95. LuccheseM. ScopinaroN. Minimally Invasive Bariatric and Metabolic Surgery.Berlin, HeidelbergSpringer201531110.1007/978‑3‑319‑15356‑8
    [Google Scholar]
  96. TrayhurnP. WoodI.S. Adipokines: Inflammation and the pleiotropic role of white adipose tissue.Br. J. Nutr.200492334735510.1079/BJN2004121315469638
    [Google Scholar]
  97. RichardD. CarpentierA.C. DoréG. OuelletV. PicardF. Determinants of brown adipocyte development and thermogenesis.Int. J. Obes.201034S2Suppl. 2S59S6610.1038/ijo.2010.24121151149
    [Google Scholar]
  98. RichardD. PicardF. Brown fat biology and thermogenesis.Front. Biosci.20111611233126010.2741/378621196229
    [Google Scholar]
  99. NedergaardJ. CannonB. The changed metabolic world with human brown adipose tissue: Therapeutic visions.Cell Metab.201011426827210.1016/j.cmet.2010.03.00720374959
    [Google Scholar]
  100. CannonB. NedergaardJ. Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans).Int. J. Obes.201034S1Suppl. 1S7S1610.1038/ijo.2010.17720935668
    [Google Scholar]
  101. SinhaM.K. CaroJ.F. Clinical aspects of leptin.Vitam. Horm.19985413010.1016/S0083‑6729(08)60919‑X9529971
    [Google Scholar]
  102. DruceM. BloomS.R. The regulation of appetite.Arch. Dis. Child.200591218318710.1136/adc.2005.07375916428368
    [Google Scholar]
  103. BrobergerC. Brain regulation of food intake and appetite: Molecules and networks.J. Intern. Med.2005258430132710.1111/j.1365‑2796.2005.01553.x16164570
    [Google Scholar]
  104. FarooqiI.S. O’RahillyS. Mutations in ligands and receptors of the leptin–melanocortin pathway that lead to obesity.Nat. Clin. Pract. Endocrinol. Metab.200841056957710.1038/ncpendmet096618779842
    [Google Scholar]
  105. TschöpM. SmileyD.L. HeimanM.L. Ghrelin induces adiposity in rodents.Nature2000407680690891310.1038/3503809011057670
    [Google Scholar]
  106. HudaM.S.B. WildingJ.P.H. PinkneyJ.H. Gut peptides and the regulation of appetite.Obes. Rev.20067216318210.1111/j.1467‑789X.2006.00245.x16629873
    [Google Scholar]
  107. van der LelyA.J. TschöpM. HeimanM.L. GhigoE. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin.Endocr. Rev.200425342645710.1210/er.2002‑002915180951
    [Google Scholar]
  108. VeldhuisJ.D. BowersC.Y. Integrating GHS into the Ghrelin System.Int. J. Pept.2010201014010.1155/2010/87950320798846
    [Google Scholar]
  109. Álvarez-CastroP. PenaL. CordidoF. Ghrelin in obesity, physiological and pharmacological considerations.Mini Rev. Med. Chem.201313454155210.2174/138955751131304000722931534
    [Google Scholar]
  110. CummingsD.E. ClementK. PurnellJ.Q. VaisseC. FosterK.E. FrayoR.S. SchwartzM.W. BasdevantA. WeigleD.S. Elevated plasma ghrelin levels in Prader–Willi syndrome.Nat. Med.20028764364410.1038/nm0702‑64312091883
    [Google Scholar]
  111. RavussinE. TschöpM. MoralesS. BouchardC. HeimanM.L. Plasma ghrelin concentration and energy balance: Overfeeding and negative energy balance studies in twins.J. Clin. Endocrinol. Metab.20018694547455110.1210/jcem.86.9.800311549706
    [Google Scholar]
  112. NishidaM. FunahashiT. ShimomuraI. Pathophysiological significance of adiponectin.Med. Mol. Morphol.2007402556710.1007/s00795‑007‑0366‑717572841
    [Google Scholar]
  113. KadowakiT. YamauchiT. Adiponectin and adiponectin receptors.Endocr. Rev.200526343945110.1210/er.2005‑000515897298
    [Google Scholar]
  114. SchererP.E. WilliamsS. FoglianoM. BaldiniG. LodishH.F. A novel serum protein similar to C1q, produced exclusively in adipocytes.J. Biol. Chem.199527045267462674910.1074/jbc.270.45.267467592907
    [Google Scholar]
  115. LindsayR.S. FunahashiT. HansonR.L. MatsuzawaY. TanakaS. TataranniP.A. KnowlerW.C. KrakoffJ. Adiponectin and development of type 2 diabetes in the Pima Indian population.Lancet20023609326575810.1016/S0140‑6736(02)09335‑212114044
    [Google Scholar]
  116. HajerG.R. van der GraafY. OlijhoekJ.K. EdlingerM. VisserenF.L.J. Low plasma levels of adiponectin are associated with low risk for future cardiovascular events in patients with clinical evident vascular disease.Am. Heart J.20071544750.e1750.e710.1016/j.ahj.2007.07.01317893004
    [Google Scholar]
  117. PischonT. GirmanC.J. HotamisligilG.S. RifaiN. HuF.B. RimmE.B. Plasma adiponectin levels and risk of myocardial infarction in men.JAMA2004291141730173710.1001/jama.291.14.173015082700
    [Google Scholar]
  118. KojimaS. FunahashiT. MaruyoshiH. HondaO. SugiyamaS. KawanoH. SoejimaH. MiyamotoS. HokamakiJ. SakamotoT. YoshimuraM. KitagawaA. MatsuzawaY. OgawaH. Levels of the adipocyte-derived plasma protein, adiponectin, have a close relationship with atheroma.Thromb. Res.2005115648349010.1016/j.thromres.2004.09.01215792679
    [Google Scholar]
  119. NakamuraY. ShimadaK. FukudaD. ShimadaY. EharaS. HiroseM. KataokaT. KamimoriK. ShimodozonoS. KobayashiY. YoshiyamaM. TakeuchiK. YoshikawaJ. Implications of plasma concentrations of adiponectin in patients with coronary artery disease.Br. Heart J.200490552853310.1136/hrt.2003.01111415084551
    [Google Scholar]
  120. MatsuzawaY. The metabolic syndrome and adipocytokines.FEBS Lett.2006580122917292110.1016/j.febslet.2006.04.02816674947
    [Google Scholar]
  121. DíezJ.J. IglesiasP. The role of the novel adipocyte-derived hormone adiponectin in human disease.Eur. J. Endocrinol.2003148329330010.1530/eje.0.148029312611609
    [Google Scholar]
  122. TurerA.T. SchererP.E. Adiponectin: Mechanistic insights and clinical implications.Diabetologia20125592319232610.1007/s00125‑012‑2598‑x22688349
    [Google Scholar]
  123. KusminskiC.M. McternanP.G. KumarS. Role of resistin in obesity, insulin resistance and Type II diabetes.Clin. Sci. (Lond.)2005109324325610.1042/CS2005007816104844
    [Google Scholar]
  124. LazarM. Resistin- and Obesity-associated metabolic diseases.Horm. Metab. Res.2007391071071610.1055/s‑2007‑98589717952831
    [Google Scholar]
  125. FeinleC. ChapmanI.M. WishartJ. HorowitzM. Plasma glucagon-like peptide-1 (GLP-1) responses to duodenal fat and glucose infusions in lean and obese men.Peptides20022381491149510.1016/S0196‑9781(02)00087‑612182952
    [Google Scholar]
  126. OnagaT. ZabielskiR. KatoS. Multiple regulation of peptide YY secretion in the digestive tract.Peptides200223227929010.1016/S0196‑9781(01)00609‑X11825643
    [Google Scholar]
  127. LinH.C. CheyW.Y. Cholecystokinin and peptide YY are released by fat in either proximal or distal small intestine in dogs.Regul. Pept.20031142-313113510.1016/S0167‑0115(03)00115‑012832101
    [Google Scholar]
  128. HerrmannC. GökeR. RichterG. FehmannH.C. ArnoldR. GökeB. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients.Digestion199556211712610.1159/0002012317750665
    [Google Scholar]
  129. LavinJ.H. WittertG. SunW.M. HorowitzM. MorleyJ.E. ReadN.W. Appetite regulation by carbohydrate: Role of blood glucose and gastrointestinal hormones.Am. J. Physiol.19962712 Pt 1E209E2148770012
    [Google Scholar]
  130. OverduinJ. FrayoR.S. GrillH.J. KaplanJ.M. CummingsD.E. Role of the duodenum and macronutrient type in ghrelin regulation.Endocrinology2005146284585010.1210/en.2004‑060915528308
    [Google Scholar]
  131. LittleTJ. HorowitzM. Feinle-BissetC. Role of cholecystokinin in appetite control and body weight regulation.Obesity rev.20056429730610.1111/j.1467‑789X.2005.00212
    [Google Scholar]
  132. SchäfflerA. Müller-LadnerU. SchölmerichJ. BüchlerC. Role of adipose tissue as an inflammatory organ in human diseases.Endocr. Rev.200627544946710.1210/er.2005‑002216684901
    [Google Scholar]
  133. RedingerR.N. The pathophysiology of obesity and its clinical manifestations.Gastroenterol. Hepatol. (N. Y.)200731185686321960798
    [Google Scholar]
  134. GjermeniE. KirsteinA.S. KolbigF. KirchhofM. BundalianL. KatzmannJ.L. Obesity–an update on the basic pathophysiology and review of recent therapeutic advances.Biomolecules20211110142610.3390/biom11101426
    [Google Scholar]
  135. HeinonenS. JokinenR. RissanenA. PietiläinenK.H. White adipose tissue mitochondrial metabolism in health and in obesity.Obes. Rev.2020212e1295810.1111/obr.1295831777187
    [Google Scholar]
  136. PuigserverP. WuZ. ParkC.W. GravesR. WrightM. SpiegelmanB.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis.Cell199892682983910.1016/S0092‑8674(00)81410‑59529258
    [Google Scholar]
  137. Gerhart-HinesZ. RodgersJ.T. BareO. LerinC. KimS.H. MostoslavskyR. AltF.W. WuZ. PuigserverP. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α.EMBO J.20072671913192310.1038/sj.emboj.760163317347648
    [Google Scholar]
  138. CantóC. Gerhart-HinesZ. FeigeJ.N. LagougeM. NoriegaL. MilneJ.C. ElliottP.J. PuigserverP. AuwerxJ. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.Nature200945872411056106010.1038/nature0781319262508
