Skip to content
2000
Volume 16, Issue 2
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

Introduction

Colorectal cancer is a complex condition influenced by genetic mutations and environmental factors. Due to its intricate nature, the diagnosis and treatment of this condition require a comprehensive approach that considers individual circumstances. The study aimed to identify genes linked with colorectal cancer and their therapeutic agents from natural bioactive compounds.

Methods

The significantly prognostic differentially expressed genes (DEGs) were screened out from NCBI Gene Expression Omnibus (GEO) datasets. A protein-protein interaction network was constructed using STRING Database, and key genes were identified using Network Analyzer and CytoNCA plugins within Cytoscape. Further analysis involved functional annotations, and biological pathways analysis, SRC mechanism to uncover the role of SRC in CRC. Additionally, we performed virtual screening and molecular docking, Physiochemical property analysis along with MD simulation study to propose suitable natural compounds for promising therapeutic targets.

Results

The study conducted differential gene expression analysis, identifying 3621 statistically significant genes, with 1467 upregulated and 2154 downregulated. The top ten genes with the highest degree, betweenness centrality, and closeness centrality in the PPI network were selected as key genes. The SRC gene was found to have the highest degree and closeness centrality. Functional annotation and pathway analysis of key genes with a specific focus on the SRC mechanism revealed that the SRC's role in activating the RAS-RAF-MEK-ERK and Wnt/β-catenin pathways in CRC cells, promoting proliferation and invasion. Molecular modelling of SRC led to the screening of phyto-compounds from tropical fruits, with Rutin exhibiting a higher docking score compared to FDA-approved anticancer drugs. MD simulations over 100 ns and the post-MD analysis . RMSD, SASA, RMSF, FEL, RG, Hydrogen bond, PCA, and MMPBSA, comprehended the stable and robust interactions of a protein-ligand complex. These findings suggest Rutin's potential as a potent natural molecule for treating CRC.

Conclusion

The study concludes that SRC plays a pivotal role in CRC, influencing cellular processes critical to cancer development and Rutin has been found to be a promising SRC inhibitor, suggesting a potential alternative therapeutic strategy for CRC. The consistent molecular interactions of Rutin necessitate further validation through wet lab experiments, offering hope for individuals affected by CRC.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X294492240527081926
2024-06-25
2025-10-11
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. HankeyW. FrankelW.L. GrodenJ. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: Implications for therapeutic targeting.Cancer Metastasis Rev.201837115917210.1007/s10555‑017‑9725‑6 29318445
    [Google Scholar]
  4. SaifM.W. Alternative treatment options in patients with colorectal cancer who encounter fluoropyrimidine-induced cardiotoxicity.OncoTargets Ther.202013101971020610.2147/OTT.S264156 33116601
    [Google Scholar]
  5. YamaokaT. KusumotoS. AndoK. OhbaM. OhmoriT. Receptor tyrosine kinase-targeted cancer therapy.Int. J. Mol. Sci.20181911349110.3390/ijms19113491 30404198
    [Google Scholar]
  6. VuongQ.V. HirunS. PhillipsP.A. ChuenT.L.K. BowyerM.C. GoldsmithC.D. ScarlettC.J. Fruit-derived phenolic compounds and pancreatic cancer: Perspectives from australian native fruits.J. Ethnopharmacol.2014152222724210.1016/j.jep.2013.12.023 24463158
    [Google Scholar]
