Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

The phase-locked loop (PLL) is widely used to estimate synchronization information such as magnitude and phase angle of the grid voltage, which is essential for grid-connected power generation from distributed renewable energy sources. However, the harmonics in the grid often affect the accurate extraction of fundamental positive sequence, resulting in phase deviations.

Methods

A dual extended novel third-order generalized integrator (DENTOGI) is proposed and placed into the control outer loop of the PLL. This approach can be applied in the condition of the grid with DC offset voltage (DCOV). Additionally, the PLL is proposed by introducing moving average filter (MAF) and eliminating the proportional controller of the integration link to suppress high-frequency harmonics and speed up the response.

Results

A comparative experiment using Matlab/Simulink is conducted to evaluate the proposed PLL against the conventional PLLs. The experimental results confirm that the proposed PLL exhibits superior filtering performance for DC offset and harmonic components when compared to the conventional PLL. Additionally, the proposed PLL demonstrates better dynamic adjustment capabilities.

Conclusion

The main contribution of this paper is to propose a phase-locked method that can eliminate DCOV and harmonic components, which can be applied in non-ideal power grid conditions. The proposed PLL based on DENTOGI and MAF can lock the grid phase stably without errors under the grid fault involving DCOV and harmonic disturbance, it also exhibits the characteristics of fast response.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965272509231116065158
2024-01-04
2025-11-05
Loading full text...

Full text loading...