    [Google Scholar]
  139. SergiD. NaumovskiN. HeilbronnL.K. AbeywardenaM. O’CallaghanN. LionettiL. Luscombe-MarshN. Mitochondrial (Dys)function and insulin resistance: From pathophysiological molecular mechanisms to the impact of diet.Front. Physiol.20191053210.3389/fphys.2019.0053231130874
    [Google Scholar]
  140. BaysH.E. Current and investigational antiobesity agents and obesity therapeutic treatment targets.Obes Res.200412811971211
    [Google Scholar]
  141. BournatJ.C. BrownC.W. Mitochondrial dysfunction in obesity.Curr. Opin. Endocrinol. Diabetes Obes.201017544645210.1097/MED.0b013e32833c302620585248
    [Google Scholar]
  142. WeisbergS.P. McCannD. DesaiM. RosenbaumM. LeibelR.L. FerranteA.W.Jr Obesity is associated with macrophage accumulation in adipose tissue.J. Clin. Invest.2003112121796180810.1172/JCI20031924614679176
    [Google Scholar]
  143. WellenK.E. HotamisligilG.S. Obesity-induced inflammatory changes in adipose tissue.J. Clin. Invest.2003112121785178810.1172/JCI2051414679172
    [Google Scholar]
  144. WangJ. LinX. ZhaoN. DongG. WuW. HuangK. Effects of mitochondrial dynamics in the pathophysiology of obesity.Front Biosci (Landmark Ed)2022273107
    [Google Scholar]
  145. LiX. YangL. MaoZ. PanX. ZhaoY. GuX. Eckel-MahanK. ZuoZ. TongQ. HartigS.M. ChengX. DuG. MooreD.D. BellenH.J. SesakiH. SunK. Novel role of dynamin‐related‐protein 1 in dynamics of ER‐lipid droplets in adipose tissue.FASEB J.20203468265828210.1096/fj.201903100RR32294302
    [Google Scholar]
  146. LenardN.R. BerthoudH.R. Central and peripheral regulation of food intake and physical activity: Pathways and genes.Obesity (Silver Spring)200816S3Suppl. 3S11S2210.1038/oby.2008.51119190620
    [Google Scholar]
  147. MortonG.J. CummingsD.E. BaskinD.G. BarshG.S. SchwartzM.W. Central nervous system control of food intake and body weight.Nature2006443710928929510.1038/nature0502616988703
    [Google Scholar]
  148. OwyangC. HeldsingerA. Vagal control of satiety and hormonal regulation of appetite.J. Neurogastroenterol. Motil.201117433834810.5056/jnm.2011.17.4.33822148102
    [Google Scholar]
  149. WilliamsD.M. NawazA. EvansM. Drug therapy in obesity: A review of current and emerging treatments.Diabetes Ther.20201161199121610.1007/s13300‑020‑00816‑y32297119
    [Google Scholar]
  150. YamamotoH. KishiT. LeeC.E. ChoiB.J. FangH. HollenbergA.N. DruckerD.J. ElmquistJ.K. Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites.J. Neurosci.20032372939294610.1523/JNEUROSCI.23‑07‑02939.200312684481
    [Google Scholar]
  151. CawthonC.R. de La SerreC.B. The critical role of CCK in the regulation of food intake and diet-induced obesity.Peptides202113817049210.1016/j.peptides.2020.17049233422646
    [Google Scholar]
  152. ThalerJ.P. GuyenetS.J. DorfmanM.D. WisseB.E. SchwartzM.W. Hypothalamic inflammation: Marker or mechanism of obesity pathogenesis?Diabetes20136282629263410.2337/db12‑160523881189
    [Google Scholar]
  153. HermanussenM. TresguerresJ.A.F. A new anti-obesity drug treatment: First clinical evidence that, antagonising glutamate-gated Ca2+ ion channels with memantine normalises binge-eating disorders.Econ. Hum. Biol.20053232933710.1016/j.ehb.2005.04.00115886075
    [Google Scholar]
  154. SchwartzM.W. WoodsS.C. PorteD.Jr SeeleyR.J. BaskinD.G. Central nervous system control of food intake.Nature2000404677866167110.1038/3500753410766253
    [Google Scholar]
  155. FarziA. ReichmannF. HolzerP. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour.Acta Physiol. (Oxf.)2015213360362710.1111/apha.1244525545642
    [Google Scholar]
  156. AppleyardS.M. BaileyT.W. DoyleM.W. JinY.H. SmartJ.L. LowM.J. AndresenM.C. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: Regulation by cholecystokinin and opioids.J. Neurosci.200525143578358510.1523/JNEUROSCI.4177‑04.200515814788
    [Google Scholar]
  157. OldsW.H. XuT. Regulation of food intake by mechanosensory ion channels in enteric neurons.eLife20143e0440210.7554/eLife.0440225285450
    [Google Scholar]
  158. ChenL.X. ZhuL.Y. JacobT.J.C. WangL.W. Roles of volume‐activated Cl − currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells.Cell Prolif.200740225326710.1111/j.1365‑2184.2007.00432.x17472731
    [Google Scholar]
  159. HuH. HeM.L. TaoR. SunH.Y. HuR. ZangW.J. YuanB.X. LauC.P. TseH.F. LiG.R. Characterization of ion channels in human preadipocytes.J. Cell. Physiol.2009218242743510.1002/jcp.2161718942098
    [Google Scholar]
  160. MacFarlaneS.N. SontheimerH. Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes.Glia2000301394810.1002/(SICI)1098‑1136(200003)30:1<39::AID‑GLIA5>3.0.CO;2‑S10696143
    [Google Scholar]
  161. LuceroM.T. PapponeP.A. Voltage-gated potassium channels in brown fat cells.J. Gen. Physiol.198993345147210.1085/jgp.93.3.4512467964
    [Google Scholar]
  162. Ramírez-PonceM.P. MateosJ.C. CarriónN. BellidoJ.A. Voltage-dependent potassium channels in white adipocytes.Biochem. Biophys. Res. Commun.1996223225025610.1006/bbrc.1996.08808670268
    [Google Scholar]
  163. Ramírez-PonceM.P. MateosJ.C. BellidoJ.A. Human adipose cells have voltage-dependent potassium currents.J. Membr. Biol.2003196212913410.1007/s00232‑003‑0631‑114724749
    [Google Scholar]
  164. BaiX. MaJ. PanZ. SongY.H. FreybergS. YanY. VykoukalD. AltE. Electrophysiological properties of human adipose tissue-derived stem cells.Am. J. Physiol. Cell Physiol.20072935C1539C155010.1152/ajpcell.00089.200717687001
    [Google Scholar]
  165. VasconcelosL.H.C. SouzaI.L.L. PinheiroL.S. SilvaB.A. Ion channels in obesity: Pathophysiology and potential therapeutic targets.Front Pharmacol.2016758
    [Google Scholar]
  166. ChenL. TuoB. DongH. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters.Nutrients2016814310.3390/nu801004326784222
    [Google Scholar]
  167. ZemelM.B. KimJ.H. WoychikR.P. MichaudE.J. KadwellS.H. PatelI.R. WilkisonW.O. Agouti regulation of intracellular calcium: Role in the insulin resistance of viable yellow mice.Proc. Natl. Acad. Sci. USA199592114733473710.1073/pnas.92.11.47337761392
    [Google Scholar]
  168. YabuzakiJ. Carotenoids database: Structures, chemical fingerprints and distribution among organisms.Database201720171bax004
    [Google Scholar]
  169. NamithaK.K. NegiP.S. Chemistry and biotechnology of carotenoids.Crit. Rev. Food Sci. Nutr.201050872876010.1080/10408398.2010.49981120830634
    [Google Scholar]
  170. ThomasS.E. JohnsonE.J. Xanthophylls.Adv. Nutr.20189216016210.1093/advances/nmx00529659682
    [Google Scholar]
  171. BrittonG. Structure and properties of carotenoids in relation to function.FASEB J.19959151551155810.1096/fasebj.9.15.85298348529834
    [Google Scholar]
  172. Rodriguez-ConcepcionM. AvalosJ. BonetM.L. BoronatA. Gomez-GomezL. Hornero-MendezD. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health.Prog Lipid Res.2018706293
    [Google Scholar]
  173. Liaaen-JensenS. Carotenoids. Volume 3: Biosynthesis and metabolism.Berlin, HeidelbergSpringer1998
    [Google Scholar]
  174. LakshminarayanaR. RajuM. KrishnakanthaT.P. BaskaranV. Determination of major carotenoids in a few Indian leafy vegetables by high-performance liquid chromatography.J. Agric. Food Chem.20055382838284210.1021/jf048171115826027
    [Google Scholar]
  175. RajuM. VarakumarS. LakshminarayanaR. KrishnakanthaT. BaskaranV. Carotenoid composition and vitamin A activity of medicinally important green leafy vegetables.Food Chem.200710141598160510.1016/j.foodchem.2006.04.015
    [Google Scholar]
  176. ZebA. MehmoodS. Carotenoids contents from various sources and their potential health applications.Pak. J. Nutr.20043319920410.3923/pjn.2004.199.204
    [Google Scholar]
  177. KandlakuntaB. RajendranA. ThingnganingL. Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin.Food Chem.20081061858910.1016/j.foodchem.2007.05.071
    [Google Scholar]
  178. KimY.N. GiraudD.W. DriskellJ.A. Tocopherol and carotenoid contents of selected Korean fruits and vegetables.J. Food Compos. Anal.200720645846510.1016/j.jfca.2007.02.001
    [Google Scholar]
  179. FiedorJ. BurdaK. Potential role of carotenoids as antioxidants in human health and disease.Nutrients20146246648810.3390/nu602046624473231
    [Google Scholar]
  180. FooteC.S. DennyR.W. Chemistry of singlet oxygen. VII. Quenching by. beta.-carotene.J. Am. Chem. Soc.196890226233623510.1021/ja01024a061
    [Google Scholar]
  181. KrinskyN.I. Antioxidant functions of carotenoids.Free Radic. Biol. Med.19897661763510.1016/0891‑5849(89)90143‑32695406
    [Google Scholar]
  182. AgarwalM. ParameswariR.P. VasanthiH.R. DasD.K. Dynamic action of carotenoids in cardioprotection and maintenance of cardiac health.Molecules20121744755476910.3390/molecules1704475522525440