  7. SlavinJ.L. LloydB. Health benefits of fruits and vegetables.Adv. Nutr.20123450651610.3945/an.112.002154 22797986
    [Google Scholar]
  8. BrockmuellerA. SameriS. LiskovaA. ZhaiK. VargheseE. SamuelS.M. BüsselbergD. KubatkaP. ShakibaeiM. Resveratrol’s anti-cancer effects through the modulation of tumor glucose metabolism.Cancers202113218810.3390/cancers13020188 33430318
    [Google Scholar]
  9. MukherjeeS. MazumdarM. ChakrabortyS. MannaA. SahaS. KhanP. BhattacharjeeP. GuhaD. AdhikaryA. MukhjerjeeS. DasT. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop.Stem Cell Res. Ther.20145511610.1186/scrt506 25315241
    [Google Scholar]
  10. Naiki-ItoA. ChewonarinT. TangM. PitchakarnP. KunoT. OgawaK. AsamotoM. ShiraiT. TakahashiS. Ellagic acid, a component of pomegranate fruit juice, suppresses androgen-dependent prostate carcinogenesis via induction of apoptosis.Prostate201575215116010.1002/pros.22900 25284475
    [Google Scholar]
  11. GranatoM. RizzelloC. Gilardini MontaniM.S. CuomoL. VitilloM. SantarelliR. GonnellaR. D’OraziG. FaggioniA. CironeM. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways.J. Nutr. Biochem.20174112413610.1016/j.jnutbio.2016.12.011 28092744
    [Google Scholar]
  12. KoolajiN. ShammugasamyB. SchindelerA. DongQ. DehghaniF. ValtchevP. Citrus peel flavonoids as potential cancer prevention agents.Curr. Dev. Nutr.202045nzaa02510.1093/cdn/nzaa025 32391511
    [Google Scholar]
  13. KumarM. TomarM. AmarowiczR. SaurabhV. NairM.S. MaheshwariC. SasiM. PrajapatiU. HasanM. SinghS. ChanganS. PrajapatR.K. BerwalM.K. SatankarV. Guava (Psidium guajava L.) Leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities.Foods202110475210.3390/foods10040752 33916183
    [Google Scholar]
  14. KandasamyP. ShanmugapriyaC. Medicinal and nutritional characteristics of fruits in human health.Plants J.201644124131
    [Google Scholar]
  15. DreherM. Whole fruits and fruit fiber emerging health effects.Nutrients20181012183310.3390/nu10121833 30487459
    [Google Scholar]
  16. CosmeF. PintoT. AiresA. MoraisM.C. BacelarE. AnjosR. Ferreira-CardosoJ. OliveiraI. VilelaA. GonçalvesB. Red fruits composition and their health benefits: A review.Foods202211564410.3390/foods11050644 35267278
    [Google Scholar]
  17. OtteJ. DizdarL. BehrensB. GoeringW. KnoefelW.T. WruckW. StoeckleinN.H. AdjayeJ. FGF signalling in the self-renewal of colon cancer organoids.Sci. Rep.2019911736510.1038/s41598‑019‑53907‑7 31758153
    [Google Scholar]
  18. ArdizzoneA. BovaV. CasiliG. RepiciA. LanzaM. GiuffridaR. ColarossiC. MareM. CuzzocreaS. EspositoE. PaternitiI. Role of basic fibroblast growth factor in cancer: Biological activity, targeted therapies, and prognostic value.Cells2023127100210.3390/cells12071002 37048074
    [Google Scholar]
  19. YamamotoT. MiyoshiH. KakizakiF. MaekawaH. YamauraT. MorimotoT. KatayamaT. KawadaK. SakaiY. TaketoM.M. Chemosensitivity of patient-derived cancer stem cells identifies colorectal cancer patients with potential benefit from FGFR inhibitor therapy.Cancers2020128201010.3390/cancers12082010 32708005
    [Google Scholar]
  20. ZhangZ. ZhangY. QinX. WangY. FuJ. FGF9 promotes cisplatin resistance in colorectal cancer via regulation of Wnt/β catenin signaling pathway.Exp. Ther. Med.20191931711171810.3892/etm.2019.8399 32104224
    [Google Scholar]
  21. JananiB. VijayakumarM. PriyaK. KimJ.H. GeddawyA. ShahidM. El-BidawyM.H. Al-GhamdiS. AlsaidanM. AbdelzaherM.H. MohideenA.P. RameshT. A network-based pharmacological investigation to identify the mechanistic regulatory pathway of andrographolide against colorectal cancer.Front. Pharmacol.20221396726210.3389/fphar.2022.967262 36110531
    [Google Scholar]
