Skip to content
2000
image of A Deep Ensemble Learning Approach for Automatic AD Detection

Abstract

Introduction

Early detection of Alzheimer's disease (AD) is crucial due to its rising prevalence and the economic burdens it imposes on individuals and society. This study aimed to propose a technique for the early detection of AD using MRI scans.

Method

The methodology involved collecting data, preparing the data, creating both single and combined models, assessing with ADNI data, and confirming with additional datasets. The approach was chosen by comparing various scenarios. The top six individual ConvNet-based classifiers were combined to form the ensemble model. The evaluation showed high accuracy rates across various classification groups. Validation of additional data showed impressive accuracy, exceeding results from numerous previous studies and aligning with others.

Results

Although ensemble methods outperformed individual models, there were no notable distinctions among different ensemble approaches. The ensemble model was constructed using the top six individual ConvNet-based classifiers in deep learning (DL), achieving high accuracy rates across various classification categories: 98.66% for Normal control | AD, 96.56% for Normal control | Early MCI, 94.41%

Conclusion

Early MCI/Late MCI, 99.96% for Late MCI | AD, 94.19% for four-way classification, and 94.93% for three-way classification. Validation results underscored the limited effectiveness of individual models in practical settings, contrasting with the promising outcomes of the ensemble method.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965354299241225100818
2025-01-22
2025-09-09
Loading full text...

Full text loading...