    [Google Scholar]
  183. StahlW. SiesH. Antioxidant activity of carotenoids.Mol Aspects Med.2003246345351
    [Google Scholar]
  184. Di MascioP. KaiserS. SiesH. Lycopene as the most efficient biological carotenoid singlet oxygen quencher.Arch. Biochem. Biophys.1989274253253810.1016/0003‑9861(89)90467‑02802626
    [Google Scholar]
  185. MartinH.D. RuckC. SchmidtM. SellS. BeutnerS. MayerB. WalshR. Chemistry of carotenoid oxidation and free radical reactions.Pure Appl. Chem.199971122253226210.1351/pac199971122253
    [Google Scholar]
  186. YamauchiR. MiyakeN. InoueH. KatoK. Products formed by peroxyl radical oxidation of. beta.-carotene.J. Agric. Food Chem.199341570871310.1021/jf00029a005
    [Google Scholar]
  187. FiedorJ. SulikowskaA. OrzechowskaA. FiedorL. BurdaK. Antioxidant effects of carotenoids in a model pigment-protein complex.Acta Biochim. Pol.2012591616410.18388/abp.2012_217222428149
    [Google Scholar]
  188. GalanoA. VargasR. MartínezA. Carotenoids can act as antioxidants by oxidizing the superoxideradical anion.Phys. Chem. Chem. Phys.201012119320010.1039/B917636E20024459
    [Google Scholar]
  189. MortensenA. SkibstedL.H. SampsonJ. Rice-EvansC. EverettS.A. Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants.FEBS Lett.19974181-2919710.1016/S0014‑5793(97)01355‑09414102
    [Google Scholar]
  190. BoehmF. EdgeR. TruscottT.G. Photochemical and photophysical properties of carotenoids and reactive oxygen species: Contradictions relating to skin and vision.Oxygen20233332233510.3390/oxygen3030021
    [Google Scholar]
  191. El-AgameyA. LoweG.M. McGarveyD.J. MortensenA. PhillipD.M. TruscottT.G. YoungA.J. Carotenoid radical chemistry and antioxidant/pro-oxidant properties.Arch. Biochem. Biophys.20044301374810.1016/j.abb.2004.03.00715325910
    [Google Scholar]
  192. BurtonG.W. IngoldK.U. beta-Carotene: An unusual type of lipid antioxidant.Science1984224464956957310.1126/science.67101566710156
    [Google Scholar]
  193. PalozzaP. KrinskyN.I. β-Carotene and α-tocopherol are synergistic antioxidants.Arch. Biochem. Biophys.1992297118418710.1016/0003‑9861(92)90658‑J1637180
    [Google Scholar]
  194. PalozzaP. MoullaS. KrinskyN.I. Effect of β-carotene and α-tocopherol on radical-initiated peroxidation of microsomes.Free Radic. Biol. Med.199213212713610.1016/0891‑5849(92)90074‑Q1516839
    [Google Scholar]
  195. WronaM. KorytowskiW. RóżanowskaM. SarnaT. TruscottT.G. Cooperation of antioxidants in protection against photosensitized oxidation.Free Radic. Biol. Med.200335101319132910.1016/j.freeradbiomed.2003.07.00514607531
    [Google Scholar]
  196. LiS. EguchiN. LauH. IchiiH. The role of the Nrf2 signaling in obesity and insulin resistance.Int. J. Mol. Sci.20202118697310.3390/ijms2118697332971975
    [Google Scholar]
  197. VasilevaL.V. SavovaM.S. AmirovaK.M. Dinkova-KostovaA.T. GeorgievM.I. Obesity and NRF2-mediated cytoprotection: Where is the missing link?Pharmacol. Res.202015610476010.1016/j.phrs.2020.10476032205234
    [Google Scholar]
  198. Luisa BonetM. CanasJ.A. RibotJ. PalouA. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity.Arch. Biochem. Biophys.201557211212510.1016/j.abb.2015.02.02225721497
    [Google Scholar]
  199. KaulmannA. BohnT. Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention.Nutr. Res.20143411907929
    [Google Scholar]
  200. KaneM.A. FoliasA.E. WangC. NapoliJ.L. Quantitative profiling of endogenous retinoic acid in vivo and in vitro by tandem mass spectrometry.Anal. Chem.20088051702170810.1021/ac702030f18251521
    [Google Scholar]
  201. YoungA. LoweG. Carotenoids-antioxidant properties.Antioxidants2018722810.3390/antiox702002829439455
    [Google Scholar]
  202. KhansariN. ShakibaY. MahmoudiM. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer.Recent Pat. Inflamm. Allergy Drug Discov.200931738010.2174/18722130978715837119149749
    [Google Scholar]
  203. ReuterS. GuptaS.C. ChaturvediM.M. AggarwalB.B. Oxidative stress, inflammation, and cancer: How are they linked?Free Radic. Biol. Med.201049111603161610.1016/j.freeradbiomed.2010.09.00620840865
    [Google Scholar]
  204. GarcíaO.P. LongK.Z. RosadoJ.L. Impact of micronutrient deficiencies on obesity.Nutr. Rev.2009671055957210.1111/j.1753‑4887.2009.00228.x19785688
    [Google Scholar]
  205. BeydounM.A. CanasJ.A. BeydounH.A. ChenX. ShroffM.R. ZondermanA.B. Serum antioxidant concentrations and metabolic syndrome are associated among U.S. adolescents in recent national surveys.J. Nutr.201214291693170410.3945/jn.112.16041622810988
    [Google Scholar]
  206. LeeS.J. BaiS.K. LeeK.S. NamkoongS. NaH.J. HaK.S. HanJ.A. YimS.V. ChangK. KwonY.G. LeeS.K. KimY.M. Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing I(kappa)B kinase-dependent NF-kappaB activation.Mol. Cells20031619710510.1016/S1016‑8478(23)13772‑114503852
    [Google Scholar]
  207. GourantonE. AydemirG. ReynaudE. MarcotorchinoJ. MalezetC. Caris-VeyratC. BlomhoffR. LandrierJ.F. RühlR. Apo-10′-lycopenoic acid impacts adipose tissue biology via the retinoic acid receptors.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20111811121105111410.1016/j.bbalip.2011.09.00221963687
    [Google Scholar]
  208. TourniaireF. GourantonE. von LintigJ. KeijerJ. Luisa BonetM. AmengualJ. LietzG. LandrierJ.F. β-Carotene conversion products and their effects on adipose tissue.Genes Nutr.20094317918710.1007/s12263‑009‑0128‑319557453
    [Google Scholar]
  209. HosokawaM. MiyashitaT. NishikawaS. EmiS. TsukuiT. BeppuF. OkadaT. MiyashitaK. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-A mice.Arch. Biochem. Biophys.20105041172510.1016/j.abb.2010.05.03120515643
    [Google Scholar]
  210. MarcotorchinoJ. RomierB. GourantonE. RiolletC. GleizeB. Malezet-DesmoulinsC. LandrierJ.F. Lycopene attenuates LPS ‐induced TNF‐α secretion in macrophages and inflammatory markers in adipocytes exposed to macrophage‐conditioned media.Mol. Nutr. Food Res.201256572573210.1002/mnfr.20110062322648619
    [Google Scholar]
  211. KimK.N. HeoS.J. YoonW.J. KangS.M. AhnG. YiT.H. JeonY.J. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-κB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages.Eur. J. Pharmacol.20106491-336937510.1016/j.ejphar.2010.09.03220868674
    [Google Scholar]
  212. TanC. HouY. First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells.Inflammation201437244345010.1007/s10753‑013‑9757‑124146106
    [Google Scholar]
  213. StahlW. SchwarzW. SundquistA.R. SiesH. cis-trans isomers of lycopene and β-carotene in human serum and tissues.Arch. Biochem. Biophys.1992294117317710.1016/0003‑9861(92)90153‑N1550343
    [Google Scholar]
  214. PalozzaP. Can β-carotene regulate cell growth by a redox mechanism? An answer from cultured cells.Biochim. Biophys. Acta Mol. Basis Dis.20051740221522110.1016/j.bbadis.2004.12.00815949689
    [Google Scholar]
  215. EspositoF. RussoL. RussoT. CiminoF. Retinoblastoma protein dephosphorylation is an early event of cellular response to prooxidant conditions.FEBS Lett.2000470221121510.1016/S0014‑5793(00)01318‑110734236
    [Google Scholar]
  216. PalozzaP. SeriniS. CalvielloG. Carotenoids as modulators of intracellular signaling pathways.Curr. Signal Transduct. Ther.20061332533510.2174/157436206778226950
    [Google Scholar]
  217. PalozzaP. SeriniS. TorselloA. BoninsegnaA. CovacciV. MaggianoN. RanellettiF.O. WolfF.I. CalvielloG. Regulation of cell cycle progression and apoptosis by β‐carotene in undifferentiated and differentiated HL‐60 leukemia cells: Possible involvement of a redox mechanism.Int. J. Cancer200297559360010.1002/ijc.1009411807783
    [Google Scholar]
  218. PalozzaP. SeriniS. MaggianoN. AngeliniM. BoninsegnaA. Di NicuoloF. RanellettiF.O. CalvielloG. Induction of cell cycle arrest and apoptosis in human colon adenocarcinoma cell lines by beta-carotene through down-regulation of cyclin A and Bcl-2 family proteins.Carcinogenesis2002231111810.1093/carcin/23.1.1111756218
    [Google Scholar]
  219. UchiyamaS. YamaguchiM. beta-Cryptoxanthin stimulates cell proliferation and transcriptional activity in osteoblastic MC3T3-E1 cells.Int. J. Mol. Med.200515467568115754031
    [Google Scholar]
  220. SchwartzJ.L. ShklarG. Retinoid and carotenoid angiogenesis: A possible explanation for enhanced oral carcinogenesis.Nutr. Cancer199727219219910.1080/016355897095145249121949
    [Google Scholar]
  221. ComerciJ.T.Jr RunowiczC.D. FieldsA.L. RomneyS.L. PalanP.R. KadishA.S. GoldbergG.L. Induction of transforming growth factor beta-1 in cervical intraepithelial neoplasia in vivo after treatment with beta-carotene.Clin. Cancer Res.1997321571609815667
    [Google Scholar]
