Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

In response to the need for improved performance in electric machines, this paper introduces and evaluates a novel hybrid excitation partitioned stator flux-switching (HEPSFS) machine. This design optimizes output torque while considering power density, torque density, and overall efficiency.

Objective

The primary objective is to enhance electromagnetic torque production by minimizing flux leakage to the inner-stator core by creating an auxiliary air-gap in the inner-stator tooth. Additionally, a partitioned stator design is adopted to accommodate armature and field windings without space conflicts, allowing for increased windings and permanent magnets (PMs) to maximize torque density and flux regulation capability.

Methods

A comparative analysis is performed with a conventional HEPSFS (CHEPSFS) machine to evaluate the proposed design. Both machines share the same design dimensions and winding configuration to ensure a fair assessment. Finite Element Method (FEM) simulations using ANSYS Maxwell software are conducted to validate the results.

Results

The analysis reveals that the proposed HEPSFS (PHEPSFS) machine outperforms the conventional counterpart. It exhibits higher torque output, torque density, power density, and efficiency while minimizing torque ripple. Moreover, at a current angle of 0 degrees, the PHEPSFS machine shows substantial percentage improvements compared to the CHEPSFS machine: a 285% increase in torque output, a 281.39% rise in power density, a 283.82% enhancement in torque density, and a 9.14% boost in efficiency. Furthermore, the PHEPSFS machine design reduces torque ripple by an impressive 59.63% compared to the CHEPSFS machine design.

Conclusion

The study concludes that the PHEPSFS design effectively optimizes torque performance, making it a promising advancement in HEPSFS machines.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965284574240216104624
2024-03-06
2025-11-05
Loading full text...

Full text loading...

