Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Renewable energy sources offer sustainable solutions, but the conversion of DC energy into AC energy, commonly used in electrical devices necessitates inverters. Multilevel inverters have gained favor over conventional two-level inverters in high-power, medium-voltage industrial and renewable energy applications due to their high switching frequency capabilities and ability to produce low-harmonic distortion voltage, ensuring superior power quality. This study focuses on addressing the adverse effects of harmonics in electrical systems and investigates methods to eliminate them in multilevel inverters. This study summarized current research works on traditional and advanced harmonic removal optimization strategies in multilevel inverters to highlight the limitations, objectives, THD%, and summary of existing works. Moreover, this study applies selective harmonic elimination techniques in 7-level and 15-level inverters using PSO and IPSO optimization algorithms to minimize THD and enhance inverter performance. The study summarizes current research on harmonic removal strategies in multilevel inverters, revealing the prevalent use of MATLAB/Simulink in research endeavors. Various modulation and optimization techniques have been explored to achieve low THD in the output waveform, aligning with IEEE 519 standards for power system harmonic distortion. Furthermore, the comparative analysis part highlights increasing THD improvement with higher inverter levels. The 15-level inverter stands out, achieving 6.75% THD with PSO and 4.12% with improved PSO, meeting IEEE 519's THD limit. The study underscores the importance of ongoing research in this field to advance harmonic reduction strategies, making multilevel inverters even more attractive for a wide range of applications.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965283680240102080153
2024-01-05
2025-11-05
Loading full text...

Full text loading...

References

  1. BanaP.R. PandaK.P. NaayagiR.T. SianoP. PandaG. Recently developed reduced switch multilevel inverter for renewable energy integration and drives application: Topologies, comprehensive analysis and comparative evaluationIEEE Access201975488854909
    [Google Scholar]
  2. BhattacharjeeS. NandiC. Design of a smart energy management controller for hybrid energy system to promote clean energy.202052756310.1007/978‑981‑15‑4246‑6_31
    [Google Scholar]
  3. BhattacharjeeS. DasI. NandiC. A data-centric analysis of climate change in India: A reflection on electricity sector.Technol. Forecast. Soc. Change202319012240010.1016/j.techfore.2023.122400
    [Google Scholar]
  4. BhattacharjeeS. NandiC. Design of a voting based smart energy management system of the renewable energy based hybrid energy system for a small community.Energy202121411897710.1016/j.energy.2020.118977
    [Google Scholar]
  5. BhattacharjeeS. NandiC. Technical feasibility study and optimisation analysis on solar biomass-based pumped storage hydropower plant.Int. J. Environ. Sustain. Dev.2021203/440442910.1504/IJESD.2021.116864
    [Google Scholar]
  6. DeyS. SreenivasuluA. VeerendraG.T.N. RaoK.V. BabuP.A. Renewable energy present status and future potentials in India: An overviewInnov. Green Dev.2022100006
    [Google Scholar]
  7. BhattacharjeeS. NandiC. Advanced energy management system (A-EMS) design of a grid-integrated hybrid system.Iran. J. Sci. Technol. - Trans. Electr. Eng.2023124
    [Google Scholar]
  8. BhattacharjeeS. NandiC. Design of an industrial internet of things-enabled energy management system of a grid-connected solar–wind hybrid system-based battery swapping charging station for electric vehicle. In applications of internet of things.Lecture Notes in Networks and Systems202113711410.1007/978‑981‑15‑6198‑6_1
    [Google Scholar]
  9. BughnedaA. SalemM. RichelliA. IshakD. AlataiS. Review of multilevel inverters for PV energy system applications.Energies2021146158510.3390/en14061585
    [Google Scholar]
  10. OlabiA.G. Renewable energy and energy storage systems.Energy20171361610.1016/j.energy.2017.07.054