  222. Dembinska-KiecA. PolusA. Kiec-WilkB. GrzybowskaJ. MikolajczykM. HartwichJ. RaznyU. SzumilasK. BanasA. BodziochM. StachuraJ. DyduchG. LaidlerP. ZagajewskiJ. LangmanT. SchmitzG. Proangiogenic activity of beta-carotene is coupled with the activation of endothelial cell chemotaxis.Biochim. Biophys. Acta Mol. Basis Dis.20051740222223910.1016/j.bbadis.2004.11.01715949690
    [Google Scholar]
  223. SharoniY. AgbariaR. AmirH. Ben-DorA. BobilevI. DoubiN. GiatY. HirshK. IzumchenkoG. KhaninM. KirilovE. KrimerR. NahumA. SteinerM. WalfischY. WalfischS. ZangoG. DanilenkoM. LevyJ. Modulation of transcriptional activity by antioxidant carotenoids.Mol. Aspects Med.200324637138410.1016/S0098‑2997(03)00033‑514585308
    [Google Scholar]
  224. HosokawaM. KudoM. MaedaH. KohnoH. TanakaT. MiyashitaK. Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARγ ligand, troglitazone, on colon cancer cells.Biochim. Biophys. Acta, Gen. Subj.200416751-311311910.1016/j.bbagen.2004.08.01215535974
    [Google Scholar]
  225. RamelF. BirticS. GiniesC. Soubigou-TaconnatL. TriantaphylidèsC. HavauxM. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants.Proc. Natl. Acad. Sci. USA2012109145535554010.1073/pnas.111598210922431637
    [Google Scholar]
  226. ShumbeL. BottR. HavauxM. Dihydroactinidiolide, a high light-induced β-carotene derivative that can regulate gene expression and photoacclimation in Arabidopsis.Mol. Plant2014771248125110.1093/mp/ssu02824646629
    [Google Scholar]
  227. BonetM.L. RibotJ. GalmésS. SerraF. PalouA. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Pre-clinical and human studies.Biochim Biophys Acta Mol Cell Biol Lipids.2020186511158676
    [Google Scholar]
  228. FlaxV.L. AdairL.S. AllenL.H. Shahab-FerdowsS. HampelD. ChaselaC.S. TeghaG. DazaE.J. CorbettA. DavisN.L. KamwendoD. KourtisA.P. van der HorstC.M. JamiesonD.J. BentleyM.E. Plasma micronutrient concentrations are altered by antiretroviral therapy and lipid-based nutrient supplements in lactating HIV-Infected Malawian women.J. Nutr.201514581950195710.3945/jn.115.21229026156797
    [Google Scholar]
  229. JonassonL. WikbyA. OlssonA. Low serum β-carotene reflects immune activation in patients with coronary artery disease.Nutr. Metab. Cardiovasc. Dis.200313312012510.1016/S0939‑4753(03)80170‑912955792
    [Google Scholar]
  230. ShiratoriK. OhgamiK. IlievaI. JinX.H. KoyamaY. MiyashitaK. YoshidaK. KaseS. OhnoS. Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo.Exp. Eye Res.200581442242810.1016/j.exer.2005.03.00215950219
    [Google Scholar]
  231. OhgamiK. ShiratoriK. KotakeS. NishidaT. MizukiN. YazawaK. OhnoS. Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo.Invest. Ophthalmol. Vis. Sci.20034462694270110.1167/iovs.02‑082212766075
    [Google Scholar]
  232. ChewB.P. ParkJ.S. Carotenoid action on the immune response.J. Nutr.20041341257S261S10.1093/jn/134.1.257S14704330
    [Google Scholar]
  233. MilaniA. BasirnejadM. ShahbaziS. BolhassaniA. Carotenoids: Biochemistry, pharmacology and treatment.Br. J. Pharmacol.2017174111290132410.1111/bph.13625
    [Google Scholar]
  234. LandrierJ.F. MarcotorchinoJ. TourniaireF. Lipophilic micronutrients and adipose tissue biology.Nutrients201241116221649
    [Google Scholar]
  235. KimmonsJ.E. BlanckH.M. TohillB.C. ZhangJ. KhanL.K. Associations between body mass index and the prevalence of low micronutrient levels among US adults.MedGenMed2006845917415336
    [Google Scholar]
  236. BeydounM.A. ShroffM.R. ChenX. BeydounH.A. WangY. ZondermanA.B. Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys.J. Nutr.2011141590391310.3945/jn.110.13658021451127
    [Google Scholar]
  237. PittasA.G. Dawson-HughesB. Vitamin D and diabetes.J. Steroid Biochem. Mol. Biol.20101211-242542910.1016/j.jsbmb.2010.03.04220304061
    [Google Scholar]
  238. CalderP.C. AhluwaliaN. BrounsF. BuetlerT. ClementK. CunninghamK. EspositoK. JönssonL.S. KolbH. LansinkM. MarcosA. MargiorisA. MatusheskiN. NordmannH. O’BrienJ. PuglieseG. RizkallaS. SchalkwijkC. TuomilehtoJ. WärnbergJ. WatzlB. Winklhofer-RoobB.M. Dietary factors and low-grade inflammation in relation to overweight and obesity.Br. J. Nutr.2011106S3Suppl. 3S5S7810.1017/S000711451100546022133051
    [Google Scholar]
  239. ParkerR. Carotenoids in human blood and tissues.J Nutr198911911014
    [Google Scholar]
  240. KaplanL.A. LauJ.M. SteinE.A. Carotenoid composition, concentrations, and relationships in various human organs.Clin. Physiol. Biochem.1990811102323157
    [Google Scholar]
  241. LoboG.P. HesselS. EichingerA. NoyN. MoiseA.R. WyssA. PalczewskiK. Von LintigJ. ISX is a retinoic acid‐sensitive gatekeeper that controls intestinal β,β‐carotene absorption and vitamin A production.FASEB J.20102461656166610.1096/fj.09‑15099520061533
    [Google Scholar]
  242. ChungH.Y. FerreiraA.L.A. EpsteinS. PaivaS.A.R. Castaneda-SceppaC. JohnsonE.J. Site-specific concentrations of carotenoids in adipose tissue: Relations with dietary and serum carotenoid concentrations in healthy adults.Am. J. Clin. Nutr.200990353353910.3945/ajcn.2009.2771219587090
    [Google Scholar]
  243. CanasJ.A. DamasoL. AltomareA. KillenK. HossainJ. BalagopalP.B. Insulin resistance and adiposity in relation to serum β-carotene levels.J. Pediatr.201216115864.e2, 210.1016/j.jpeds.2012.01.03022381025
    [Google Scholar]
  244. MessiasR da S GalliV Carotenoid Biosynthetic and catabolic pathways: gene expression and carotenoid content in grains of maize landraces.Nutrients2014654656310.3390/nu602054624476639
    [Google Scholar]
  245. AmengualJ. Bioactive properties of carotenoids in human health.Nutrients.20191110238810.3390/nu11102388
    [Google Scholar]
  246. MisawaN. NakagawaM. KobayashiK. YamanoS. IzawaY. NakamuraK. HarashimaK. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli.J. Bacteriol.1990172126704671210.1128/jb.172.12.6704‑6712.19902254247
    [Google Scholar]
  247. TakanoH. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria.Biosci. Biotechnol. Biochem.20168071264127310.1080/09168451.2016.115647826967471
    [Google Scholar]
  248. PasamontesL. HugD. TessierM. HohmannH.P. SchierleJ. van LoonA.P.G.M. Isolation and characterization of the carotenoid biosynthesis genes of Flavobacterium sp. strain R1534.Gene19971851354110.1016/S0378‑1119(96)00624‑59034310
    [Google Scholar]
  249. TakaichiS. Carotenoids in algae: Distributions, biosyntheses and functions.Mar. Drugs2011961101111810.3390/md906110121747749
    [Google Scholar]
  250. GoodwinT.W. The nature and distribution of carotenoids in some blue-green algae.J. Gen. Microbiol.195717246747310.1099/00221287‑17‑2‑46713481328
    [Google Scholar]
  251. TakaichiS. MochimaruM. Carotenoids and carotenogenesis in cyanobacteria: Unique ketocarotenoids and carotenoid glycosides.Cell. Mol. Life Sci.20076419-202607261910.1007/s00018‑007‑7190‑z17643187
    [Google Scholar]
  252. SandmannG. MautzJ. BreitenbachJ. Control of light-dependent keto carotenoid biosynthesis in Nostoc 7120 by the transcription factor NtcA.Z. Naturforsch. C J. Biosci.2016719-1030331110.1515/znc‑2016‑011727564697
    [Google Scholar]
  253. AvalosJ. Pardo-MedinaJ. Parra-RiveroO. Ruger-HerrerosM. Rodríguez-OrtizR. Hornero-MéndezD. LimónM. Carotenoid biosynthesis in Fusarium.J. Fungi (Basel)2017333910.3390/jof303003929371556
    [Google Scholar]
  254. AvalosJ. NordziekeS. ParraO. Pardo-MedinaJ. Carmen LimónM. Carotenoid production by filamentous fungi and yeasts.Biotechnology of Yeasts and Filamentous Fungi.ChamSpringer International Publishing201722527910.1007/978‑3‑319‑58829‑2_8
    [Google Scholar]
  255. MoranN.A. JarvikT. Lateral transfer of genes from fungi underlies carotenoid production in aphids.Science2010328597862462710.1126/science.118711320431015
    [Google Scholar]
  256. CobbsC. HeathJ. StiremanJ.O.III AbbotP. Carotenoids in unexpected places: Gall midges, lateral gene transfer, and carotenoid biosynthesis in animals.Mol. Phylogenet. Evol.201368222122810.1016/j.ympev.2013.03.01223542649
    [Google Scholar]
  257. NovákováE. MoranN.A. Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus.Mol. Biol. Evol.201229131332310.1093/molbev/msr20621878683
    [Google Scholar]
  258. ZhaoC. NabityP.D. Phylloxerids share ancestral carotenoid biosynthesis genes of fungal origin with aphids and adelgids.PLoS One20171210e018548410.1371/journal.pone.018548429020073
    [Google Scholar]
  259. GrbićM. Van LeeuwenT. ClarkR.M. RombautsS. RouzéP. GrbićV. OsborneE.J. DermauwW. Thi NgocP.C. OrtegoF. Hernández-CrespoP. DiazI. MartinezM. NavajasM. SucenaÉ. MagalhãesS. NagyL. PaceR.M. DjuranovićS. SmaggheG. IgaM. ChristiaensO. VeenstraJ.A. EwerJ. VillalobosR.M. HutterJ.L. HudsonS.D. VelezM. YiS.V. ZengJ. Pires-daSilvaA. RochF. CazauxM. NavarroM. ZhurovV. AcevedoG. BjelicaA. FawcettJ.A. BonnetE. MartensC. BaeleG. WisslerL. Sanchez-RodriguezA. TirryL. BlaisC. DemeestereK. HenzS.R. GregoryT.R. MathieuJ. VerdonL. FarinelliL. SchmutzJ. LindquistE. FeyereisenR. Van de PeerY. The genome of Tetranychus urticae reveals herbivorous pest adaptations.Nature2011479737448749210.1038/nature1064022113690
