Skip to content
2000
Volume 18, Issue 8
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Introduction

Electrocardiogram-based facial emotion identification has been a widely spread field in the last few decades. Due to its non-linearity, non-stationary and noisy properties, it is a very difficult job to create a framework that is capable of recognizing emotions with a high recognition rate.

Methods

In this work, we introduce a new framework for facial emotion detection based on feature creation using a topographic representation of ECG signal properties. The feature map is created using deep learning techniques, and further, extricated features are then used for classification techniques to detect facial emotion recognition.

Results

The recognition results are achieved on two publicly available facial expression datasets, , Ascertain and Dreamer. We illustrated the usefulness of our framework by comparing results with other existing methods.

Conclusion

The recognition results prove that the introduced framework can enhance the identifying rate on various given datasets.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965293221240411091945
2024-04-25
2025-11-15
Loading full text...

Full text loading...

References

  1. AhmedF. BariA.S.M.H. GavrilovaM.L. Emotion recognition from body movement.IEEE Access20208117611178110.1109/ACCESS.2019.2963113
    [Google Scholar]
  2. AlreshidiA. UllahM. Facial emotion recognition using hybrid features.Informatics202067
    [Google Scholar]
  3. KhalilR.A. JonesE. BabarM.I. JanT. ZafarM.H. AlhussainT. Speech emotion recognition using deep learning techniques: A review.IEEE Access2019711732711734510.1109/ACCESS.2019.2936124
    [Google Scholar]
  4. ChenX. ZengW. ShiY. DengJ. MaY. Intrinsic prior knowledge driven cica fMRI data analysis for emotion recognition classification.IEEE Access20197599445995010.1109/ACCESS.2019.2915291
    [Google Scholar]
  5. KajalD.S. FioravantiC. ElshahabiA. RuizS. SitaramR. BraunC. Involvement of top-down networks in the perception of facial emotions: A magnetoencephalographic investigation.Neuroimage202022211707510.1016/j.neuroimage.2020.11707532585348
    [Google Scholar]
  6. ShuL. XieJ. YangM. LiZ. LiZ. LiaoD. XuX. YangX. A review of emotion recognition using physiological signals.Sensors2018187207410.3390/s1807207429958457
    [Google Scholar]
  7. ShuL. YuY. ChenW. HuaH. LiQ. JinJ. XuX. Wearable emotion recognition using heart rate data from a smart bracelet.Sensors2020203718
    [Google Scholar]
  8. ChamolaV. VineetA. NayyarA. HossainE. Brain-computer interface-based humanoid control: A review.Sensors20202013362010.3390/s2013362032605077
    [Google Scholar]
  9. UdovicicG. TopicA. RussoM. Wearable technologies for smart environments: A review with emphasis on BCI.24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 2016, pp. 1-9.10.1109/SOFTCOM.2016.7772186
    [Google Scholar]
  10. NikolovaD. GeorgievaP. PetkovaP. ManolovaA. ECG-based Emotion Recognition: Overview of Methods and Applications.ANNA '18; Advances in Neural Networks and Applications, St. Konstantin and Elena Resort, Bulgaria, 2018, pp. 1-5.
    [Google Scholar]
  11. BettsJ.G. YoungK.A. WiseJ.A. JohnsonE. PoeB. KruseD.H. KorolO. JohnsonJ.E. WombleM. DeSaixP. Anatomy and Physiology II.Houston, TX, USAOpenStax2013
    [Google Scholar]
  12. BotaP.J. WangC. FredA.L.N. Placido Da SilvaH. ReviewA Current challenges, and future possibilities on emotionrecognition using machine learning and physiological signals.IEEE Access20197140990141020
    [Google Scholar]
  13. BettsJ.G. DesaixP. JohnsonE. JohnsonJ.E. KorolO. KruseD. PoeB. WiseJ.A. WombleM. YoungK.A. Anatomy & Physiology IHouston, TX, USAOpenStax2013
    [Google Scholar]
  14. TecceJ.J. Psychophysiology: Human behavior and physiological response.Int. J. Psychophysiol.2001401899110.1016/S0167‑8760(00)00150‑1
    [Google Scholar]
  15. ChildreD.L. MartinH. RozmanD. McCratyR. Heart Intelligence. Connecting with the Intuitive Guidance of the Heart.Boulder Creek, CA, USAWater Front Press2016
    [Google Scholar]
  16. TivatansakulS. OhkuraM. Improvement of emotional healthcare system with stress detection from ECG signal.Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015, pp. 6792-6795.10.1109/EMBC.2015.7319953
    [Google Scholar]
  17. LuthraA. ECG Made Easy; Jaypee Brothers.Delhi, IndiaMedical Publisher201210.5005/jp/books/11501
    [Google Scholar]
  18. RahulM. KohliN. AgarwalR. Facial expression recognition using local multidirectional score pattern descriptor and modified hidden Markov model.Int. J. Adv. Intell. Parad.202118453810.1504/IJAIP.2021.113787