    [Google Scholar]
  11. ZhangC. WeiY.L. CaoP.F. LinM.C. Energy storage system: Current studies on batteries and power condition system.Renew. Sustain. Energy Rev.2018823091310610.1016/j.rser.2017.10.030
    [Google Scholar]
  12. MitaliJ. DhinakaranS. MohamadA.A. Energy storage systems: A review.Energy Storage and Saving20221316621610.1016/j.enss.2022.07.002
    [Google Scholar]
  13. Multilevel inverters.Available from: https://www.sciencedirect.com/book/9780323902175/multilevel-inverters accessed on 1ST December,2023.2023
  14. HiendroA. YusufI. JunaidiJ. WigyariantoT.P. SimanjuntakY.M. Optimization of SHEPWM cascaded multilevel inverter switching patterns.Int. J. Power Electron. Drive Syst.2020113157010.11591/ijpeds.v11.i3.pp1570‑1578
    [Google Scholar]
  15. XuJ. TangT. XieS. Research on low‐order current harmonics rejections for grid‐connected LCL‐filtered inverters.IET Power Electron.2014751227123410.1049/iet‑pel.2013.0477
    [Google Scholar]
  16. TranQ.T. TruongA.V. LeP.M. Reduction of harmonics in grid-connected inverters using variable switching frequency.Int. J. Electr. Power Energy Syst.20168224225110.1016/j.ijepes.2016.03.027
    [Google Scholar]
  17. KunduS. BurmanA.D. GiriS.K. MukherjeeS. BanerjeeS. Comparative study between different optimisation techniques for finding precise switching angle for SHE‐PWM of three‐phase seven‐level cascaded H‐bridge inverter.IET Power Electron.201811360060910.1049/iet‑pel.2017.0530
    [Google Scholar]
  18. Marquez AlcaideA. JI. L LagunaM. Gonzalez-RodriguezF PortilloR. Zafra-RatiaE Marquez AlcaideA. Abu-RubH Real-time selective harmonic mitigation technique for power converters based on the exchange market algorithm.Energies165913710.3390/en13071659
    [Google Scholar]
  19. MaheswariK.T. BharanikumarR. ArjunV. AmrishR. BhuvaneshM. A comprehensive review on cascaded H-bridge multilevel inverter for medium voltage high power applications.Mater. Today Proc.2021452666267010.1016/j.matpr.2020.11.519
    [Google Scholar]
  20. AlhafadhiL. TehJ. Advances in reduction of total harmonic distortion in solar photovoltaic systems: A literature review.Int. J. Energy Res.20204442455247010.1002/er.5075
    [Google Scholar]
  21. NVV.K. A comprehensive survey on reduced switch count multilevel inverter topologies and modulation techniques.J. Electr. Syst. Inf. Technol.2023101124
    [Google Scholar]
  22. YaqoobM.T. ShahidZ. RahmatM.K. AlamM.M. Su’udM.M. Selective harmonic elimination in cascaded H-`1`ation: A review13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS)201915
    [Google Scholar]
  23. ChenchireddyK. JegathesanV. A review paper on the elimination of low-order harmonics in multilevel inverters using different modulation techniques. Inventive communication and computational technologies.Proc. ICICCT20212020961971
    [Google Scholar]
  24. RanaR.A. PatelS.A. MuthusamyA. LeeC. KimH.J. Review of multilevel voltage source inverter topologies and analysis of harmonics distortions in FC-MLI.Electronics2019811132910.3390/electronics8111329
    [Google Scholar]
  25. KoshtiA.K. RaoM.N. A brief review on multilevel inverter topologies.International Conference on Data Management, Analytics and Innovation (ICDMAI)2017187193IEEE.10.1109/ICDMAI.2017.8073508
    [Google Scholar]
  26. SureshL.P. A brief review on multi level inverter topologies.International conference on circuit, power and computing technologies (ICCPCT) 201616
    [Google Scholar]
  27. El-HosainyA. HamedH.A. AzaziH.Z. El-KholyE.E. A review of multilevel inverter topologies, control techniques, and applications.Nineteenth International Middle East Power Systems Conference (MEPCON)201712651275IEEE.10.1109/MEPCON.2017.8301344
    [Google Scholar]
  28. GhoshG. SarkarS. MukherjeeS. PalT. SenS. A comparative study of different multilevel inverters.1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech)20171610.1109/IEMENTECH.2017.8076971
    [Google Scholar]
  29. Inverter and multilevel inverter - Types, advantages and applications.Available from: https://www.elprocus.com/multilevel-inverter-types-advantages accessed on 16th April, 2023