    [Google Scholar]
  260. SimpsonK. QuirozL.F. Rodriguez-ConcepciónM. StangeC.R. Differential contribution of the first two enzymes of the MEP pathway to the supply of metabolic precursors for carotenoid and chlorophyll biosynthesis in carrot (Daucus carota).Front. Plant Sci.20167134410.3389/fpls.2016.0134427630663
    [Google Scholar]
  261. MaassD. ArangoJ. WüstF. BeyerP. WelschR. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.PLoS One200947e637310.1371/journal.pone.000637319636414
    [Google Scholar]
  262. MorenoJ.C. PizarroL. FuentesP. HandfordM. CifuentesV. StangeC. Levels of lycopene β-cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota.PLoS One201383e5814410.1371/journal.pone.005814423555569
    [Google Scholar]
  263. MorenoJ.C. CerdaA. SimpsonK. Lopez-DiazI. CarreraE. HandfordM. StangeC. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase ( Dclcyb1 ) expression.J. Exp. Bot.20166782325233810.1093/jxb/erw03726893492
    [Google Scholar]
  264. JayarajJ. DevlinR. PunjaZ. Metabolic engineering of novel ketocarotenoid production in carrot plants.Transgenic Res.200817448950110.1007/s11248‑007‑9120‑017682834
    [Google Scholar]
  265. D’AmbrosioC. GiorioG. MarinoI. MerendinoA. PetrozzaA. SalfiL. StiglianiA.L. CelliniF. Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA.Plant Sci.2004166120721410.1016/j.plantsci.2003.09.015
    [Google Scholar]
  266. PonsE. AlquézarB. RodríguezA. MartorellP. GenovésS. RamónD. RodrigoM.J. ZacaríasL. PeñaL. Metabolic engineering of β‐carotene in orange fruit increases its in vivo antioxidant properties.Plant Biotechnol. J.2014121172710.1111/pbi.1211224034339
    [Google Scholar]
  267. BastienJ. Rochette-EglyC. Nuclear retinoid receptors and the transcription of retinoid-target genes.Gene200432811610.1016/j.gene.2003.12.00515019979
    [Google Scholar]
  268. BonetM.L. RibotJ. PalouA. Lipid metabolism in mammalian tissues and its control by retinoic acid.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20121821117718910.1016/j.bbalip.2011.06.00121669299
    [Google Scholar]
  269. ArandaA. PascualA. Nuclear hormone receptors and gene expression.Physiol. Rev.20018131269130410.1152/physrev.2001.81.3.126911427696
    [Google Scholar]
  270. Meléndez-MartínezA.J. StincoC.M. Mapelli-BrahmP. Skin carotenoids in public health and nutricosmetics: The emerging roles and applications of the UV radiation-absorbing colourless carotenoids phytoene and phytofluene.Nutrients2019115109310.3390/nu1105109331100970
    [Google Scholar]
  271. CanasJ.A. LochrieA. McGowanA.G. HossainJ. SchettinoC. BalagopalP.B. Effects of mixed carotenoids on adipokines and abdominal adiposity in children: A pilot study.J. Clin. Endocrinol. Metab.201710261983199010.1210/jc.2017‑0018528323947
    [Google Scholar]
  272. GammoneM.A. RiccioniG. D’OrazioN. Marine carotenoids against oxidative stress: Effects on human health.Mar Drugs.2015131062266246
    [Google Scholar]
  273. PallelaR. Na-YoungY. KimS.K. Anti-photoaging and photoprotective compounds derived from marine organisms.Mar. Drugs2010841189120210.3390/md804118920479974
    [Google Scholar]
  274. TominagaK. HongoN. KaratoM. YamashitaE. Cosmetic benefits of astaxanthin on humans subjects.Acta Biochim. Pol.2012591434710.18388/abp.2012_216822428137
    [Google Scholar]
  275. ThomasN. KimS.K. Beneficial effects of marine algal compounds in cosmeceuticals.Mar. Drugs2013111214616410.3390/md1101014623344156
    [Google Scholar]
  276. WijesingheW.A.J.P. JeonY.J. Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: A review.Phytochem. Rev.201110343144310.1007/s11101‑011‑9214‑4
    [Google Scholar]
  277. LeeE.H. FaulhaberD. HansonK.M. DingW. PetersS. KodaliS. GransteinR.D. Dietary lutein reduces ultraviolet radiation-induced inflammation and immunosuppression.J. Invest. Dermatol.2004122251051710.1046/j.0022‑202X.2004.22227.x15009738
    [Google Scholar]
  278. MontanariT. PošćićN. ColittiM. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: A review.Obesity Rev.2017185495513
    [Google Scholar]
  279. GammoneM. D’OrazioN. Anti-obesity activity of the marine carotenoid fucoxanthin.Mar. Drugs20151342196221410.3390/md1304219625871295
    [Google Scholar]
  280. D’OrazioN. GemelloE. GammoneM. de GirolamoM. FiconeriC. RiccioniG. Fucoxantin: A treasure from the sea.Mar. Drugs2012101260461610.3390/md1003060422611357
    [Google Scholar]
  281. AbidovM. RamazanovZ. SeifullaR. GrachevS. The effects of Xanthigen ™ in the weight management of obese premenopausal women with non‐alcoholic fatty liver disease and normal liver fat.Diabetes Obes. Metab.2010121728110.1111/j.1463‑1326.2009.01132.x19840063
    [Google Scholar]
  282. PalomboP. FabriziG. RuoccoV. RuoccoE. FluhrJ. RobertsR. MorgantiP. Beneficial long-term effects of combined oral/topical antioxidant treatment with the carotenoids lutein and zeaxanthin on human skin: A double-blind, placebo-controlled study.Skin Pharmacol. Physiol.200720419921010.1159/00010180717446716
    [Google Scholar]
  283. YaarM. GilchrestB.A. Photoageing: Mechanism, prevention and therapy.Br. J. Dermatol.2007157587488710.1111/j.1365‑2133.2007.08108.x17711532
    [Google Scholar]
  284. MarsegliaL. MantiS. D’AngeloG. NicoteraA. ParisiE. Di RosaG. GittoE. ArrigoT. Oxidative stress in obesity: A critical component in human diseases.Int. J. Mol. Sci.201416137840010.3390/ijms1601037825548896
    [Google Scholar]
  285. GregorM.F. HotamisligilG.S. Inflammatory mechanisms in obesity.Annu. Rev. Immunol.201129141544510.1146/annurev‑immunol‑031210‑10132221219177
    [Google Scholar]
  286. GourantonE. ThabuisC. RiolletC. Malezet-DesmoulinsC. El YazidiC. AmiotM.J. BorelP. LandrierJ.F. Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue.J. Nutr. Biochem.201122764264810.1016/j.jnutbio.2010.04.01620952175
    [Google Scholar]
  287. FenniS. HammouH. AstierJ. BonnetL. KarkeniE. CouturierC. TourniaireF. LandrierJ.F. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders.Mol. Nutr. Food Res.2017619160108310.1002/mnfr.20160108328267248
    [Google Scholar]
  288. KarkeniE. BonnetL. AstierJ. CouturierC. DalifardJ. TourniaireF. LandrierJ.F. All- trans -retinoic acid represses chemokine expression in adipocytes and adipose tissue by inhibiting NF-κB signaling.J. Nutr. Biochem.20174210110710.1016/j.jnutbio.2017.01.00428157617
    [Google Scholar]
  289. KamejiH. MochizukiK. MiyoshiN. GodaT. β-Carotene accumulation in 3T3-L1 adipocytes inhibits the elevation of reactive oxygen species and the suppression of genes related to insulin sensitivity induced by tumor necrosis factor-α.Nutrition20102611-121151115610.1016/j.nut.2009.09.00620097535
    [Google Scholar]
  290. ChoS.O. KimM.H. KimH. β-Carotene inhibits activation of NF-κB, activator protein-1, and STAT3 and regulates abnormal expression of some adipokines in 3T3-L1 adipocytes.J. Cancer Prev.2018231374310.15430/JCP.2018.23.1.3729629347
    [Google Scholar]
  291. MaedaH. HosokawaM. SashimaT. TakahashiN. KawadaT. MiyashitaK. Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells.Int. J. Mol. Med.200618114715210.3892/ijmm.18.1.14716786166
    [Google Scholar]
  292. MaedaH. KannoS. KodateM. HosokawaM. MiyashitaK. Fucoxanthinol, metabolite of fucoxanthin, improves obesity-induced inflammation in adipocyte cells.Mar. Drugs20151384799481310.3390/md1308479926248075
    [Google Scholar]
  293. FenniS. AstierJ. BonnetL. KarkeniE. GourantonE. MounienL. CouturierC. TourniaireF. BöhmV. HammouH. LandrierJ.F. (all‐E)‐ and (5Z)‐lycopene display similar biological effects on adipocytes.Mol. Nutr. Food Res.2019635180078810.1002/mnfr.20180078830512227
    [Google Scholar]
  294. AntrasJ. LasnierF. PairaultJ. Adipsin gene expression in 3T3-F442A adipocytes is posttranscriptionally down-regulated by retinoic acid.J. Biol. Chem.199126621157116110.1016/S0021‑9258(17)35296‑11985940
    [Google Scholar]
  295. FelipeF. BonetM.L. RibotJ. PalouA. Modulation of resistin expression by retinoic acid and vitamin A status.Diabetes200453488288910.2337/diabetes.53.4.88215047602
    [Google Scholar]
  296. SchwarzE.J. ReginatoM.J. ShaoD. KrakowS.L. LazarM.A. Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription.Mol. Cell. Biol.19971731552156110.1128/MCB.17.3.15529032283
    [Google Scholar]
