Skip to content
2000
Volume 18, Issue 7
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

Due to experimental equipment limitations, it is usually difficult to measure the quasi-static hysteresis loop at extremely low frequencies, which inevitably introduces errors in the static hysteresis model.

Objective

This study aims to propose a method for calculating the static hysteresis loops of grain-oriented silicon steel sheets so as to improve the accuracy of the static and dynamic hysteresis model.

Methods

The parameters and in the magnetic field strength expression of the excess loss are determined by the measured losses within the range of 0-100Hz. Subsequently, the dynamic components in the quasi-static hysteresis loops are eliminated. Furthermore, a dynamic hysteresis model is established based on the loss and field separation theory, which incorporates the inverse Preisach model.

Results

The dynamic hysteresis loops of the grain-oriented silicon steel sheets are measured in the range of 8-250Hz and compared with the results of both the improved model and the original model.

Conclusion

Experimental results demonstrate the effectiveness and accuracy of the improved model. The proposed method for calculating static hysteresis loops has universal applicability and is meaningful for accurate simulation and prediction of magnetic properties in soft magnetic materials.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965290791240507054649
2024-05-21
2025-09-26
Loading full text...

Full text loading...

References

  1. ElgamliE. AnayiF. Advancements in electrical steels: A comprehensive review of microstructure, loss analysis, magnetic properties, alloying elements, and the influence of coatings.Appl. Sci.202313181028310.3390/app131810283
    [Google Scholar]
  2. JosefinaM. Soft magnetic materials for a sustainable and electrified world.Science20183626413418
    [Google Scholar]
  3. XiaZ. KangY. WangQ. Developments in the production of grain-oriented electrical steel.J. Magn. Magn. Mater.2008320233229323310.1016/j.jmmm.2008.07.003
    [Google Scholar]
  4. WangT. YuanJ. Improvement on loss separation method for core loss calculation under high-frequency sinusoidal and nonsinusoidal excitation.IEEE Trans. Magn.20225881910.1109/TMAG.2022.3187206
    [Google Scholar]
  5. ZhaoX. WangR. LiuX. LiL. A dynamic hysteresis model for loss estimation of go silicon steel under dc-biased magnetization.IEEE Trans. Ind. Appl.202157140941610.1109/TIA.2020.3038712
    [Google Scholar]
  6. Quondam AntonioS. GhanimA.M. FabaA. LaudaniA. Numerical simulations of vector hysteresis processes via the Preisach model and the Energy Based Model: An application to Fe-Si laminated alloys.J. Magn. Magn. Mater.202153916837210.1016/j.jmmm.2021.168372
    [Google Scholar]
  7. De SantisV. Di FrancescoA. D’AloiaA.G. A numerical comparison between Preisach, JA and DDD hysteresis models in computational electromagnetics.Appl. Sci.2023138518110.3390/app13085181
    [Google Scholar]
  8. BertottiG. Hysteresis in magnetism.San Diego, USAAcademic199839143010.1016/B978‑012093270‑2/50061‑1
    [Google Scholar]
  9. ShiraneT. ItoM. Measurement of hysteresis loop on soft magnetic materials using lock-in amplifier.IEEE Trans. Magn.20124841437144010.1109/TMAG.2011.2174147
    [Google Scholar]
  10. ZhaoX. YangL. WangR. HuangK. ZhouL. DongL. A dynamic model for prediction of hysteresis and loss property of soft material under multiple harmonic magnetizations.IEEE Trans. Ind. Appl.20225867163717010.1109/TIA.2022.3197101
    [Google Scholar]
  11. ZhangC. LiH. TianY. LiY. YangQ. Harmonic and dc bias hysteresis characteristics simulation based on an improved preisach model.Materials20231612438510.3390/ma1612438537374569
    [Google Scholar]
  12. ZirkaS.E. MorozY.I. SteentjesS. HameyerK. ChwastekK. ZurekS. HarrisonR.G. Dynamic magnetization models for soft ferromagnetic materials with coarse and fine domain structures.J. Magn. Magn. Mater.201539422923610.1016/j.jmmm.2015.06.082
    [Google Scholar]
  13. HamzehbahmaniH. Static hysteresis modeling for grain-oriented electrical steels based on the phenomenological concepts of energy loss mechanism.J. Appl. Phys.2021130505510210.1063/5.0058554
    [Google Scholar]
  14. MayergoyzI.D. FriedmanG. Generalized Preisach model of hysteresis.IEEE Trans. Magn.198824121221710.1109/20.43892
    [Google Scholar]
  15. MayergoyzI.D. Mathematical models of hysteresis.Phys. Rev. Lett.198656151518152110.1103/PhysRevLett.56.151810032696
    [Google Scholar]
  16. DlalaE. Efficient algorithms for the inclusion of the preisach hysteresis model in nonlinear finite-element methods.IEEE Trans. Magn.201147239540810.1109/TMAG.2010.2097274
    [Google Scholar]
  17. ZirkaS.E. MorozY.I. HarrisonR.G. ChiesaN. Inverse hysteresis models for transient simulation.IEEE Trans. Power Deliv.201429255255910.1109/TPWRD.2013.2274530
    [Google Scholar]
  18. BaghelA.P.S. KulkarniS.V. Dynamic loss inclusion in the jiles–atherton (JA) hysteresis model using the original ja approach and the field separation approach.IEEE Trans. Magn.201450236937210.1109/TMAG.2013.2284381
    [Google Scholar]
  19. HauserH. Energetic model of ferromagnetic hysteresis.J. Appl. Phys.19947552584259710.1063/1.356233
    [Google Scholar]
  20. BobbioS. MilanoG. SerpicoC. VisoneC. Models of magnetic hysteresis based on play and stop hysterons.IEEE Trans. Magn.19973364417442610.1109/20.649875
    [Google Scholar]
  21. ZidaricB. MiljavecD. JA hysteresis model parameters estimation using GA.Adv. elect. electron. eng.201143174177
    [Google Scholar]
  22. TomanM. StumbergerG. DolinarD. Parameter identification of the jiles–atherton hysteresis model using differential evolution.IEEE Trans. Magn.20084461098110110.1109/TMAG.2007.915947
    [Google Scholar]
  23. HauserH. Energetic model of ferromagnetic hysteresis: Isotropic magnetization.J. Appl. Phys.20049652753276710.1063/1.1771479
    [Google Scholar]
  24. LiuR. LiL. Simulated annealing algorithm coupled with a deterministic method for parameter extraction of energetic hysteresis model.IEEE Trans. Magn.201854111510.1109/TMAG.2018.2834488
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965290791240507054649
Loading
/content/journals/raeeng/10.2174/0123520965290791240507054649
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test