  30. UddinM.H. AbidA. InamU. UroojA. SiddiquiM.R. A comparative analysis of a multilevel inverter topology based on phase disposition sinusoidal pulse width modulation.Eng. Proc.202346130
    [Google Scholar]
  31. BanaP.R. PandaK.P. PandaG. Power quality performance evaluation of multilevel inverter with reduced switching devices and minimum standing voltage.IEEE Trans. Industr. Inform.20201685009502210.1109/TII.2019.2953071
    [Google Scholar]
  32. SiddiqueM.D. RawaM. MekhilefS. ShahN.M. A new cascaded asymmetrical multilevel inverter based on switched dc voltage sources.Int. J. Electr. Power Energy Syst.202112810673010.1016/j.ijepes.2020.106730
    [Google Scholar]
  33. KubendranV. Mohamed ShuaibY. Preetha RoselynJ. Development of multilevel inverter with reduced switch counts and limited sources for electric vehicles.Sustain. Energy Technol. Assess.20225210233210.1016/j.seta.2022.102332
    [Google Scholar]
  34. PoorfakhraeiA. NarimaniM. EmadiA. A review of modulation and control techniques for multilevel inverters in traction applications.IEEE Access20219241872420410.1109/ACCESS.2021.3056612
    [Google Scholar]
  35. BalalA. DinkhahS. ShahabiF. HerreraM. ChuangY.L. A review on multilevel inverter topologies.Emerging Science Journal20226118520010.28991/ESJ‑2022‑06‑01‑014
    [Google Scholar]
  36. Multilevel inverters with introduction, types, advantages and applications.Available from: https://microcontrollerslab.com/multilevel-inverters-types-applications/ accessed on 1ST December,2023.2023
  37. GooptaR.S. DharS.K. BhattacharyaA. A new reduced switch diode clamped multilevel inverter topology.IEEE International Conference on Computing, Power and Communication Technologies (GUCON)2020677681IEEE.10.1109/GUCON48875.2020.9231186
    [Google Scholar]
  38. BakeerA. MohamedI.S. MalidarrehP.B. HattabiI. LiuL. An artificial neural network-based model predictive control for three-phase flying capacitor multilevel inverter.IEEE Access202210703057031610.1109/ACCESS.2022.3187996
    [Google Scholar]
  39. PharneI.D. BhosaleY.N. A review on multilevel inverter topology.International Conference on Power, Energy and Control (ICPEC)2013700703IEEE.10.1109/ICPEC.2013.6527746
    [Google Scholar]
  40. SalmanM. HaqI.U. AhmadT. AliH. QamarA. BasitA. KhanM. IqbalJ. Minimization of total harmonic distortions of cascaded H-bridge multilevel inverter by utilizing bio inspired AI algorithm.EURASIP J. Wirel. Commun. Netw.2020202016610.1186/s13638‑020‑01686‑5
    [Google Scholar]
  41. SumithiraT.R. Nirmal KumarA. Elimination of harmonics in multilevel inverters connected to solar photovoltaic systems using ANFIS: An experimental case study.J. Appl. Res. Technol.201311112413210.1016/S1665‑6423(13)71521‑9
    [Google Scholar]
  42. Harmonics.Available from: https://en.wikipedia.org/wiki/Harmonics_(electrical_power) accessed on 30th April, 2023.
  43. Harmonic solutions: The mitigation and reduction of harmonics.Available from: www.eaton.com/us/enus/products/controls-drives-automation-sensors/harmonics.html accessed on 16th April, 2023.
  44. ChoudhuryS. BajajM. DashT. KamelS. JuradoF. Multilevel inverter: A survey on classical and advanced topologies, control schemes, applications to power system and future prospects.Energies20211418577310.3390/en14185773
    [Google Scholar]
  45. MichalecŁ. JasińskiM. SikorskiT. LeonowiczZ. JasińskiŁ. SureshV. Impact of harmonic currents of nonlinear loads on power quality of a low voltage network–review and case study.Energies20211412366510.3390/en14123665
    [Google Scholar]
  46. Understanding power system harmonics.Available from: https://web.ecs.baylor.edu/faculty/grady/understanding_power_system_harmonics_grady_april_2012.pdf 2023
  47. Harmonic Distortion - An overviewAvailable from: https://www.sciencedirect.com/topics/engineering/harmonic-distortion.Available from: https://comsys.se/our-adftechnology/power-quality-ieee-519-2022/ Accessed on 16th April, 2023.2023
  48. Power quality – IEEE 519-2022.Available from: https://comsys.se/our-adf-technology/power-quality-ieee-519-2022/ Accessed on 16th April, 2023.