References

  1. SridharanK. BabuB.C. Accurate phase detection system using modified SGDFT based PLL for three-phase grid active power converter during interharmonic conditions.IEEE Trans. Instrum. Meas.20227111110.1109/TIM.2021.3136172
    [Google Scholar]
  2. WangY. BaoX. HuaW. LiuK. WangP. HuM. ZhangH. Implementation of embedded magnetic encoder for rotor position detection based on arbitrary phase shift phase-lock loop.IEEE Trans. Ind. Electron.20226922033204310.1109/TIE.2021.3062270
    [Google Scholar]
  3. Morán-RíoD.P. Roldán-PérezJ. ProdanovicM. García-CerradaA. Influence of the phase-locked loop on the design of microgrids formed by diesel generators and grid-forming converters.IEEE Trans. Power Electron.20223755122513710.1109/TPEL.2021.3127310
    [Google Scholar]
  4. GongH. WangX. HarneforsL. Rethinking current controller design for PLL-Synchronized VSCs in weak grids.IEEE Trans. Power Electron.2021372110.1109/TPEL.2021.3105549
    [Google Scholar]
  5. TranT.N.C. NguyenH.X. ParkJ.W. JeonJ.W. Improving the accuracy of an absolute magnetic encoder by using harmonic rejection and a dual-phase-locked loop.IEEE Trans. Ind. Electron.20196675476548610.1109/TIE.2018.2869366
    [Google Scholar]
  6. SunG. LiY. JinW. LiS. GaoY. A novel low voltage ride-through technique of three-phase grid-connected inverters based on a nonlinear phase-locked loop.IEEE Access20197666096662210.1109/ACCESS.2019.2912859
    [Google Scholar]
  7. XuJ. QianQ. ZhangB. XieS. Harmonics and stability analysis of single-phase grid-connected inverters in distributed power generation systems considering phase-locked loop impact.IEEE Trans. Sustain. Energy20191031470148010.1109/TSTE.2019.2893679
    [Google Scholar]
  8. JaalamN. RahimN.A. BakarA.H.A. TanC. HaidarA.M.A. A comprehensive review of synchronization methods for grid-connected converters of renewable energy source.Renew. Sustain. Energy Rev.2016591471148110.1016/j.rser.2016.01.066
    [Google Scholar]
  9. HamedH.A. AbdouA.F. BayoumiE.H.E. EL-KholyE.E. A fast recovery technique for grid-connected converters after short dips using a hybrid structure PLL.IEEE Trans. Ind. Electron.20186543056306810.1109/TIE.2017.2764856
    [Google Scholar]
  10. WangY. ChenX. WangY. GongC. Analysis of frequency characteristics of phase-locked loops and effects on stability of three-phase grid-connected inverter.Int. J. Electr. Power Energy Syst.201911365266310.1016/j.ijepes.2019.06.016
    [Google Scholar]
  11. RezaM.S. SadequeF. HossainM.M. GhiasA.M.Y.M. AgelidisV.G. Three-phase PLL for grid-connected power converters under both amplitude and phase unbalanced conditions.IEEE Trans. Ind. Electron.201966118881889110.1109/TIE.2019.2893857
    [Google Scholar]
  12. AbdmoulehZ. GastliA. Ben-BrahimL. HaouariM. Al-EmadiN.A. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources.Renew. Energy201711326628010.1016/j.renene.2017.05.087
    [Google Scholar]
  13. DuW.J. ChenX. WangH.F. PLL performance evaluation considering power system dynamics for grid connection of renewable power generation.J. Environ. Inform.2018321556210.3808/jei.201800396
    [Google Scholar]
  14. NianH. HuB. XuY. WuC. ChenL. BlaabjergF. Analysis and reshaping on impedance characteristic of DFIG system based on symmetrical PLL.IEEE Trans. Power Electron.20203511117201173010.1109/TPEL.2020.2982946
    [Google Scholar]
  15. YangD. WangX. LiuF. XinK. LiuY. BlaabjergF. Symmetrical PLL for SISO impedance modeling and enhanced stability in weak grids.IEEE Trans. Power Electron.20203521473148310.1109/TPEL.2019.2917945
    [Google Scholar]
  16. Prieto-AraujoE. Junyent-FerréA. Clariana-ColetG. Gomis-BellmuntO. Control of modular multilevel converters under singular unbalanced voltage conditions with equal positive and negative sequence components.IEEE Trans. Power Syst.20173232131214110.1109/TPWRS.2016.2598617
    [Google Scholar]
  17. GolestanS. GuerreroJ.M. VasquezJ.C. A PLL-based controller for three-phase grid-connected power converters.IEEE Trans. Power Electron.201833291191610.1109/TPEL.2017.2719285
    [Google Scholar]