References

  1. ZhuZ.Q. Overview of novel magnetically geared machines with partitioned stators.IET Electr. Power Appl.201812559560410.1049/iet‑epa.2017.0680
    [Google Scholar]
  2. AwahC.C. Effect of permanent magnet material on the electromagnetic performance of switched-flux permanent magnet machine.Electr. Eng.202110331647166010.1007/s00202‑020‑01155‑8
    [Google Scholar]
  3. LiuX. LiY. LiuZ. LingT. LuoZ. Analysis and design of a high power density permanent magnet-assisted synchronous reluctance machine with low-cost ferrite magnets for EVs/HEVs.Compel20163561949196410.1108/COMPEL‑05‑2016‑0233
    [Google Scholar]
  4. PetkovskaL. CvetkovskiG.V. LefleyP. Study of the performance characteristics of a surface permanent magnet motor at various magnetization patterns.Compel20163561910192410.1108/COMPEL‑03‑2016‑0114
    [Google Scholar]
  5. LiJ. WangK. ZhangH. Flux-focusing permanent magnet machines with a modular consequent-pole rotor.IEEE Trans. Ind. Electron.20206753374338510.1109/TIE.2019.2922922
    [Google Scholar]
  6. LiuX. ZouY. SunT. Design and performance analysis of a novel mechanical flux-adjusting interior permanent magnet motor.Electr. Eng.202110331515152410.1007/s00202‑020‑01189‑y
    [Google Scholar]
  7. ChauK.T. ChanC.C. LiuChunhua Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles.IEEE Trans. Ind. Electron.20085562246225710.1109/TIE.2008.918403
    [Google Scholar]
  8. LiD. QuR. LiJ. XiaoL. WuL. XuW. Analysis of torque capability and quality in vernier permanent-magnet machines.IEEE Trans. Ind. Appl.201652112513510.1109/TIA.2015.2464173
    [Google Scholar]
  9. DorrellD.G. HsiehM.F. KnightA.M. Alternative rotor designs for high performance brushless permanent magnet machines for hybrid electric vehicles.IEEE Trans. Magn.201248283583810.1109/TMAG.2011.2175443
    [Google Scholar]
  10. XuL. ZhuX. JiangT. NiuS. Design and optimization of a partitioned stator hybrid excited machine with inset PM from perspective of airgap field harmonics.IEEE Trans. Energ. Convers.20233842871288310.1109/TEC.2023.3288222
    [Google Scholar]
  11. LiuD. XuH. YiH. WeiL. Analysis of A Partitioned Stator Hybrid Excitation Spoke-Type Machine.26th International Conference on Electrical Machines and Systems (ICEMS), 2023pp. 4932-4937 Zhuhai, China10.1109/ICEMS59686.2023.10344490
    [Google Scholar]
  12. LiuD. WeiL. Comparative Analysis of Different Stator/Rotor Pole Combinations in a Partitioned Stator Hybrid Excitation Machine with Consequent-Pole PMs.San FranciscoIEEE International Electric Machines & Drives Conference. IEMDC202317
    [Google Scholar]
  13. XuL. ZhuX. FanW. ZhangC. ZhangL. QuanL. Comparative analysis and design of partitioned stator hybrid excitation axial flux switching PM motors for in-wheel traction applications.IEEE Trans. Energ. Convers.20223721416142710.1109/TEC.2021.3130475
    [Google Scholar]
  14. JiangT. XuL. JiJ. ZhuX. A new partitioned stator hybrid excitation machine with internal magnetic ring.IEEE Trans. Magn.20225881610.1109/TMAG.2022.3144849
    [Google Scholar]
  15. BoztasG. AydogmusO. GuldemirH. Design and implementation of a high-efficiency low-voltage synchronous reluctance motor.Electr. Eng.2022104271772510.1007/s00202‑021‑01336‑z
    [Google Scholar]
  16. KonghirunM. XuL. A fast transient-current control strategy in sensorless vector-controlled permanent magnet synchronous motor.IEEE Trans. Power Electron.20062151508151210.1109/TPEL.2006.882419
    [Google Scholar]
  17. ChoY. LeeK.B. SongJ.H. LeeY.I. Torque-ripple minimization and fast dynamic scheme for torque predictive control of permanent-magnet synchronous motors.IEEE Trans. Power Electron.20153042182219010.1109/TPEL.2014.2326192
    [Google Scholar]
  18. ShuklaS. SinghB. Reduced-sensor-based PV array-fed direct torque control induction motor drive for water pumping.IEEE Trans. Power Electron.20193465400541510.1109/TPEL.2018.2868509
    [Google Scholar]
  19. HuaH. ZhuZ.Q. Novel partitioned stator hybrid excited switched flux machines.IEEE Trans. Energ. Convers.201732249550410.1109/TEC.2017.2656860
    [Google Scholar]
  20. Giulii CapponiF. BorocciG. De DonatoG. CaricchiF. Flux regulation strategies for hybrid excitation synchronous machines.IEEE Trans. Ind. Appl.20155153838384710.1109/TIA.2015.2417120
    [Google Scholar]
  21. LiuX. WuD. ZhuZ.Q. PrideA. DeodharR.P. SasakiT. Efficiency improvement of switched flux PM memory machine over interior pm machine for EV/HEV applications.IEEE Trans. Magn.201450111410.1109/TMAG.2014.2323556