  49. DuranayZ.B. GuldemirH. Extreme learning machine based selected harmonic elimination for single phase inverters.Measurement201913130030810.1016/j.measurement.2018.08.064
    [Google Scholar]
  50. SridharK. PrakashR. Hybrid technique based harmonic elimination of the thirty-one level multi level inverter.Wirel. Pers. Commun.202212321687171310.1007/s11277‑021‑09208‑2
    [Google Scholar]
  51. Ruiz-GonzalezA. Heredia-LarrubiaJ.R. Meco-GutierrezM.J. Perez-HidalgoF.M. Pulse-width modulation technique with harmonic injection in the modulating wave and discontinuous frequency modulation for the carrier wave for multilevel inverters: An application to the reduction of acoustic noise in induction motors.IEEE Access202311405794059010.1109/ACCESS.2023.3269593
    [Google Scholar]
  52. Different Types OfP.W.M. Different types of PWM techniques, pulse width modulation.Available from: https://cselectricalandelectronics.com/different-types-of-pwm-techniques-pulse-width-modulation/ 2023
  53. MahbubM. Comparative analysis of five different PWM techniques on three-phase voltage source inverter fed induction motor drive.2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST)2021611.10.1109/ICREST51555.2021.9331234
    [Google Scholar]
  54. MattooB.A. BhatA.H. Comparative analysis of various PWM techniques for voltage source inverter.1st International Conference on Sustainable Technology for Power and Energy Systems (STPES), 2022, pp. 1-6 SRINAGAR, India10.1109/STPES54845.2022.10006650
    [Google Scholar]
  55. RameshA. Habeebullah SaitH. RETRACTED: An approach towards selective harmonic elimination switching pattern of cascade switched capacitor twenty nine-level inverter using artificial bee colony algorithm.Microprocess. Microsyst.20207910329210.1016/j.micpro.2020.103292
    [Google Scholar]
  56. KhizerM. ShamiU.T. ZiaM.F. AmiratY. BenbouzidM. Selective harmonic elimination in a cascaded multilevel inverter of distributed power generators using water cycle algorithm.Machines202210539910.3390/machines10050399
    [Google Scholar]
  57. SadoughiM. ZakerianA. PourdadashniaA. Farhadi-KangarluM. Selective harmonic elimination PWM for cascaded H-bridge multilevel inverter with wide output voltage range using PSO algorithm.IEEE Texas power and energy conference (TPEC)202116
    [Google Scholar]
  58. DasS.R. RayP.K. SahooA.K. DhimanG. Application of optimisation technique in PV integrated multilevel inverter for power quality improvement.Comput. Electr. Eng.20229710760610.1016/j.compeleceng.2021.107606
    [Google Scholar]
  59. FarooquiS.A. SheesM.M. AlsharekhM.F. AlyahyaS. KhanR.A. SarwarA. IslamM. KhanS. Crystal structure algorithm (CryStAl) based selective harmonic elimination modulation in a cascaded H-bridge multilevel inverter.Electronics20211024307010.3390/electronics10243070
    [Google Scholar]
  60. AhmadS. IqbalA. AshrafI. MerajM. Improved power quality operation of symmetrical and asymmetrical multilevel inverter using invasive weed optimization technique.Energy Rep.202283323333610.1016/j.egyr.2022.01.122
    [Google Scholar]
  61. SiddiquiN.I. AlamA. QuayyoomL. SarwarA. TariqM. VahediH. AhmadS. MohamedA.S.N. Artificial jellyfish search algorithm-based selective harmonic elimination in a cascaded H-bridge multilevel inverter.Electronics20211019240210.3390/electronics10192402
    [Google Scholar]
  62. ChunduriR. Design and control of a solar photovoltaic fed asymmetric multilevel inverter using computational intelligence.Ann. Rom. Soc. Cell Biol.20212561773117743
    [Google Scholar]
  63. KrithigaG. MohanV. Elimination of harmonics in multilevel inverter using multi-group marine predator algorithm-based enhanced RNN.Int. Trans. Electr. Energy Syst.2022202211310.1155/2022/8004425
    [Google Scholar]
  64. RajM.D. ThiyagarajanV. SelvanN.B.M. VanajaD.S. Amelioration of power quality in a solar PV fed grid-connected system using optimization-based selective harmonic elimination.Electr. Eng.202210442775279210.1007/s00202‑022‑01556‑x
    [Google Scholar]