  18. HoseinizadehS.M. OuniS. KarimiH. Karimi-GhartemaniM. LianK.L. Comparison of PLL-based and PLL-less vector current controllers.IEEE J. Emerg. Sel. Top. Power Electron.202210143644510.1109/JESTPE.2021.3066512
    [Google Scholar]
  19. AshrafM.N. KhanR.A. ChoiW. A novel selective harmonic compensation method for single-phase grid-connected inverters.IEEE Trans. Ind. Electron.20216864848485810.1109/TIE.2020.2989723
    [Google Scholar]
  20. HeY. QiH.H. DengX.L. A three-phase phase-locked loop technique based on all complex coefficient filter.Trans. China Electrotech.202136102115212610.19595/j.cnki.1000‑6753.tces.L90095
    [Google Scholar]
  21. GolestanS. GuerreroJ.M. VasquezJ.C. Three-phase PLLs: A review of recent advances.IEEE Trans. Power Electron.20173231894190710.1109/TPEL.2016.2565642
    [Google Scholar]
  22. QuanX. HuangA.Q. PI-based synchronous reference frame frequency-locked loop.IEEE Trans. Ind. Electron.20216854547455310.1109/TIE.2020.2985002
    [Google Scholar]
  23. AchlerkarP.D. PanigrahiB.K. New perspectives on stability of decoupled double synchronous reference frame PLL.IEEE Trans. Power Electron.202237128530210.1109/TPEL.2021.3099162
    [Google Scholar]
  24. Gonzalez-EspinF. FigueresE. GarceraG. An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid.IEEE Trans. Ind. Electron.20125962718273110.1109/TIE.2011.2166236
    [Google Scholar]
  25. Jean MarcosL.F. Francisco KleberA.L. FernandoL.T. CarlosG.C.B. Three-phase phase-locked loop algorithms for the detection of positive-sequence and negative-sequence components.Int J. Electr. Power Energy Syst.202112610657010.1016/j.ijepes.2020.106570
    [Google Scholar]
  26. HamedH.A. El MoursiM.S. A new type-2 PLL based on unit delay phase angle error compensation during the frequency ramp.IEEE Trans. Power Syst.20193443289329310.1109/TPWRS.2019.2911048
    [Google Scholar]
  27. ZareiM. KarimadiniM. PLL with frequency and initial‐phase‐angle detectors: performance analysis and speed/robustness trade‐off improvement.IET Power Electron.201912112761277010.1049/iet‑pel.2018.6001
    [Google Scholar]
  28. LuoS. WuF. Improved two-phase stationary frame epll to eliminate the effect of input harmonics, unbalance, and DC offsets.IEEE Trans. Industr. Inform.20171362855286310.1109/TII.2017.2679132
    [Google Scholar]
  29. LiY. WangD. NingY. HuiN. DC‐offset elimination method for grid synchronisation.Electron. Lett.201753533533710.1049/el.2016.4570
    [Google Scholar]
  30. FanM. DaiZ. YangY. XieM. HeL. DuG. Four-consecutive samples based frequency estimation for single-phase grids with DC offsets.IEEE Trans. Ind. Electron.202168109598960610.1109/TIE.2020.3028805
    [Google Scholar]
  31. LamoP. PigazoA. AzcondoF.J. Two-sample PLL with harmonic filtering capability applicable to single-phase grid-connected converters.IEEE J. Emerg. Sel. Top. Power Electron.2021933072308210.1109/JESTPE.2020.2997847
    [Google Scholar]
  32. RezaM.S. HossainM.M. Integrator-less method for phase angle estimation of fundamental frequency positive-sequence component under adverse condition.IEEE Trans. Instrum. Meas.20217011010.1109/TIM.2021.3076838
    [Google Scholar]
  33. SahooA. MahmudK. RavishankarJ. An enhanced frequency adaptive single-phase grid synchronization technique.IEEE Trans. Instrum. Meas.20217011110.1109/TIM.2021.3070882
    [Google Scholar]
  34. SevilmişF. KaracaH. An advanced hybrid pre-filtering/in-loop-filtering based PLL under adverse grid conditions.Eng. Sci. Technol. an Int.20212451144115210.1016/j.jestch.2021.02.011
    [Google Scholar]
  35. KanjiyaP. KhadkikarV. El MoursiM.S. Adaptive low-pass filter based dc offset removal technique for three-phase PLLs.IEEE Trans. Ind. Electron.201865119025902910.1109/TIE.2018.2814015
    [Google Scholar]
  36. RodriguezP. TeodorescuR. CandelaI. TimbusA.V. LiserreM. BlaabjergF. New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions.2006 37th IEEE Power Electronics Specialists Conference18-22 June 2006, Jeju, Korea (South)200610.1109/pesc.2006.1712059
    [Google Scholar]
  37. XinZ. WangX. QinZ. LuM. LohP.C. BlaabjergF. An improved second-order generalized integrator based quadrature signal generator.IEEE Trans. Power Electron.201631128068807310.1109/TPEL.2016.2576644