  22. XiaJ. BennerM.J. HancockR.E.W. NetworkAnalyst integrative approaches for protein–protein interaction network analysis and visual exploration.Nucleic Acids Res.201442W1W167W17410.1093/nar/gku443 24861621
    [Google Scholar]
  23. QiangR. ZhaoZ. TangL. WangQ. WangY. HuangQ. Identification of 5 hub genes related to the early diagnosis, tumour stage, and poor outcomes of hepatitis B virus-related hepatocellular carcinoma by bioinformatics analysis.Comput. Math. Methods Med.2021202112010.1155/2021/9991255 34603487
    [Google Scholar]
  24. SinghS.P. KumarS. MathanS.V. TomarM.S. SinghR.K. VermaP.K. KumarA. KumarS. SinghR.P. AcharyaA. Therapeutic application of Carica papaya leaf extract in the management of human diseases.Daru202028273574410.1007/s40199‑020‑00348‑7 32367410
    [Google Scholar]
  25. NyakundiB.B. YangJ. Uses of papaya leaf and seaweed supplementations for controlling glucose homeostasis in diabetes.Int. J. Mol. Sci.2023247684610.3390/ijms24076846 37047820
    [Google Scholar]
  26. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  27. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.0506580102 16199517
    [Google Scholar]
  28. KanehisaM. SatoY. KawashimaM. FurumichiM. TanabeM. KEGG as a reference resource for gene and protein annotation.Nucleic Acids Res.201644D1D457D46210.1093/nar/gkv1070 26476454
    [Google Scholar]
  29. KolurV. VastradB. VastradC. KotturshettiS. TengliA. Identification of candidate biomarkers and therapeutic agents for heart failure by bioinformatics analysis.BMC Cardiovasc. Disord.202121132910.1186/s12872‑021‑02146‑8 34218797
    [Google Scholar]
  30. YatesB. BraschiB. GrayK.A. SealR.L. TweedieS. BrufordE.A. Genenames.org: The HGNC and VGNC resources in 2017.Nucleic Acids Res.201745D1D619D62510.1093/nar/gkw1033 27799471
    [Google Scholar]
  31. AhmadU. AbdullahS. ChauD.M. ChiaS.L. YusoffK. ChanS.C. OngT.A. RazackA.H. VeerakumarasivamA. Analysis of PPI networks of transcriptomic expression identifies hub genes associated with Newcastle disease virus persistent infection in bladder cancer.Sci. Rep.2023131732310.1038/s41598‑022‑20521‑z 37147328
    [Google Scholar]
  32. YanX. LiuX.P. GuoZ.X. LiuT.Z. LiS. Identification of hub genes associated with progression and prognosis in patients with bladder cancer.Front. Genet.20191040810.3389/fgene.2019.00408 31134129
    [Google Scholar]
  33. SzklarczykD. FranceschiniA. WyderS. ForslundK. HellerD. Huerta-CepasJ. SimonovicM. RothA. SantosA. TsafouK.P. KuhnM. BorkP. JensenL.J. von MeringC. STRING v10: Protein–protein interaction networks, integrated over the tree of life.Nucleic Acids Res.201543D1D447D45210.1093/nar/gku1003 25352553
    [Google Scholar]
  34. ZhangZ. ZhaoL. WeiX. GuoQ. ZhuX. WeiR. YinX. ZhangY. WangB. LiX. Integrated bioinformatic analysis of microarray data reveals shared gene signature between MDS and AML.Oncol. Lett.20181645147515910.3892/ol.2018.9237 30214614
    [Google Scholar]
  35. DennisG.Jr ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.200345310.1186/gb‑2003‑4‑5‑p3 12734009
    [Google Scholar]
  36. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  37. AliS. KhanF. MohammadT. LanD. HassanM. WangY. Identification and evaluation of inhibitors of lipase from Malassezia restricta using virtual high-throughput screening and molecular dynamics studies.Int. J. Mol. Sci.201920488410.3390/ijms20040884 30781686
    [Google Scholar]
  38. Bahadur GurungA. Ajmal AliM. LeeJ. Abul FarahM. Mashay Al-AnaziK. Structure-based virtual screening of phytochemicals and repurposing of FDA approved antiviral drugs unravels lead molecules as potential inhibitors of coronavirus 3C-like protease enzyme.J. King Saud Univ. Sci.20203262845285310.1016/j.jksus.2020.07.007 32837113