  65. Mousazadeh MousaviS.Y. Zabihi LaharamiM. Niknam KumleA. FathiS.H. Application of ABC algorithm for selective harmonic elimination switching pattern of cascade multilevel inverter with unequal DC sources.Int. Trans. Electr. Energy Syst.2018284e252210.1002/etep.2522
    [Google Scholar]
  66. TariqM. ShamiU. FakharM. KashifS. AbbasG. UllahN. MohammadA. FarragM. Dragonfly algorithm-based optimization for selective harmonics elimination in cascaded H-bridge multilevel inverters with statistical comparison.Energies20221518682610.3390/en15186826
    [Google Scholar]
  67. Albert AlexanderS. HarishR. SrinivasanM. SarathkumarD. Power quality improvement in a solar PV assisted microgrid using upgraded ANN-based controller.Math. Probl. Eng.2022202211210.1155/2022/2441534
    [Google Scholar]
  68. SadoughiM. PourdadashniaA. Farhadi-KangarluM. GalvaniS. PSO-optimized SHE-PWM technique in a cascaded H-bridge multilevel inverter for variable output voltage applications.IEEE Trans. Power Electron.20223778065807510.1109/TPEL.2022.3146825
    [Google Scholar]
  69. BektaşY. KaracaH. Red deer algorithm based selective harmonic elimination for renewable energy application with unequal DC sources.Energy Rep.2022858859610.1016/j.egyr.2022.05.209
    [Google Scholar]
  70. ShahbazR. AhmedT. ElavarasanR.M. RajuK. WaqasM. SubramaniamU. Selective harmonics elimination in multilevel inverter using bio-inspired intelligent algorithms.31st Australasian Universities Power Engineering Conference (AUPEC)202116.10.1109/AUPEC52110.2021.9597805
    [Google Scholar]
  71. Toubal MaamarA.E. HelaimiM. TalebR. KermadiM. MekhilefS. A neural network‐based selective harmonic elimination scheme for five‐level inverter.Int. J. Circuit Theory Appl.202250129831610.1002/cta.3130
    [Google Scholar]
  72. Kumar KarP. PriyadarshiA. Bhaskar KarankiS. Selective harmonics elimination using whale optimisation algorithm for a single‐phase‐modified source switched multilevel inverter.IET Power Electron.20191281952196310.1049/iet‑pel.2019.0087
    [Google Scholar]
  73. HosseinzadehM.A. SarbanzadehM. SalgueiroY. RiveraM. WheelerP. Selective harmonic elimination in cascaded H-bridge multilevel inverter using genetic algorithm approach.IEEE International Conference on Industrial Technology (ICIT)201915271532.10.1109/ICIT.2019.8755089
    [Google Scholar]
  74. GopalY. BirlaD. LalwaniM. Selected harmonic elimination for cascaded multilevel inverter based on photovoltaic with fuzzy logic control maximum power point tracking technique.Technologies2018636210.3390/technologies6030062
    [Google Scholar]
  75. StonierA.A. MurugesanS. SamikannuR. VenkatacharyS.K. Senthil KumarS. ArumugamP. Power quality improvement in solar fed cascaded multilevel inverter with output voltage regulation techniques.IEEE Access2020817836017837110.1109/ACCESS.2020.3027784
    [Google Scholar]
  76. PandaK.P. BanaP.R. PandaG. FPA optimized selective harmonic elimination PWM technique application in reduced switch count multilevel inverter.IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)201816.10.1109/PEDES.2018.8707792
    [Google Scholar]
  77. CeylanO. NeshatM. MirjaliliS. Cascaded H-bridge multilevel inverters optimization using adaptive grey wolf optimizer with local search.Electr. Eng.202111510.1007/s00202‑021‑01441‑z
    [Google Scholar]
  78. MemonM.A. MekhilefS. MubinM. Selective harmonic elimination in multilevel inverter using hybrid APSO algorithm.IET Power Electron.201811101673168010.1049/iet‑pel.2017.0486
    [Google Scholar]
  79. RoutrayA. SinghR.K. MahantyR. Selective harmonic elimination in hybrid cascaded multilevel inverter using modified whale optimization.Int. Trans. Electr. Energy Syst.2020304e1229810.1002/2050‑7038.12298
    [Google Scholar]
  80. RoutrayA. SinghR.K. MahantyR. Harmonic reduction in hybrid cascaded multilevel inverter using modified grey wolf optimization.IEEE Trans. Ind. Appl.20205621827183810.1109/TIA.2019.2957252
    [Google Scholar]
  81. RoutrayA. SinghR.K. MahantyR. Modified grey wolf optimisation based reduced device count 17‐level hybrid multilevel inverter.IET Power Electron.20211481444145610.1049/pel2.12122
    [Google Scholar]