    [Google Scholar]
  19. RahulM. KohliN. AgarwalR. Facial expression recognition using geometric features and modified hidden Markov model.Int. J. Gri. Util. Comput.201910488
    [Google Scholar]
  20. GoshvarpourA. AbbasiA. GoshvarpourA. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method.Biomed. J.201740635536810.1016/j.bj.2017.11.00129433839
    [Google Scholar]
  21. YadavV. RahulM. ShuklaR. A new improved approach for feature generation and selection in multi- relational statistical modelling using ML.J. Sci. Ind. Res.20207910951100
    [Google Scholar]
  22. TiwariN. PadhyeS. Analysis on the generalization of proxy signature.Secur. Commun. Netw.20136554956610.1002/sec.581
    [Google Scholar]
  23. AgrafiotiF. HatzinakosD. AndersonA.K. ECG pattern analysis for emotion detection.IEEE Trans. Affect. Comput.20123110211510.1109/T‑AFFC.2011.28
    [Google Scholar]
  24. BulagangA.F. WengN.G. MountstephensJ. TeoJ. A review of recent approaches for emotion classification using electrocardiography and electrodermography signals.Inform. Med. Unlocked20202010036310.1016/j.imu.2020.100363
    [Google Scholar]
  25. AliM. MosaA.H. Al MachotF. KyamakyaK. Emotion recognition involving physiological and speech signals: A comprehensive review.Studies in Systems, Decision and Control.Berlin/Heidelberg, GermanySpringer International Publishing AG2018Vol. 109
    [Google Scholar]
  26. RattanyuK. MizukawaM. Emotion recognition based on ecg signals for service robots in the intelligent space during daily life.J. Adv. Computa. Intell. Intell. Infor.201115558259110.20965/jaciii.2011.p0582
    [Google Scholar]
  27. BextonR.S. VallinH.O. CammA.J. Diurnal variation of the QT interval--influence of the autonomic nervous system.Heart198655325325810.1136/hrt.55.3.2533513807
    [Google Scholar]
  28. TiwariN. PadhyeS. Provable secure multi-proxy signature scheme without bilinear mapsRes Gat201517736742
    [Google Scholar]
  29. DissanayakeT. RajapakshaY. RagelR. NawinneI. An ensemble learning approach for electrocardiogram sensor based human emotion recognition.Sensors20191920449510.3390/s1920449531623279
    [Google Scholar]
  30. GajjarK. NiekerkT. WilmT. MercorelliP. Vision-based deep learning algorithm for detecting potholes.J. Phys. Conf. Ser.20222162101201910.1088/1742‑6596/2162/1/012019
    [Google Scholar]
  31. Real-MorenoO. JulioC. Rodríguez-QuiñonezO. SergiyenkoW. Flores-FuentesP. MercorelliJ. Alejandro Valdez-RodríguezG. Trujillo-HernándezJ. Miranda-VegaE. Fast template match algorithm for spatial object detection using a stereo vision system for autonomous navigationMeasurement202322011329910.1016/j.measurement.2023.113299
    [Google Scholar]
  32. LuttmannL. MercorelliP. Comparison of backpropagation and kalman filter-based training for neural networks2021 25th International Conference on System Theory, Control and Computing (ICSTCC), Iasi, Romania, 2021, pp. 234-241.10.1109/ICSTCC52150.2021.9607274
    [Google Scholar]
  33. NematiE. DeenM. MondalT. A wireless wearable ECG sensor for long-term applications.IEEE Commun. Mag.2012501364310.1109/MCOM.2012.6122530
    [Google Scholar]
  34. YangH. ZhaoX. YaoQ. YuA. ZhangJ. JiY. Accurate fault location using deep neural evolution network in cloud data center interconnectionIEEE Transactions on Cloud Computing2022221402141210.1109/TCC.2020.2974466
    [Google Scholar]
  35. YuT. YangH. YaoQ. YuA. ZhaoY. LiuS. LiY. ZhangJ. CherietM. Multi-visual-gru-based survivable computing power scheduling in metro optical networks.IEEE Trans. Netw. Serv. Manag.20242111302131510.1109/TNSM.2023.3314272
    [Google Scholar]
  36. YuA. YangH. FengC. LiY. ZhaoY. CherietM. VasilakosA.V. Socially-aware traffic scheduling for edge-assisted metaverse by deep reinforcement learning.IEEE Netw.2024110.1109/MNET.2023.3317108
    [Google Scholar]
  37. SzczepańskiA. SaeedK. A mobile device system for early warning of ECG anomalies.Sensors2014146110311104410.3390/s14061103124955946
    [Google Scholar]
  38. SubramanianR. WacheJ. AbadiM.K. VieriuR.L. WinklerS. SebeN. Ascertain: Emotion and personality recognition using commercial sensors.IEEE Trans. Affect. Comput.20189214716010.1109/TAFFC.2016.2625250
    [Google Scholar]
  39. KatsigiannisS. RamzanN. DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices.IEEE J. Biomed. Health Inform.20182219810710.1109/JBHI.2017.268823928368836
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965293221240411091945
Loading
/content/journals/raeeng/10.2174/0123520965293221240411091945
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test