    [Google Scholar]
  38. RodriguezP. LunaA. EtxeverriaI. HermosoJ.R. TeodorescuR. Multiple second order generalized integrators for harmonic synchronization of power converters.2009 IEEE Energy Conversion Congress and Exposition20-24 September 2009, San Jose, CA, USA2239224610.1109/ECCE.2009.5316279
    [Google Scholar]
  39. DuH. SunQ. ChengQ. MaD. WangX. An adaptive frequency phase-locked loop based on a third order generalized integrator.Energies201912230910.3390/en12020309
    [Google Scholar]
  40. KherbachiA. ChouderA. BendibA. KaraK. BarkatS. Enhanced structure of second-order generalized integrator frequency-locked loop suitable for DC-offset rejection in single-phase systems.Electr. Power Syst. Res.201917034835710.1016/j.epsr.2019.01.029
    [Google Scholar]
  41. XieM. WenH. ZhuC. YangY. DC offset rejection improvement in single-phase SOGI-PLL algorithms: Methods review and experimental evaluation.IEEE Access20175128101281910.1109/ACCESS.2017.2719721
    [Google Scholar]
  42. GolestanS. GuerreroJ.M. VasquezJ.C. AbusorrahA.M. Al-TurkiY. Standard SOGI-FLL and its close variants: Precise modeling in LTP framework and determining stability region/robustness metrics.IEEE Trans. Power Electron.202136140942210.1109/TPEL.2020.2997603
    [Google Scholar]
  43. MellouliM. HamoudaM. SlamaJ.B.H. Al-HaddadK. A third-order MAF based QT1-PLL that is robust against harmonically distorted grid voltage with frequency deviation.IEEE Trans. Energ. Convers.20213631600161310.1109/TEC.2021.3061027
    [Google Scholar]
  44. WangJ. LiangJ. GaoF. ZhangL. WangZ. A method to improve the dynamic performance of moving average filter-based PLL.IEEE Trans. Power Electron.201530105978599010.1109/TPEL.2014.2381673
    [Google Scholar]
  45. GolestanS. RamezaniM. GuerreroJ. M. FreijedoF. D. MonfaredM. Moving average filter based phase-locked loop: Performance analysis and design guidelines.IEEE Trans. Power Electron.20142962750276310.1109/TPEL.2013.2273461
    [Google Scholar]
  46. GolestanS. GuerreroJ.M. VidalA. YepesA.G. Doval-GandoyJ. PLL with MAF-based prefiltering stage: Small-signal modeling and performance enhancement.IEEE Trans. Power Electron.20163164013401910.1109/TPEL.2015.2508882
    [Google Scholar]
  47. GolestanS. GuerreroJ.M. AbusorrahA. MAF-PLL with phase-lead compensator.IEEE Trans. Ind. Electron.2014626110.1109/TIE.2014.2385658
    [Google Scholar]
  48. AliZ. ChristofidesN. HadjidemetriouL. KyriakidesE. A new MAF based αβEPMAFPLL for grid connected RES with improved performance under grid faults.Electr. Power Syst. Res.201815413013910.1016/j.epsr.2017.08.013
    [Google Scholar]
  49. PanH. LiZ. WeiT. A novel phase-locked loop with improved-dual adaptive notch filter and multi-variable filter.IEEE Access2019717657817658610.1109/ACCESS.2019.2958135
    [Google Scholar]
  50. KhazrajH. da SilvaF.F. BakC.L. GolestanS. Analysis and design of notch filter-based PLLs for grid-connected applications.Electr. Power Syst. Res.2017147626910.1016/j.epsr.2017.02.009
    [Google Scholar]
  51. LiJ. WangQ. XiaoL. LiuZ. WuQ. An accurate and robust adaptive notch filter-based phase-locked loop.Journal of Power Electronics20202061514152510.1007/s43236‑020‑00127‑2
    [Google Scholar]
  52. LeeK.J. LeeJ.P. ShinD. YooD.W. KimH.J. A novel grid synchronization pll method based on adaptive low-pass notch filter for grid-connected PCS.IEEE Trans. Ind. Electron.201461129230110.1109/TIE.2013.2245622
    [Google Scholar]
  53. HeX. GengH. YangG. A generalized design framework of notch filter based frequency-locked loop for three-phase grid voltage.IEEE Trans. Ind. Electron.20186597072708410.1109/TIE.2017.2784413
    [Google Scholar]
  54. XieM. WenH. ZhuC. YangY. A method to improve the transient response of dq -frame cascaded delayed-signal-cancellation PLL.Electr. Power Syst. Res.201815512113010.1016/j.epsr.2017.10.004
    [Google Scholar]
  55. HamedH.A. AbdouA.F. BayoumiE.H.E. EL-KholyE.E. Frequency adaptive CDSC-PLL using axis drift control under adverse grid condition.IEEE Trans. Ind. Electron.20176442671268210.1109/TIE.2016.2633524