References

  1. Abrol A. Bhattarai M. Fedorov A. Du Y. Plis S. Calhoun V. Deep residual learning for neuroimaging: An application to predict progression to AD. J. Neurosci. Methods 2019 339 1 1 17
    [Google Scholar]
  2. Basaia S. Agosta F. Wagner L. Canu E. Magnani G. Santangelo R. Filippi M. Automated classification of AD and MCI using a single MRI and deep neural networks. Neuroimage Clin. 2019 21 1 1 28
    [Google Scholar]
  3. Basheer S. Bhatia S. Sakri S.B. Computational modeling of dementia prediction using deep neural network: Analysis on OASIS dataset. IEEE Access 2021 9 1 42449 42462 10.1109/ACCESS.2021.3066213
    [Google Scholar]
  4. Basheera Shaik DL-based AD early diagnosis using T2w segmented gray matter MRI. Int. J. Imaging Syst. Technol. 2021 31 3 1 19 10.1002/ima.22553
    [Google Scholar]
  5. Cui R. Liu M. Hippocampus analysis by combination of 3-D DenseNet and shapes for alzheimer’s disease diagnosis. IEEE J. Biomed. Health Inform. 2019 23 5 2099 2107 10.1109/JBHI.2018.2882392 30475734
    [Google Scholar]
  6. Ebrahimighahnavieh A. Luo S. Chiong R. DL to detect AD from neuroimaging: A systematic literature review. Comput. Methods Programs Biomed. 2020 187 1 1 19
    [Google Scholar]
  7. Gorji H.T. Kaabouch N. A DL approach for diagnosis of MCI based on MRI images. Brain Sci. 2019 9 9 1 14 31466398
    [Google Scholar]
  8. Guan H. Wang C. Cheng J. Jing J. Liu T. A parallel attention‐augmented bilinear network for early magnetic resonance imaging‐based diagnosis of Alzheimer’s disease. Hum. Brain Mapp. 2022 43 2 760 772 10.1002/hbm.25685 34676625
    [Google Scholar]
  9. Islam Jyoti Zhang Yanqing Brain MRI analysis for AD diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform. 2018 5 2 2 10.1186/s40708‑018‑0080‑3
    [Google Scholar]
  10. Jain R. Jain N. Aggarwal A. Hemanth D.J. Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cogn. Syst. Res. 2019 57 1 147 159 10.1016/j.cogsys.2018.12.015
    [Google Scholar]
  11. Janghel R.R. Rathore Y.K. Deep convolution neural network based system for early diagnosis of alzheimer’s disease. IRBM 2021 42 4 258 267 10.1016/j.irbm.2020.06.006
    [Google Scholar]
  12. Kang L. Jiang J. Huang J. Zhang T. Identifying early MCI by multi-modality MRI-based DL. Front. Aging Neurosci. 2020 12 1 1 10
    [Google Scholar]
  13. Srividhya L Sowmya V DL-based approach for multi-stage diagnosis of AD. Multimedia Tools Appl. 2023 83 1 16799 16822
    [Google Scholar]
  14. Sarraf S. Desouza D.D. Anderson J.A.E. Saverino C. MCADNNet: Recognizing stages of cognitive impairment through efficient convolutional fMRI and MRI neural network topology models. IEEE Access 2019 7 1 155584 155600 10.1109/ACCESS.2019.2949577 32021737
    [Google Scholar]
  15. Shanmugam J.V. Duraisamy B. Simon B.C. Bhaskaran P. AD classification using pre-trained deep networks. Biomed. Signal Process. Control 2022 71 1 1 16
    [Google Scholar]
  16. Ana N. Ding H. Yang J. Au R. Ang T.F.A. Deep ensemble learning for AD classification. J. Biomed. Inform. 2020 105 1 1 11
    [Google Scholar]
  17. Altwijri O. Alanazi R. Aleid A. Alhussaini K. Aloqalaa Z. Almijalli M. Saad A. Novel deep-learning approach for automatic diagnosis of alzheimer’s disease from MRI. Appl. Sci. 2023 13 24 13051 10.3390/app132413051
    [Google Scholar]
  18. Hadeer A. DL approach for early detection of AD. Cognit. Comput. 2021 14 1 1711 1727
    [Google Scholar]
  19. Saleem T.J. Zahra S.R. Wu F. Alwakeel A. Alwakeel M. Jeribi F. Hijji M. DL-based diagnosis of AD. J. Pers. Med. 2022 12 5 1 29 35629237
    [Google Scholar]
  20. Nguyen D. Nguyen H. Ong H. Le H. Ha H. Duc N.T. Ngo H.T. Ensemble learning using traditional ML and deep neural network for diagnosis of AD. IBRO Neurosci Rep 2022 13 1 255 263 10.1016/j.ibneur.2022.08.010 36590098
    [Google Scholar]
  21. Liu S. Masurkar A.V. Rusinek H. Chen J. Ben Zhang W.Z. Fernandez-Granda C. Razavian N. Generalizable DL model for early AD detection from structural MRIs. Sci. Rep. 2022 12 1 1 12 34992227
    [Google Scholar]
  22. Al Shehri W. AD diagnosis and classification using DL techniques. PeerJ Comput. Sci. 2022 8 e1177 1 13
    [Google Scholar]
  23. Deep learning in alzheimer's disease: Diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci. 2019 11 220 10.3389/fnagi.2019.00220
    [Google Scholar]
  24. Srinivasan S. Ramadass P. Mathivanan S.K. Panneer Selvam K. Shivahare B.D. Shah M.A. Detection of parkinson disease using multiclass machine learning approach. Sci. Rep. 2024 14 1 13813 10.1038/s41598‑024‑64004‑9 38877028
    [Google Scholar]
  25. Wang X. Garg S. Lin H. Hu J. Kaddoum G. Jalil Piran M. Hossain M.S. Toward accurate anomaly detection in industrial internet of things using hierarchical federated learning. IEEE Internet Things J. 2022 9 10 7110 7119 10.1109/JIOT.2021.3074382
    [Google Scholar]
  26. Wang X. Liu W. Lin H. Hu J. Kaur K. Hossain M.S. AI-empowered trajectory anomaly detection for intelligent transportation systems: A hierarchical federated learning approach. IEEE Trans. Intell. Transp. Syst. 2023 24 4 4631 4640 10.1109/TITS.2022.3209903
    [Google Scholar]
  27. Ge Yanning Xu Li Wang Xiaoding Que Youxiong Jalil Piran Md. 2024 A novel framework for multimodal brain tumor detection with scarce labels IEEE J. Biomed. Health Inform 1 14 10.1109/JBHI.2024.3467343
    [Google Scholar]
  28. Srinivasan S. Dayalane S. Mathivanan S. Rajadurai H. Jayagopal P. Dalu G.T. Detection and classification of adult epilepsy using hybrid deep learning approach. Sci. Rep. 2023 13 1 17574 10.1038/s41598‑023‑44763‑7 37845403
    [Google Scholar]
  29. Petersen R.C. Aisen P.S. Beckett L.A. Donohue M.C. Gamst A.C. Harvey D.J. Jack C.R. Jr Jagust W.J. Shaw L.M. Toga A.W. Trojanowski J.Q. Weiner M.W. Alzheimer’s disease neuroimaging initiative (ADNI). Neurology 2010 74 3 201 209 10.1212/WNL.0b013e3181cb3e25 20042704
    [Google Scholar]
  30. Tavakoli Nahid Jahanbakhsh Maryam Akbari Mojtaba Baktashian Mojtba Hasanzadeh Akbar Sadeghpour Samaneh The study of inpatient medical records on hospital deductions: An interventional study. J Educ Health Promot. 2015 4 38 10.4103/2277‑9531.157218.
    [Google Scholar]
  31. Mehmood A. Yang S. Feng Z. Wang M. Ahmad A.L.S. Khan R. Maqsood M. Yaqub M. A transfer learning approach for early diagnosis of alzheimer’s disease on MRI images. Neuroscience 2021 460 43 52 10.1016/j.neuroscience.2021.01.002 33465405
    [Google Scholar]
  32. Zhang X. Han L. Zhu W. Sun L. Zhang D. An explainable 3d residual self-attention deep neural network for joint atrophy localization and AD diagnosis using structural MRI. Electr. Eng. Syst Sci. 2020 14 8 1 10
    [Google Scholar]
  33. Andrushia A. Sagayam K. Dang H. Pomplun M. Quach L. Visual-saliency-based abnormality detection for MRI brain images: Alzheimer’s disease analysis. Appl. Sci. 2021 11 19 9199 10.3390/app11199199
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965354299241225100818
Loading
/content/journals/raeeng/10.2174/0123520965354299241225100818
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: ConvNet ; deep learning ; transfer learning ; Magnetic resonance imaging ; AD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test