  297. MercaderJ. RibotJ. MuranoI. FelipeF. CintiS. BonetM.L. PalouA. Remodeling of white adipose tissue after retinoic acid administration in mice.Endocrinology2006147115325533210.1210/en.2006‑076016840543
    [Google Scholar]
  298. WangB. FuX. LiangX. DeavilaJ.M. WangZ. ZhaoL. TianQ. ZhaoJ. GomezN.A. TrombettaS.C. ZhuM.J. DuM. Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFRα+ adipose progenitors.Cell Discov.2017311703610.1038/celldisc.2017.3629021914
    [Google Scholar]
  299. SerraF. BonetM.L. PuigserverP. OliverJ. PalouA. Stimulation of uncoupling protein 1 expression in brown adipocytes by naturally occurring carotenoids.Int. J. Obes.199923665065510.1038/sj.ijo.080089710411240
    [Google Scholar]
  300. Zolberg RelevyN. BechorS. HarariA. Ben-AmotzA. KamariY. HaratsD. ShaishA. The inhibition of macrophage foam cell formation by 9-cis β-carotene is driven by BCMO1 activity.PLoS One2015101e011527210.1371/journal.pone.011527225629601
    [Google Scholar]
  301. LoboG.P. AmengualJ. LiH.N.M. GolczakM. BonetM.L. PalczewskiK. von LintigJ. β,β-carotene decreases peroxisome proliferator receptor γ activity and reduces lipid storage capacity of adipocytes in a β,β-carotene oxygenase 1-dependent manner.J. Biol. Chem.201028536278912789910.1074/jbc.M110.13257120573961
    [Google Scholar]
  302. ChondronikolaM. VolpiE. BørsheimE. PorterC. AnnamalaiP. EnerbäckS. LidellM.E. SarafM.K. LabbeS.M. HurrenN.M. YfantiC. ChaoT. AndersenC.R. CesaniF. HawkinsH. SidossisL.S. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans.Diabetes201463124089409910.2337/db14‑074625056438
    [Google Scholar]
  303. LiuM. ZhengM. CaiD. XieJ. JinZ. LiuH. LiuJ. Zeaxanthin promotes mitochondrial biogenesis and adipocyte browning via AMPKα1 activation.Food Funct.20191042221223310.1039/C8FO02527D30950462
    [Google Scholar]
  304. WangJ. SuoY. ZhangJ. ZouQ. TanX. YuanT. LiuZ. LiuX. Lycopene supplementation attenuates western diet-induced body weight gain through increasing the expressions of thermogenic/mitochondrial functional genes and improving insulin resistance in the adipose tissue of obese mice.J. Nutr. Biochem.201969637210.1016/j.jnutbio.2019.03.00831060024
    [Google Scholar]
  305. TourniaireF. MusinovicH. GourantonE. AstierJ. MarcotorchinoJ. ArreguinA. BernotD. PalouA. BonetM.L. RibotJ. LandrierJ.F. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes.J. Lipid Res.20155661100110910.1194/jlr.M05365225914170
    [Google Scholar]
  306. RebelloC.J. GreenwayF.L. JohnsonW.D. RibnickyD. PoulevA. StadlerK. CoulterA.A. Fucoxanthin and its metabolite fucoxanthinol do not induce browning in human adipocytes.J. Agric. Food Chem.20176550109151092410.1021/acs.jafc.7b0393129172481
    [Google Scholar]
  307. Le LayS. SimardG. MartinezM.C. AndriantsitohainaR. Oxidative stress and metabolic pathologies: From an adipocentric point of view.Oxid. Med. Cell. Longev.2014201411810.1155/2014/90853925143800
    [Google Scholar]
  308. ShengL. QianZ. ShiY. YangL. XiL. ZhaoB. XuX. JiH. Crocetin improves the insulin resistance induced by high‐fat diet in rats.Br. J. Pharmacol.200815451016102410.1038/bjp.2008.16018469847
    [Google Scholar]
  309. YangY. Astaxanthin structure, metabolism, and health benefits.J Hum Nutr Food Sci2013110031014
    [Google Scholar]
  310. IkeuchiM. KoyamaT. TakahashiJ. YazawaK. Effects of astaxanthin in obese mice fed a high-fat diet.Biosci. Biotechnol. Biochem.200771489389910.1271/bbb.6052117420580
    [Google Scholar]
  311. IshikiM. NishidaY. IshibashiH. WadaT. FujisakaS. TakikawaA. UrakazeM. SasaokaT. UsuiI. TobeK. Impact of divergent effects of astaxanthin on insulin signaling in L6 cells.Endocrinology201315482600261210.1210/en.2012‑219823715867
    [Google Scholar]
  312. StephensJ.M. The fat controller: Adipocyte development.PLoS Biol.20121011e100143610.1371/journal.pbio.100143623209380
    [Google Scholar]
  313. Boix-CastejónM. RocheE. Olivares-VicenteM. Álvarez-MartínezF.J. Herranz-LópezM. MicolV. Plant compounds for obesity treatment through neuroendocrine regulation of hunger: A systematic review.Phytomedicine202311315473510.1016/j.phymed.2023.15473536921427
    [Google Scholar]
  314. KazemipoorM. CordellG.A. SarkerM.M.R. RadziC.J.B.W.M. HajifarajiM. En KiatP. Alternative treatments for weight loss: Safety/risks and effectiveness of anti-obesity medicinal plants.Int. J. Food Prop.20151891942196310.1080/10942912.2014.933350
    [Google Scholar]
  315. Torres-FuentesC. SchellekensH. DinanT.G. CryanJ.F. A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review.Nutr Neurosci.20151824965
    [Google Scholar]
  316. SuzukiK. InoueT. HiokiR. OchiaiJ. KusuharaY. IchinoN. OsakabeK. HamajimaN. ItoY. Association of abdominal obesity with decreased serum levels of carotenoids in a healthy Japanese population.Clin. Nutr.200625578078910.1016/j.clnu.2006.01.02516698146
    [Google Scholar]
  317. ChoiH.D. KimJ.H. ChangM.J. Kyu-YounY. ShinW.G. Effects of astaxanthin on oxidative stress in overweight and obese adults.Phytother. Res.201125121813181810.1002/ptr.349421480416
    [Google Scholar]
  318. WestD. GreenwoodM. SullivanC. PrescodL. MarzulloL. TriscariJ. Infusion of cholecystokinin between meals into free-feeding rats fails to prolong the intermeal interval.Physiol. Behav.198739111111510.1016/0031‑9384(87)90407‑03562644
    [Google Scholar]
  319. PerryR.J. ReschJ.M. DouglassA.M. MadaraJ.C. Rabin-CourtA. KucukdereliH. WuC. SongJ.D. LowellB.B. ShulmanG.I. Leptin’s hunger-suppressing effects are mediated by the hypothalamic–pituitary–adrenocortical axis in rodents.Proc. Natl. Acad. Sci. USA201911627136701367910.1073/pnas.190179511631213533
    [Google Scholar]
  320. QiuJ. WagnerE.J. RønnekleivO.K. KellyM.J. Insulin and leptin excite anorexigenic pro‐opiomelanocortin neurones via activation of TRPC 5 channels.J. Neuroendocrinol.2018302e1250110.1111/jne.1250128675783
    [Google Scholar]
  321. HamamahS. CovasaM. Gut microbiota restores central neuropeptide deficits in germ-free mice.Int. J. Mol. Sci.202223191175610.3390/ijms23191175636233056
    [Google Scholar]
  322. NwenekaC.V. PrenticeA.M. Helicobacter pylori infection and circulating ghrelin levels - A systematic review.BMC Gastroenterol.2011111710.1186/1471‑230X‑11‑721269467
    [Google Scholar]
  323. KonturekP.C. Cześnikiewicz-GuzikM. BielanskiW. KonturekS.J. Involvement of helicobacter pylori infection in neuro-hormonal control of food intake.J. Physiol. Pharmacol.200657Suppl. 5678117218760
    [Google Scholar]
  324. AsakawaA. InuiA. KagaO. YuzurihaH. NagataT. UenoN. MakinoS. FujimiyaM. NiijimaA. FujinoM.A. KasugaM. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin.Gastroenterology2001120233734510.1053/gast.2001.2215811159873
    [Google Scholar]
  325. ZhaoW-E. FanJ. GaoR. NgocN.B. Suppressive effects of carotenoids on proliferation and differentiation of 3T3-L1 preadipocytes.J. Food Nutr. Res.20175129136
    [Google Scholar]
  326. OjulariO.V. Gi LeeS. NamJ.O. Therapeutic effect of seaweed derived xanthophyl carotenoid on obesity management; overview of the last decade.Int J Mol Sci.2020217250210.3390/ijms21072502
    [Google Scholar]
  327. YoshidaH. YanaiH. ItoK. TomonoY. KoikedaT. TsukaharaH. TadaN. Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia.Atherosclerosis2010209252052310.1016/j.atherosclerosis.2009.10.01219892350
    [Google Scholar]
  328. JiaY. KimJ.Y. JunH.J. KimS.J. LeeJ.H. HoangM.H. HwangK.Y. UmS.J. ChangH.I. LeeS.J. The natural carotenoid astaxanthin, a PPAR ‐α agonist and PPAR ‐γ antagonist, reduces hepatic lipid accumulation by rewiring the transcriptome in lipid‐loaded hepatocytes.Mol. Nutr. Food Res.201256687888810.1002/mnfr.20110079822707263
    [Google Scholar]
  329. BeppuF. HosokawaM. YimM.J. ShinodaT. MiyashitaK. Down-regulation of hepatic stearoyl-CoA desaturase-1 expression by fucoxanthin via leptin signaling in diabetic/obese KK-A(y) mice.Lipids201348544945510.1007/s11745‑013‑3784‑423516000
    [Google Scholar]
  330. ArunkumarE. BhuvaneswariS. AnuradhaC.V. An intervention study in obese mice with astaxanthin, a marine carotenoid – effects on insulin signaling and pro-inflammatory cytokines.Food Funct.20123212012610.1039/C1FO10161G22089895
    [Google Scholar]
  331. YoshinagaK. MitamuraR. Effects of Undaria pinnatifida (Wakame) on postprandial glycemia and insulin levels in humans: A randomized crossover trial.Plant Foods Hum. Nutr.201974446146710.1007/s11130‑019‑00763‑531418121
    [Google Scholar]
  332. GopalS.S. MaradgiT. PonesakkiG. Antiobese properties of carotenoids: An overview of underlying molecular mechanisms.Carotenoids: Properties, Processing and Applications.AmsterdamElsevier201975105
    [Google Scholar]
  333. SamS. MazzoneT. Adipose tissue changes in obesity and the impact on metabolic function.Transl. Res.2014164428429210.1016/j.trsl.2014.05.00824929206