    [Google Scholar]
  22. TongM. HuaW. ChengM. A novel space vector modulation strategy for a five-phase flux-switching permanent magnet motor drive system17th Int Conf on Electr Mach and Syst (ICEMS)20141622162810.1109/ICEMS.2014.7013737
    [Google Scholar]
  23. ZhuZ.Q. Switched flux permanent magnet machines — Innovation continues.Int Conf on Electr Mach and Syst201111010.1109/ICEMS.2011.6073317
    [Google Scholar]
  24. ThomasA.S. ZhuZ.Q. OwenR.L. JewellG.W. HoweD. Multiphase flux-switching permanent-magnet brushless machine for aerospace application.IEEE Trans. Ind. Appl.20094561971198110.1109/TIA.2009.2031901
    [Google Scholar]
  25. HuaW. ChengM. ZhuZ.Q. HoweD. Analysis and Optimization of Back-EMF Waveform of a Novel Flux-Switching Permanent Magnet Motor.IEEE Int Electr Mach & Drives Conf20071025103010.1109/IEMDC.2007.382817
    [Google Scholar]
  26. EdukuS ChenQ XuG LiuG LiaoJ ZhangX A new fault-tolerant rotor permanent magnet flux-switching motorIEEE Trans Transport Electrifica202210.1109/TTE.2022.3143097
    [Google Scholar]
  27. LinM. LiD. RenX. HanX. QuR. Line-start vernier permanent magnet machines.IEEE Trans. Ind. Electron.20216853707371810.1109/TIE.2020.2982102
    [Google Scholar]
  28. ZhuX. HuaW. ZhangG. Analysis and reduction of cogging torque for flux-switching permanent magnet machines.IEEE Trans. Ind. Appl.20195565854586410.1109/TIA.2019.2938721
    [Google Scholar]
  29. RauchS.E. JohnsonL.J. Design principles of flux-switch alternators.Transactions of the American Institute of Electrical Engineers. Part III: Power Apparat and Syst195574312611268
    [Google Scholar]
  30. LeeC.H.T. KirtleyJ.L. AngleM. A partitioned-stator flux-switching permanent-magnet machine with mechanical flux adjusters for hybrid electric vehicles.IEEE Trans. Magn.201753111710.1109/TMAG.2017.2706023
    [Google Scholar]
  31. ChauK.T. Electric Vehicle Machines and Drives-Design, Analysis and Application.New York, NY, USAWiley2015
    [Google Scholar]
  32. CaoR. MiC. ChengM. Quantitative comparison of flux-switching permanent-magnet motors with interior permanent magnet motor for EV, HEV, and PHEV applications.IEEE Trans. Magn.20124882374238410.1109/TMAG.2012.2190614
    [Google Scholar]
  33. ZhaoW. LipoT.A. KwonB.I. A novel dual-rotor, axial field, fault-tolerant flux-switching permanent magnet machine with high-torque performance.IEEE Trans. Magn.201551111410.1109/TMAG.2015.2445926
    [Google Scholar]
  34. SuP. HuaW. HouC. HuM. Research on the influence of rotor poles number on performances of rotor permanent-magnet flux-switching machinesIEEE Energy Convers Congr and Expo (ECCE)20172374238110.1109/ECCE.2017.8096460
    [Google Scholar]
  35. AwahC.C. ZhuZ.Q. WuZ.Z. ShiJ.T. WuD. Comparison of partitioned stator switched flux permanent magnet machines having single- and double-layer windingsTenth Int Conf on Ecol Vehicles and Renew Energies (EVER)20151510.1109/EVER.2015.7112949
    [Google Scholar]
  36. EvansD.J. ZhuZ.Q. Novel partitioned stator switched flux permanent magnet machines.IEEE Trans. Magn.201551111410.1109/TMAG.2014.2342196
    [Google Scholar]
  37. HuaW. Xiaomei, Yin, G. Zhang, and M. Cheng, “Analysis of two novel five-phase hybrid-excitation flux-switching machines for electric vehicles”.IEEE Trans. Magn.201450111510.1109/TMAG.2014.2323089
    [Google Scholar]
  38. WangR. FurlaniE.P. CendesZ.J. Design and analysis of a permanent magnet axial coupling using 3D finite element field computations.IEEE Trans. Magn.19943042292229510.1109/20.305733
    [Google Scholar]
  39. AtallahK. HoweD. A novel high-performance magnetic gear.IEEE Trans. Magn.20013742844284610.1109/20.951324
    [Google Scholar]
  40. WuF. EL-RefaieAM. Permanent magnet vernier machines: A review"XIII Int Conf on Electr Mach (ICEM). Alexandroupoli2018pp. 372-378
    [Google Scholar]
  41. ZhuZ.Q. WuZ.Z. LiuX. A partitioned stator variable flux reluctance machine.IEEE Trans. Energ. Convers.2016311789210.1109/TEC.2015.2470122
    [Google Scholar]
  42. ZhuZ.Q. HuaH. WuD. ShiJ.T. WuZ.Z. Comparative study of partitioned stator machines with different PM excitation stators.IEEE Trans. Ind. Appl.201652119920810.1109/TIA.2015.2477055
    [Google Scholar]
  43. HaoH. ZhuZ.Q. Novel hybrid-excited switched-flux machine having separate field winding stator.IEEE Trans. Magn.20165211410.1109/TMAG.2013.2278916
    [Google Scholar]