  82. MemonM.A. SiddiqueM.D. MekhilefS. MubinM. Asynchronous particle swarm optimization-genetic algorithm (APSO-GA) based selective harmonic elimination in a cascaded H-bridge multilevel inverter.IEEE Trans. Ind. Electron.20226921477148710.1109/TIE.2021.3060645
    [Google Scholar]
  83. NaderiY. HosseiniS. H. ZadehS.G. Mohammadi IvatlooB. SavaghebiM. GuerreroJ. M. An optimized direct control method applied to multilevel inverter for microgrid power quality enhancement. Int J. Electr. Power Energy Syst. 2019104496506
    [Google Scholar]
  84. ChandranU. KumarasamyS. SamikannuR. Tournament selected glowworm swarm optimization based measurement of selective harmonic elimination in multilevel inverter for enhancing output voltage and current.Math. Probl. Eng.2022202210.1155/2022/5845249
    [Google Scholar]
  85. NaderipourA. Abdul-MalekZ. NoordenZ.A. DavoudkhaniI.F. NowdehS.A. KamyabH. ChelliapanS. GhiasiS.M.S. Carrier wave optimization for multi-level photovoltaic system to improvement of power quality in industrial environments based on Salp swarm algorithm.Environ. Technol. Innov.20212110119710.1016/j.eti.2020.101197
    [Google Scholar]
  86. GopalY. PandaK.P. BirlaD. LalwaniM. Swarm optimization-based modified selective harmonic elimination PWM technique application in symmetrical H-bridge type multilevel inverters. Engineering, Technology &.Appl. Sci. Res.20199138363845
    [Google Scholar]
  87. VenkedeshR. THD reduction in measurement of H-Bridge multilevel inverter using pulse modulated switching integrated with linear quadratic regulator. Measurement.Sensors202224100435
    [Google Scholar]
  88. IslamJ. MerajS.T. NegashB. BiswasK. AlhitmiH.K. HossainN.I. ‘Modified quantum particle swarm optimization for selective harmonic elimination (SHE) in a single-phase multilevel inverter.Int. J. Innov. Comput., Inf. Control2021173959971
    [Google Scholar]
  89. PadmanabanS. DhanamjayuluC. KhanB. Artificial neural network and Newton Raphson (ANN-NR) algorithm based selective harmonic elimination in cascaded multilevel inverter for PV applications.IEEE Access20219750587507010.1109/ACCESS.2021.3081460
    [Google Scholar]
  90. MahendravarmanI. ElankurisilS.A. VenkateshkumarM. RagavendiranA. ChinN. Artificial intelligent controller-based power quality improvement for microgrid integration of photovoltaic system using new cascade multilevel inverter.Soft Comput.20202424189091892610.1007/s00500‑020‑05120‑2
    [Google Scholar]
  91. RupeshM. VishwanathD.T.S. Fuzzy and ANFIS controllers to improve the power quality of grid connected PV system with cascaded multilevel inverter.Int. J. Electr. Electron. Res.202194899510.37391/IJEER.0904011
    [Google Scholar]
  92. AhmedM.S. MahmoodD.Y. NumanA.H. Power quality improvement of grid-connected photovoltaic systems using PI-fuzzy controller.Int. J. Appl. Power Eng. (IJAPE)202211212013310.11591/ijape.v11.i2.pp120‑133
    [Google Scholar]
  93. PatilS.D. KadwaneS.G. Hybrid optimization algorithm applied for selective harmonic elimination in multilevel inverter with reduced switch topology.Microsyst. Technol.20182483409341510.1007/s00542‑018‑3720‑x
    [Google Scholar]
  94. RoutrayA. Kumar SinghR. MahantyR. Harmonic minimization in three-phase hybrid cascaded multilevel inverter using modified particle swarm optimization.IEEE Trans. Industr. Inform.20191584407441710.1109/TII.2018.2883050
    [Google Scholar]
  95. SenP. BanaP.R. PandaK.P. Firefly assisted genetic algorithm for selective harmonic elimination in PV interfacing reduced switch multilevel inverter.Int. J. Renew. Energy Res.2019913243
    [Google Scholar]
  96. ReddyP.L. SwamyR.L. Multi level inverter THD minimization by improved particle swarm optimization.Int. J. Eng. Res. Appl.2021
    [Google Scholar]
  97. MaheshwariN.I. ChandrasekaranM. Harmonic analysis of photovoltaic-fed symmetric multilevel inverter using modified artificial neural network.Appl. Math. Inf. Sci.201913110511310.18576/amis/130114
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965283680240102080153
Loading
/content/journals/raeeng/10.2174/0123520965283680240102080153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test