    [Google Scholar]
  39. LuoW. DengJ. HeJ. YinL. YouR. ZhangL. ShenJ. HanZ. XieF. HeJ. GuanY. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi‐target pharmacology of fenugreek against diabetes.J. Cell. Mol. Med.202327141959197410.1111/jcmm.17787 37257051
    [Google Scholar]
  40. LaskowskiR.A. SwindellsM.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u 21919503
    [Google Scholar]
  41. RyckboschS.M. WenderP.A. PandeV.S. Molecular dynamics simulations reveal ligand-controlled positioning of a peripheral protein complex in membranes.Nat. Commun.201781610.1038/s41467‑016‑0015‑8 28232750
    [Google Scholar]
  42. ChaudharyN. AparoyP. Deciphering the mechanism behind the varied binding activities of COXIBs through molecular dynamic simulations, MM-PBSA binding energy calculations and per-residue energy decomposition studies.J. Biomol. Struct. Dyn.201735486888210.1080/07391102.2016.1165736 26982261
    [Google Scholar]
  43. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  44. Al-KarmalawyA.A. DahabM.A. MetwalyA.M. ElhadyS.S. ElkaeedE.B. EissaI.H. DarwishK.M. Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor.Front Chem.2021966123010.3389/fchem.2021.661230 34017819
    [Google Scholar]
  45. CrespoM. VilarE. TsaiS.Y. ChangK. AminS. SrinivasanT. ZhangT. PipaliaN.H. ChenH.J. WitherspoonM. GordilloM. XiangJ.Z. MaxfieldF.R. LipkinS. EvansT. ChenS. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing.Nat. Med.201723787888410.1038/nm.4355 28628110
    [Google Scholar]
  46. MousavianZ. KhodabandehM. Sharifi-ZarchiA. NadafianA. MahmoudiA. StrongestPath: a Cytoscape application for protein–protein interaction analysis.BMC Bioinformatics202122135210.1186/s12859‑021‑04230‑4 34187355
    [Google Scholar]
  47. MondragónR.J. Estimating degree–degree correlation and network cores from the connectivity of high–degree nodes in complex networks.Sci. Rep.2020101566810.1038/s41598‑020‑62523‑9 32221346
    [Google Scholar]
  48. RavaszE. BarabásiA.L. Hierarchical organization in complex networks.Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics200367202611210.1103/PhysRevE.67.026112 12636753
    [Google Scholar]
  49. ValenteT.W. CorongesK. LakonC. CostenbaderE. How correlated are network centrality measures?Connections20082811626 20505784
    [Google Scholar]
  50. VermaR.N. MalikM.Z. SinghG.P. SubbaraoN. Identification of key proteins in host–pathogen interactions between Mycobacterium tuberculosis and Homo sapiens: A systematic network theoretical approach.Healthc. Analyt.2022210005210.1016/j.health.2022.100052
    [Google Scholar]
  51. AzizF. ShoaibN. RehmanA. Hub genes identification and association of key pathways with hypoxia in cancer cells: A bioinformatics analysis.Saudi J. Biol. Sci.202330910375210.1016/j.sjbs.2023.103752 37593462
    [Google Scholar]
  52. XieY.H. ChenY.X. FangJ.Y. Comprehensive review of targeted therapy for colorectal cancer.Signal Transduct. Target. Ther.2020512210.1038/s41392‑020‑0116‑z 32296018
    [Google Scholar]
  53. AhrensT.D. Bang-ChristensenS.R. JørgensenA.M. LøppkeC. SpliidC.B. SandN.T. ClausenT.M. SalantiA. AgerbækM.Ø. The role of proteoglycans in cancer metastasis and circulating tumor cell analysis.Front. Cell Dev. Biol.2020874910.3389/fcell.2020.00749 32984308
    [Google Scholar]
  54. NamS. ParkT. Pathway-based evaluation in early onset colorectal cancer suggests focal adhesion and immunosuppression along with epithelial-mesenchymal transition.PLoS One201274e3168510.1371/journal.pone.0031685 22496728
    [Google Scholar]