    [Google Scholar]
  334. GourantonE. YazidiC.E. CardinaultN. AmiotM.J. BorelP. LandrierJ.F. Purified low-density lipoprotein and bovine serum albumin efficiency to internalise lycopene into adipocytes.Food Chem. Toxicol.200846123832383610.1016/j.fct.2008.10.00618957315
    [Google Scholar]
  335. von LintigJ. WyssA. Molecular analysis of vitamin A formation: Cloning and characterization of β-carotene 15,15′-dioxygenases.Arch. Biochem. Biophys.20013851475210.1006/abbi.2000.209611361025
    [Google Scholar]
  336. AmengualJ. LoboG.P. GolczakM. LiH.N.M. KlimovaT. HoppelC.L. WyssA. PalczewskiK. von LintigJ. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress.FASEB J.201125394895910.1096/fj.10‑17390621106934
    [Google Scholar]
  337. ÖsthM. ÖstA. KjolhedeP. StrålforsP. The concentration of β-carotene in human adipocytes, but not the whole-body adipocyte stores, is reduced in obesity.PLoS One201491e8561010.1371/journal.pone.008561024416432
    [Google Scholar]
  338. KangS.I. ShinH.S. KimH.M. YoonS.A. KangS.W. KimJ.H. KoH.C. KimS.J. Petalonia binghamiae extract and its constituent fucoxanthin ameliorate high-fat diet-induced obesity by activating AMP-activated protein kinase.J. Agric. Food Chem.201260133389339510.1021/jf204765222400485
    [Google Scholar]
  339. GotoT. KimY.I. TakahashiN. KawadaT. Natural compounds regulate energy metabolism by the modulating the activity of lipid‐sensing nuclear receptors.Mol. Nutr. Food Res.2013571203310.1002/mnfr.20120052223180608
    [Google Scholar]
  340. ShirakuraY. TakayanagiK. MukaiK. TanabeH. InoueM. β-cryptoxanthin suppresses the adipogenesis of 3T3-L1 cells via RAR activation.J. Nutr. Sci. Vitaminol. (Tokyo)201157642643110.3177/jnsv.57.42622472285
    [Google Scholar]
  341. OkadaT. NakaiM. MaedaH. HosokawaM. SashimaT. MiyashitaK. Suppressive effect of neoxanthin on the differentiation of 3T3-L1 adipose cells.J. Oleo Sci.200857634535110.5650/jos.57.34518469497
    [Google Scholar]
  342. MuriachM. Bosch-MorellF. ArnalE. AlexanderG. BlomhoffR. RomeroF.J. Lutein prevents the effect of high glucose levels on immune system cells in vivo and in vitro.J. Physiol. Biochem.200864214915710.1007/BF0316824319043985
    [Google Scholar]
  343. McNultyH. JacobR.F. MasonR.P. Biologic activity of carotenoids related to distinct membrane physicochemical interactions.Am. J. Cardiol.200810110S20S2910.1016/j.amjcard.2008.02.00418474269
    [Google Scholar]
  344. PicoC. PalouA. Perinatal programming of obesity: An introduction to the topic.Front. Physiol.2013425510.3389/fphys.2013.0025524062695
    [Google Scholar]
  345. RibotJ. FelipeF. BonetM.L. PalouA. Changes of adiposity in response to vitamin A status correlate with changes of PPAR γ 2 expression.Obes. Res.20019850050910.1038/oby.2001.6511500531
    [Google Scholar]
  346. FengW. LiuJ. ChengH. ZhangD. TanY. PengC. Dietary compounds in modulation of gut microbiota-derived metabolites.Front. Nutr.2022993957110.3389/fnut.2022.93957135928846
    [Google Scholar]
  347. GomaaE.Z. Human gut microbiota/microbiome in health and diseases: A review.Antonie van Leeuwenhoek2020113122019204010.1007/s10482‑020‑01474‑733136284
    [Google Scholar]
  348. SekirovI. RussellS.L. AntunesL.C.M. FinlayB.B. Gut microbiota in health and disease.Physiol. Rev.201090385990410.1152/physrev.00045.200920664075
    [Google Scholar]
  349. ZhangY.J. LiS. GanR.Y. ZhouT. XuD.P. LiH.B. Impacts of gut bacteria on human health and diseases.Int. J. Mol. Sci.201516127493751910.3390/ijms1604749325849657
    [Google Scholar]
  350. LecuitM. EloitM. The viruses of the gut microbiota.The Microbiota in Gastrointestinal Pathophysiology.AmsterdamElsevier201717918310.1016/B978‑0‑12‑804024‑9.00021‑5
    [Google Scholar]
  351. ParfreyL.W. WaltersW.A. KnightR. Microbial eukaryotes in the human microbiome: Ecology, evolution, and future directions.Front. Microbiol.2011215310.3389/fmicb.2011.0015321808637
    [Google Scholar]
  352. QuigleyE.M.M. Gut bacteria in health and disease.Gastroenterol. Hepatol. (N. Y.)20139956056924729765
    [Google Scholar]
  353. LiZ. DaiZ. ShiE. WanP. ChenG. ZhangZ. XuY. GaoR. ZengX. LiD. Study on the interaction between β-carotene and gut microflora using an in vitro fermentation model.Food Sci. Hum. Wellness20231241369137810.1016/j.fshw.2022.10.030
    [Google Scholar]
  354. LiuZ. SunX. SunX. WangS. XuY. Fucoxanthin Isolated from Undaria pinnatifida Can Interact with Escherichia coli and lactobacilli in the Intestine and Inhibit the Growth of Pathogenic Bacteria.J. Ocean Univ. China201918492693210.1007/s11802‑019‑4019‑y
    [Google Scholar]
  355. DjuricZ. BassisC.M. PlegueM.A. RenJ. ChanR. SidahmedE. TurgeonD.K. RuffinM.T.IV KatoI. SenA. Colonic Mucosal Bacteria Are Associated with Inter-Individual Variability in Serum Carotenoid Concentrations.J. Acad. Nutr. Diet.20181184606616.e310.1016/j.jand.2017.09.01329274690
    [Google Scholar]
  356. LiuH. LiuM. FuX. ZhangZ. ZhuL. ZhengX. LiuJ. Astaxanthin prevents alcoholic fatty liver disease by modulating mouse gut microbiota.Nutrients2018109129810.3390/nu1009129830217037
    [Google Scholar]
  357. DaiZ. LiZ. ShiE. NieM. FengL. ChenG. GaoR. ZengX. LiD. Study on the interaction between four typical carotenoids and human gut microflora using an in vitro fermentation model.J. Agric. Food Chem.20227042135921360110.1021/acs.jafc.2c0346436214842
    [Google Scholar]
  358. ErogluA. Al’AbriI.S. KopecR.E. CrookN. BohnT. Carotenoids and their health benefits as derived via their interactions with gut microbiota.Adv. Nutr.202314223825510.1016/j.advnut.2022.10.00736775788
    [Google Scholar]
  359. ArathiB.P. SowmyaP.R-R. VijayK. BaskaranV. LakshminarayanaR. Biofunctionality of carotenoid metabolites: An insight into qualitative and quantitative analysis.Metabolomics - Fundamentals and ApplicationsLondonInTechOpen2016
    [Google Scholar]
  360. ArslanE. AtılganH. Yavaşoğluİ. The prevalence of Helicobacter pylori in obese subjects.Eur. J. Intern. Med.200920769569710.1016/j.ejim.2009.07.01319818289
    [Google Scholar]
  361. TsuganeS. KabutoM. ImaiH. GeyF. TeiY. HanaokaT. SuganoK. WatanabeS. Helicobacter pylori, dietary factors, and atrophic gastritis in five Japanese populations with different gastric cancer mortality.Cancer Causes Control19934429730510.1007/BF000513318347778
    [Google Scholar]
  362. PhullP.S. PriceA.B. ThornileyM.S. GreenC.J. JacynaM.R. Vitamin E concentrations in the human stomach and duodenum--correlation with Helicobacter pylori infection.Gut1996391313510.1136/gut.39.1.318881804
    [Google Scholar]
  363. SandersonM.J. WhiteK.L. DrakeI.M. SchorahC.J. Vitamin E and carotenoids in gastric biopsies: The relation to plasma concentrations in patients with and without Helicobacter pylori gastritis.Am. J. Clin. Nutr.199765110110610.1093/ajcn/65.1.1018988920
    [Google Scholar]
  364. ZhangZ.W. PatchettS.E. PerrettD. DomizioP. FarthingM.J.G. Gastric α-tocopherol and β-carotene concentrations in association with Helicobacter pylori infection.Eur. J. Gastroenterol. Hepatol.200012549750410.1097/00042737‑200012050‑0000410833091
    [Google Scholar]
  365. JalalF. NesheimM.C. AgusZ. SanjurD. HabichtJ.P. Serum retinol concentrations in children are affected by food sources of ²-carotene, fat intake, and anthelmintic drug treatment.Am. J. Clin. Nutr.199868362362910.1093/ajcn/68.3.6239734739
    [Google Scholar]
  366. YangY. PhamT.X. WegnerC.J. KimB. KuC.S. ParkY.K. LeeJ.Y. Astaxanthin lowers plasma TAG concentrations and increases hepatic antioxidant gene expression in diet-induced obesity mice.Br. J. Nutr.2014112111797180410.1017/S000711451400255425328157
    [Google Scholar]
  367. YangY. SeoJ.M. NguyenA. PhamT.X. ParkH.J. ParkY. KimB. BrunoR.S. LeeJ. Astaxanthin-rich extract from the green alga Haematococcus pluvialis lowers plasma lipid concentrations and enhances antioxidant defense in apolipoprotein E knockout mice.J. Nutr.201114191611161710.3945/jn.111.14210921734060
    [Google Scholar]
  368. YagishitaY. UrunoA. FukutomiT. SaitoR. SaigusaD. PiJ. FukamizuA. SugiyamaF. TakahashiS. YamamotoM. Nrf2 Improves Leptin and Insulin Resistance Provoked by Hypothalamic Oxidative Stress.Cell Rep.20171882030204410.1016/j.celrep.2017.01.06428228267
    [Google Scholar]
  369. Francisqueti-FerronF.V. FerronA.J.T. GarciaJ.L. SilvaC.C.V.A. CostaM.R. GregolinC.S. MoretoF. FerreiraA.L.A. MinatelI.O. CorreaC.R. Basic Concepts on the Role of Nuclear Factor Erythroid-Derived 2-Like 2 (Nrf2) in Age-Related Diseases.Int. J. Mol. Sci.20192013320810.3390/ijms2013320831261912
    [Google Scholar]