  44. OwenR.L. ZhuZ.Q. JewellG.W. Hybrid-excited flux-switching permanent-magnet machines with iron flux bridges.IEEE Trans. Magn.20104661726172910.1109/TMAG.2010.2040591
    [Google Scholar]
  45. HuaW. ZhangG. ChengM. Flux-regulation theories and principles of hybrid-excited flux-switching machines.IEEE Trans. Ind. Electron.20156295359536910.1109/TIE.2015.2407863
    [Google Scholar]
  46. EvansD.J. ZhuZ.Q. ZhanH.L. WuZ.Z. GeX. Flux-weakening control performance of partitioned stator-switched flux PM machines.IEEE Trans. Ind. Appl.20165232350235910.1109/TIA.2016.2532290
    [Google Scholar]
  47. WuZ.Z. ZhuZ.Q. ShiJ.T. Novel doubly salient permanent magnet machines with partitioned stator and iron pieces rotor.IEEE Trans. Magn.201551511210.1109/TMAG.2015.2404826
    [Google Scholar]
  48. WuZ.Z. ZhuZ.Q. Analysis of magnetic gearing effect in partitioned stator switched flux PM machines.IEEE Trans. Energ. Convers.20163141239124910.1109/TEC.2016.2590988
    [Google Scholar]
  49. HuaH. ZhuZ.Q. WangC. ZhengM. WuZ. WuD. GeX. Partitioned stator machines with NdFeB and ferrite magnets.IEEE Trans. Ind. Appl.20175331870188210.1109/TIA.2016.2645899
    [Google Scholar]
  50. SaeedM. MohamedE.E.M. Partitioned topologies of switched flux permanent magnet machines for electric vehicles.Int. J. Comput. Appl.201817941
    [Google Scholar]
  51. HuaH. ZhuZ.Q. ZhengM. WuZ.Z. WuD. GeX. Performance comparison of partitioned stator machines with NdFeB and ferrite magnets. IEEE Int Electr Mach & Drives Conf.Coeur d'AleneIEMDC2015461467
    [Google Scholar]
  52. WuZ. ZhuZ. Design and analysis of a novel partitioned stator hybrid excitation machine.Proc of the Chinese Soci of Electr Eng2017372265436556
    [Google Scholar]
  53. GerlachT. VollmerR. KremserA. GerlingD. Magnetic gearing as a functional principle in electric drives.Appl. Mech. Mater.2018882216217310.4028/www.scientific.net/AMM.882.162
    [Google Scholar]
  54. DuY. LuW. ZhuX. QuanL. Optimal design and analysis of partitioned stator hybrid excitation doubly salient machine.IEEE Access201861577005770710.1109/ACCESS.2018.2872763
    [Google Scholar]
  55. HosseyniA. TrabelsiR. MimouniM.F. IqbalA. Vector controlled five-phase permanent magnet synchronous motor driveIEEE 23rd Intl Sympos Ind Electron.. ISIE201421222127
    [Google Scholar]
  56. ParsaL. ToliyatH.A. Fault-tolerant five-phase permanent magnet motor drivesConference Record of the IEEE Ind Appl Conf 39th IAS Annual Meeting, vol. 2, 2004no. 1, pp. 1048-105410.1109/IAS.2004.1348542
    [Google Scholar]
  57. FeiW. LukP.C.K. ShenJ.X. WangY. JinM. A novel permanent-magnet flux switching machine with an outer-rotor configuration for in-wheel light traction applications.IEEE Trans. Ind. Appl.201248514961506
    [Google Scholar]
  58. HuaW. SuP. ZhangG. ChengM. A novel rotor-permanent magnet flux-switching machine2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER)2015110
    [Google Scholar]
  59. EdukuS. Sekyi-AnsahJ. OdonkorE.N. EwuamA. Design and comparative performance analysis of a novel e-core fault-tolerant flux-switching motor with multi-permanent magnet.Int. J. Electr. Electron.202310115657
    [Google Scholar]
  60. NobahariA. AliahmadiM. FaizJ. Performance modifications and design aspects of rotating flux switching permanent magnet machines: A review.IET Electr. Power Appl.202014111510.1049/iet‑epa.2019.0339
    [Google Scholar]
  61. EdukuS. OdonkorE.N. AlhassanM.O. Sekyi-AnsahJ. Design and performance analysis of a novel hybrid PM five-phase fault- tolerant switched-flux memory motor.Recent Adv. Electr. Electron. Eng.202215754455410.2174/2352096515666220804150413
    [Google Scholar]
  62. WangL.L. ShenJ.X. WangY. WangK. A novel magnetic-geared outer-rotor permanent-magnet brushless motor4th IET Conf Power Electron Mach and Drives, 2008 pp. 33-36 York10.1049/cp:20080478.
    [Google Scholar]
  63. AtallahK. WangJiabin HoweD. Torque-ripple minimization in modular permanent-magnet brushless machines.IEEE Trans. Ind. Appl.20033961689169510.1109/TIA.2003.818986
    [Google Scholar]
  64. MelfiM.J. EvonS. McElveenR. Permanent magnet motors for power density and energy savings in industrial applicationsConference Record of 54th Annual Pulp and Paper Ind Techni Conf, 2008pp. 218-22510.1109/PAPCON.2008.4585822
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965284574240216104624
Loading
/content/journals/raeeng/10.2174/0123520965284574240216104624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test