  55. ZhaoH. MingT. TangS. RenS. YangH. LiuM. TaoQ. XuH. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target.Mol. Cancer202221114410.1186/s12943‑022‑01616‑7 35836256
    [Google Scholar]
  56. KoveitypourZ. PanahiF. VakilianM. PeymaniM. Seyed ForootanF. Nasr EsfahaniM.H. GhaediK. Signaling pathways involved in colorectal cancer progression.Cell Biosci.2019919710.1186/s13578‑019‑0361‑4 31827763
    [Google Scholar]
  57. SiveenK.S. PrabhuK.S. AchkarI.W. KuttikrishnanS. ShyamS. KhanA.Q. MerhiM. DermimeS. UddinS. Role of non receptor tyrosine kinases in hematological malignances and its targeting by natural products.Mol. Cancer20181713110.1186/s12943‑018‑0788‑y 29455667
    [Google Scholar]
  58. OrtizM.A. MikhailovaT. LiX. PorterB.A. BahA. KotulaL. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition.Cell Commun. Signal.20211916710.1186/s12964‑021‑00750‑x 34193161
    [Google Scholar]
  59. ZhangS. HuangW.C. ZhangL. ZhangC. LoweryF.J. DingZ. GuoH. WangH. HuangS. SahinA.A. AldapeK.D. SteegP.S. YuD. SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases.Cancer Res.201373185764577410.1158/0008‑5472.CAN‑12‑1803 23913825
    [Google Scholar]
  60. ZhangY. WangX. Targeting the Wnt/β-catenin signaling pathway in cancer.J. Hematol. Oncol.202013116510.1186/s13045‑020‑00990‑3 33276800
    [Google Scholar]
  61. SeverR. BruggeJ.S. Signal transduction in cancer.Cold Spring Harb. Perspect. Med.201554a006098a00609810.1101/cshperspect.a006098 25833940
    [Google Scholar]
  62. FarooqM. KhanA.W. KimM.S. ChoiS. The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration.Cells20211011324210.3390/cells10113242 34831463
    [Google Scholar]
  63. PelazS.G. TaberneroA. Src: Coordinating metabolism in cancer.Oncogene202241454917492810.1038/s41388‑022‑02487‑4 36217026
    [Google Scholar]
  64. Mossahebi-MohammadiM. QuanM. ZhangJ.S. LiX. FGF signaling pathway: A key regulator of stem cell pluripotency.Front. Cell Dev. Biol.202087910.3389/fcell.2020.00079 32133359
    [Google Scholar]
  65. DhianawatyD. AtikN. DwiwinaR.G. MudaI. Preliminary identification and quantification of four secondary metabolites, total tannin and total flavonoid contents in guava fruit ethanol extract.Pharmacogn. J.202214235035710.5530/pj.2022.14.45
    [Google Scholar]
  66. KhorB.K. ChearN.J.Y. AziziJ. KhawK.Y. Chemical composition, antioxidant and cytoprotective potentials of Carica papaya leaf extracts: A comparison of supercritical fluid and conventional extraction methods.Molecules2021265148910.3390/molecules26051489 33803330
    [Google Scholar]
  67. Abdul-HammedM. AdedotunI.O. OlajideM. IraborC.O. AfolabiT.I. GbadeboI.O. RhymanL. RamasamiP. Virtual screening, ADMET profiling, PASS prediction, and bioactivity studies of potential inhibitory roles of alkaloids, phytosterols, and flavonoids against COVID-19 main protease (M pro).Nat. Prod. Res.202236123110311610.1080/14786419.2021.1935933 34107799
    [Google Scholar]
  68. DoakB.C. OverB. GiordanettoF. KihlbergJ. Oral druggable space beyond the rule of 5: Insights from drugs and clinical candidates.Chem. Biol.20142191115114210.1016/j.chembiol.2014.08.013 25237858
    [Google Scholar]
  69. SznarkowskaA. KosteckaA. MellerK. BielawskiK.P. Inhibition of cancer antioxidant defense by natural compounds.Oncotarget201789159961601610.18632/oncotarget.13723 27911871
    [Google Scholar]
  70. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  71. ChoiS.S. ParkH.R. LeeK.A. A comparative study of rutin and rutin glycoside: Antioxidant activity, anti-inflammatory effect, effect on platelet aggregation and blood coagulation.Antioxidants20211011169610.3390/antiox10111696 34829567
    [Google Scholar]