  370. ZhaoW. ShiG. GuH. NguyenB.N. Role of PPARγ in the nutritional and pharmacological actions of carotenoids.Res. Rep. Biochem.201620161310.2147/RRBC.S83258
    [Google Scholar]
  371. TamoriY. MasugiJ. NishinoN. KasugaM. Role of peroxisome proliferator-activated receptor-γ in maintenance of the characteristics of mature 3T3-L1 adipocytes.Diabetes20025172045205510.2337/diabetes.51.7.204512086932
    [Google Scholar]
  372. KubotaN. TerauchiY. MikiH. TamemotoH. YamauchiT. KomedaK. SatohS. NakanoR. IshiiC. SugiyamaT. EtoK. TsubamotoY. OkunoA. MurakamiK. SekiharaH. HasegawaG. NaitoM. ToyoshimaY. TanakaS. ShiotaK. KitamuraT. FujitaT. EzakiO. AizawaS. NagaiR. TobeK. KimuraS. KadowakiT. PPAR γ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance.Mol. Cell19994459760910.1016/S1097‑2765(00)80210‑510549291
    [Google Scholar]
  373. DalenK.T. SchoonjansK. UlvenS.M. Weedon-FekjaerM.S. BentzenT.G. KoutnikovaH. AuwerxJ. NebbH.I. Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-γ.Diabetes20045351243125210.2337/diabetes.53.5.124315111493
    [Google Scholar]
  374. ChoiC.I. Astaxanthin as a Peroxisome Proliferator-Activated Receptor (PPAR) modulator: Its therapeutic implications.Mar. Drugs201917424210.3390/md1704024231018521
    [Google Scholar]
  375. InoueM. TanabeH. MatsumotoA. TakagiM. UmegakiK. AmagayaS. TakahashiJ. Astaxanthin functions differently as a selective peroxisome proliferator-activated receptor γ modulator in adipocytes and macrophages.Biochem. Pharmacol.201284569270010.1016/j.bcp.2012.05.02122732454
    [Google Scholar]
  376. WarnkeI. GoralczykR. FuhrerE. SchwagerJ. Dietary constituents reduce lipid accumulation in murine C3H10 T1/2 adipocytes: A novel fluorescent method to quantify fat droplets.Nutr. Metab. (Lond.)2011813010.1186/1743‑7075‑8‑3021569430
    [Google Scholar]
  377. HesselS. EichingerA. IskenA. AmengualJ. HunzelmannS. HoellerU. ElsteV. HunzikerW. GoralczykR. OberhauserV. von LintigJ. WyssA. CMO1 deficiency abolishes vitamin A production from β-carotene and alters lipid metabolism in mice.J. Biol. Chem.200728246335533356110.1074/jbc.M70676320017855355
    [Google Scholar]
  378. von LintigJ. Colors with functions: Elucidating the biochemical and molecular basis of carotenoid metabolism.Annu. Rev. Nutr.2010301355610.1146/annurev‑nutr‑080508‑14102720415581
    [Google Scholar]
  379. LeeJ.S. ParkJ.H. KwonI.K. LimJ.Y. Retinoic acid inhibits BMP4-induced C3H10T1/2 stem cell commitment to adipocyte via downregulating Smad/p38MAPK signaling.Biochem. Biophys. Res. Commun.2011409355055510.1016/j.bbrc.2011.05.04221605549
    [Google Scholar]
  380. KawadaT. KameiY. FujitaA. HidaY. TakahashiN. SugimotoE. FushikiT. Carotenoids and retinoids as suppressors on adipocyte differentiation via nuclear receptors.Biofactors2000131-410310910.1002/biof.552013011711237167
    [Google Scholar]
  381. ZiouzenkovaO. OrasanuG. SukhovaG. LauE. BergerJ.P. TangG. KrinskyN.I. DolnikowskiG.G. PlutzkyJ. Asymmetric cleavage of β-carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses.Mol. Endocrinol.2007211778810.1210/me.2006‑022517008383
    [Google Scholar]
  382. TakayanagiK. Prevention of adiposity by the oral administration of? -Cryptoxanthin.Front. Neurol.201126710.3389/fneur.2011.0006722131983
    [Google Scholar]
  383. TakayanagiK. MorimotoS. ShirakuraY. MukaiK. SugiyamaT. TokujiY. OhnishiM. Mechanism of visceral fat reduction in Tsumura Suzuki obese, diabetes (TSOD) mice orally administered β-cryptoxanthin from Satsuma mandarin oranges (Citrus unshiu Marc).J. Agric. Food Chem.20115923123421235110.1021/jf202821u22085304
    [Google Scholar]
  384. RafiM.M. KanakasabaiS. GokarnS.V. KruegerE.G. BrightJ.J. Dietary lutein modulates growth and survival genes in prostate cancer cells.J. Med. Food201518217318110.1089/jmf.2014.000325162762
    [Google Scholar]
  385. ChakhtouraM. HaberR. GhezzawiM. RhayemC. TcheroyanR. MantzorosC.S. Pharmacotherapy of obesity: An update on the available medications and drugs under investigation.E. Clin. Med.20235810188210.1016/j.eclinm.2023.10188236992862
    [Google Scholar]
  386. GarveyW.T. MechanickJ.I. BrettE.M. GarberA.J. HurleyD.L. JastreboffA.M. NadolskyK. Pessah-PollackR. PlodkowskiR. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines For Medical Care of Patients with Obesity.Endocr. Pract.201622Suppl. 3120310.4158/EP161365.GL27219496
    [Google Scholar]
  387. ApovianC.M. AronneL.J. BessesenD.H. McDonnellM.E. MuradM.H. PagottoU. RyanD.H. StillC.D. Pharmacological management of obesity: An endocrine Society clinical practice guideline.J. Clin. Endocrinol. Metab.2015100234236210.1210/jc.2014‑341525590212
    [Google Scholar]
  388. FosterG. The behavioral approach to treating obesity.Am. Heart J.2006151362562710.1016/j.ahj.2005.03.00316504623
    [Google Scholar]
  389. JensenM.D. RyanD.H. ApovianC.M. ArdJ.D. ComuzzieA.G. DonatoK.A. AHA/ACC/TOS guideline for the management of overweight and obesity in adults.Circulation2013201412924222017
    [Google Scholar]
  390. NIHClinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults.Treasure Island (FL)StatPearls Publishing1998
    [Google Scholar]
  391. TchangBG. ArasM. KumarRB. AronneLJ. Pharmacologic Treatment of Overweight and Obesity in Adults.Treasure Island (FL)StatPearls Publishing2000
    [Google Scholar]
  392. SombraLRS. AnastasopoulouC. Pharmacologic Therapy for Obesity.Treasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  393. BansalAB Al KhaliliY Orlistat.Treasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  394. PubChemLiraglutide.2023Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Liraglutide
  395. PubChemPhentermine.2023Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Phentermine
  396. FanW. Voss-AndreaeA. CaoW.H. MorrisonS.F. Regulation of thermogenesis by the central melanocortin system.Peptides200526101800181310.1016/j.peptides.2004.11.03315979759
    [Google Scholar]
  397. ShermanM.M. UngureanuS. ReyJ.A. Naltrexone/Bupropion ER (Contrave): Newly approved treatment option for chronic weight management in obese adults.P T201641316417226957883
    [Google Scholar]
  398. HussainA. FarzamK. Setmelanotide.Treasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  399. PubChemQsymia.2023Available From: https://pubchem.ncbi.nlm.nih.gov/compound/Qsymia
  400. GaddeK. Shin Clinical utility of phentermine/topiramate (Qsymia™) combination for the treatment of obesity.Diabetes Metab. Syndr. Obes.2013201313110.2147/DMSO.S43403
    [Google Scholar]
  401. van het HofK.H. WeststrateJ.A. WestC.E. HautvastJ.G.A.J. Dietary factors that affect the bioavailability of carotenoids.J. Nutr.2000130350350610.1093/jn/130.3.50310702576
    [Google Scholar]
  402. LaiC.S. TsaiM.L. BadmaevV. JimenezM. HoC.T. PanM.H. Xanthigen suppresses preadipocyte differentiation and adipogenesis through down-regulation of PPARγ and C/EBPs and modulation of SIRT-1, AMPK, and FoxO pathways.J. Agric. Food Chem.20126041094110110.1021/jf204862d22224971
    [Google Scholar]
  403. StohsS.J. BadmaevV. A review of natural stimulant and non‐stimulant thermogenic agents.Phytother. Res.201630573274010.1002/ptr.558326856274
    [Google Scholar]
  404. Ben AmaraN. TourniaireF. MaraninchiM. AttiaN. Amiot-CarlinM.J. RaccahD. ValéroR. LandrierJ.F. DarmonP. Independent positive association of plasma β-carotene concentrations with adiponectin among non-diabetic obese subjects.Eur. J. Nutr.201554344745410.1007/s00394‑014‑0728‑624906472
    [Google Scholar]
  405. ClinicalTrials.gov ClinicalTrials.gov is a place to learn about clinical studies from around the world.2024Available From: https://clinicaltrials.gov/
  406. Available From: https://www.irct.ir/trial/43999
  407. Hajizadeh-SharafabadF. Tarighat-EsfanjaniA. GhoreishiZ. SarreshtedariM. Lutein supplementation combined with a low-calorie diet in middle-aged obese individuals: Eeffects on anthropometric indices, body composition and metabolic parameters.Br. J. Nutr.202112671028103910.1017/S000711452000499733298201
    [Google Scholar]
  408. ChoiH.D. YounY.K. ShinW.G. Positive effects of astaxanthin on lipid profiles and oxidative stress in overweight subjects.Plant Foods Hum. Nutr.201166436336910.1007/s11130‑011‑0258‑921964877
    [Google Scholar]
  409. DonosoA. González-DuránJ. MuñozA.A. GonzálezP.A. Agurto-MuñozC. Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials.Pharmacol. Res.202116610547910.1016/j.phrs.2021.10547933549728
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X310316240610111659
Loading
/content/journals/rafna/10.2174/012772574X310316240610111659
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Adiposity; carotenoids; nutraceuticals; obesity; overweight; prevention
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test