    [Google Scholar]
  56. GolestanS. GuerreroJ.M. VasquezJ.C. Hybrid adaptive/nonadaptive delayed signal cancellation-based phase-locked loop.IEEE Trans. Ind. Electron.201764147047910.1109/TIE.2016.2596713
    [Google Scholar]
  57. WangY.F. LiY.W. Three-phase cascaded delay signal cancellation pll for fast selective harmonic detection.IEEE Trans. Ind. Electron.20136041452146310.1109/TIE.2011.2162715
    [Google Scholar]
  58. WangS. EtemadiA. DoroslovačkiM. Adaptive cascaded delayed signal cancellation PLL for three-phase grid under unbalanced and distorted condition.Electr. Power Syst. Res.202018010616510.1016/j.epsr.2019.106165
    [Google Scholar]
  59. RasheduzzamanM. KimballJ.W. Modeling and tuning of an improved delayed-signal-cancellation PLL for microgrid application.IEEE Trans. Energ. Convers.201934271272110.1109/TEC.2018.2880610
    [Google Scholar]
  60. GolestanS. RamezaniM. GuerreroJ.M. MonfaredM. dq-Frame cascaded delayed signal cancellation based PLL: Analysis, design, and comparison with moving average filter based PLL.IEEE Trans. Power Electron.20153031618163210.1109/TPEL.2014.2315872
    [Google Scholar]
  61. GolestanS. FreijedoF.D. VidalA. YepesA.G. GuerreroJ.M. Doval-GandoyJ. An efficient implementation of generalized delayed signal cancellation PLL.IEEE Trans. Power Electron.20163121085109410.1109/TPEL.2015.2420656
    [Google Scholar]
  62. RamezaniM. GolestanS. LiS. GuerreroJ.M. A simple approach to enhance the performance of complex-coefficient filter-based pll in grid-connected applications.IEEE Trans. Ind. Electron.20186565081508510.1109/TIE.2017.2772164
    [Google Scholar]
  63. Dòria-CerezoA. RepechoV. BielD. Three-phase phase-locked loop algorithms based on sliding modes.IEEE Trans. Power Electron.2021369108421085110.1109/TPEL.2021.3064674
    [Google Scholar]
  64. AhmedH. BiricikS. BenbouzidM. A Quasi open‐loop robust three‐phase grid‐synchronization technique for non‐ideal grid.IET Gener. Transm. Distrib.202115243388339910.1049/gtd2.12203
    [Google Scholar]
  65. PrakashS. SinghJ.K. BeheraR.K. MondalA. A type-3 modified SOGI-PLL with grid disturbance rejection capability for single-phase grid-tied converters.IEEE Trans. Ind. Appl.20215744242425210.1109/TIA.2021.3079122
    [Google Scholar]
  66. StojićD. Improved observer-based quadrature signal generator.Electr. Eng.202110363063307310.1007/s00202‑021‑01294‑6
    [Google Scholar]
  67. VermanantK. RajK.J. PedroR-S. MohanR.U. GuerreroJ.M. An improved hybrid prefiltered open-loop algorithm for three-phase grid synchronization.IEEE Trans. Ind. Electron.20216814242425210.1007/s00202‑021‑01294‑6
    [Google Scholar]
  68. Chen WeiW. He ShanS. Voltage synchronization method based on CSDFT-MAF-PLL under complex power grid.Proceedings of the CSU-EPSA2022343748210.19635/j.cnki.csu‑epsa.000837
    [Google Scholar]
  69. HeY. DengX.L. QiH.H. A novel grid synchronization technique based on fractional-order generalized integrator.J. Nanjing Univ. Nat. Sci. Tech.202214334836010.13878/j.cnki.jnuist.2022.03.011
    [Google Scholar]
  70. LiW. RuanX. BaoC. PanD. WangX. Grid synchronization systems of three-phase grid-connected power converters: A complex-vector-filter perspective.IEEE Trans. Ind. Electron.20146141855187010.1109/TIE.2013.2262762
    [Google Scholar]
  71. LiY. YangJ. WangH. GeW. MaY. A hybrid filtering technique-based pll targeting fast and robust tracking performance under distorted grid conditions.Energies201811497310.3390/en11040973
    [Google Scholar]
  72. LiY. WangD. HanW. TanS. GuoX. Performance improvement of quasi-type-1 PLL by using a complex notch filter.IEEE Access201646272628210.1109/ACCESS.2016.2614008
    [Google Scholar]
  73. GolestanS. GuerreroJ.M. GharehpetianG.B. Five approaches to deal with problem of DC offset in phase-locked loop algorithms: Design considerations and performance evaluations.IEEE Trans. Power Electron.201631164866110.1109/TPEL.2015.2408113
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965272509231116065158
Loading
/content/journals/raeeng/10.2174/0123520965272509231116065158
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test