  72. RahmanF. TabrezS. AliR. AlqahtaniA.S. AhmedM.Z. RubA. Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins.J. Tradit. Complement. Med.202111217317910.1016/j.jtcme.2021.01.006 33520682
    [Google Scholar]
  73. S, P. Prediction of activity spectra for substances.J. Pharmacol. Pharmacother.201121525310.4103/0976‑500X.77119 21701651
    [Google Scholar]
  74. HouZ. YinW. HaoZ. FanK. SunN. SunP. LiH. Molecular simulation study on the interaction between porcine CR1-like and C3b.Molecules2023285218310.3390/molecules28052183 36903431
    [Google Scholar]
  75. AhmedM.C. CrehuetR. Lindorff-LarsenK. Computing, analyzing, and comparing the radius of gyration and hydrodynamic radius in conformational ensembles of intrinsically disordered proteins.Intrinsically Disordered Proteins; Kragelund, B.B. SkriverK. Methods in Molecular Biology202042944510.1007/978‑1‑0716‑0524‑0_21
    [Google Scholar]
  76. SharmaJ. Kumar BhardwajV. SinghR. RajendranV. PurohitR. KumarS. An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2.Food Chem.202134612893310.1016/j.foodchem.2020.128933 33418408
    [Google Scholar]
  77. ChenD. OezguenN. UrvilP. FergusonC. DannS.M. SavidgeT.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing.Sci. Adv.201623e150124010.1126/sciadv.1501240 27051863
    [Google Scholar]
  78. ZhangS. WangY. HanL. FuX. WangS. LiW. HanW. Targeting N-Terminal human maltase-glucoamylase to unravel possible inhibitors using molecular docking, molecular dynamics simulations, and adaptive steered molecular dynamics simulations.Front Chem.2021971124210.3389/fchem.2021.711242 34527658
    [Google Scholar]
  79. DavidC.C. JacobsD.J. Principal component analysis: A method for determining the essential dynamics of proteins.Methods Mol. Biol.2014108419322610.1007/978‑1‑62703‑658‑0_11
    [Google Scholar]
  80. KumariA. MittalL. SrivastavaM. PathakD.P. AsthanaS. Conformational characterization of the co-activator binding site revealed the mechanism to achieve the bioactive state of FXR.Front. Mol. Biosci.2021865831210.3389/fmolb.2021.658312 34532338
    [Google Scholar]
  81. HuangK. LuoS. CongY. ZhongS. ZhangJ.Z.H. DuanL. An accurate free energy estimator: Based on MM/PBSA combined with interaction entropy for protein–ligand binding affinity.Nanoscale20201219107371075010.1039/C9NR10638C 32388542
    [Google Scholar]
  82. WheelerD.L. IidaM. DunnE.F. The role of Src in solid tumors.Oncologist200914766767810.1634/theoncologist.2009‑0009 19581523
    [Google Scholar]
  83. LinX. WangG. LiuP. HanL. WangT. ChenK. GaoY. Gallic acid suppresses colon cancer proliferation by inhibiting SRC and EGFR phosphorylation.Exp. Ther. Med.202121663810.3892/etm.2021.10070 33968169
    [Google Scholar]
  84. WangM. LiuX. ChenT. ChengX. XiaoH. MengX. JiangY. Inhibition and potential treatment of colorectal cancer by natural compounds via various signaling pathways.Front. Oncol.20221295679310.3389/fonc.2022.956793 36158694
    [Google Scholar]
  85. GavrilasL.I. CruceriuD. MocanA. LoghinF. MiereD. BalacescuO. Plant-derived bioactive compounds in colorectal cancer: Insights from combined regimens with conventional chemotherapy to overcome drug-resistance.Biomedicines2022108194810.3390/biomedicines10081948 36009495
    [Google Scholar]
  86. SandilandsE. AkbarzadehS. VecchioneA. McEwanD.G. FrameM.C. HeathJ.K. Src kinase modulates the activation, transport and signalling dynamics of fibroblast growth factor receptors.EMBO Rep.20078121162116910.1038/sj.embor.7401097 17975556
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X294492240527081926
Loading
/content/journals/rafna/10.2174/012772574X294492240527081926
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test