Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Employing machine learning algorithms to produce synthetic media, known as deepfake technology, has garnered considerable interest in contemporary times owing to its capacity for both favorable and unfavorable implications. The paper thoroughly examines deepfake technology, encompassing its creation and identification methods and its legal, ethical, and societal ramifications. The article commences by presenting a comprehensive summary of the technology behind deepfake and its fundamental machine-learning algorithms. The subsequent discourse pertains to the basic metrics employed in assessing deepfake generation, the identification methodologies, and the prevalent benchmarks and datasets utilized for evaluating these algorithms. The study thoroughly examines deepfake technology, encompassing its methods of generation and detection, metrics for evaluation, datasets for benchmarking, and the challenges and constraints associated with its use. The review scrutinizes diverse techniques for generating deep fakes, encompassing Generative Adversarial Networks (GANs), autoencoders, and neural networks. Style transfer, alongside their corresponding metrics for evaluation, namely Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Fréchet Inception Distance (FID), and Inception Score (IS). The text delves into an analysis of deepfake detection techniques, encompassing image and video-based methodologies and the corresponding evaluation metrics. These metrics include accuracy, recall, F1 score, accuracy, AUC-ROC, and AUC-PR. The article additionally examines the benchmarks and datasets employed to evaluate the efficacy of deepfake detection algorithms. These include the Deepfake Detection Challenge (DFDC), the FaceForensics++, Celeb-DF, and DeeperForensics-1.0 datasets. This paper presents an overview of the challenges and limitations of generating and detecting deepfakes.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965269334231117112747
2025-06-01
2025-09-02
Loading full text...

Full text loading...

References

  1. KulkarniK. DeepFake Detection: A survey of countering malicious Deep-Fakes.Int. J. Res. Appl. Sci. Eng. Technol.20221064492449510.22214/ijraset.2022.44110
    [Google Scholar]
  2. TolosanaR. Vera-RodriguezR. FierrezJ. MoralesA. Ortega-GarciaJ. Deepfakes and beyond: A survey of face manipulation and fake detection.Inf. Fusion20206413114810.1016/j.inffus.2020.06.014
    [Google Scholar]
  3. KhanU. Return predictability and market sentiment: Evidence from deep learningSSRN202110.2139/ssrn.4314543
    [Google Scholar]
  4. OdermattL. BeqirajJ. OsterriederJ. Deep reinforcement learning for finance and the efficient market hypothesisSSRN202110.2139/ssrn.3865019
    [Google Scholar]
  5. SuwajanakornS. SeitzS.M. Kemelmacher-ShlizermanI. Synthesizing obama.ACM Trans. Graph.201736411310.1145/3072959.3073640
    [Google Scholar]
  6. ZhouH. LiuY. LiuZ. LuoP. WangX. Talking face generation by adversarially disentangled audio-visual representation.Proc. Conf. AAAI Artif. Intell.20193319299930610.1609/aaai.v33i01.33019299
    [Google Scholar]
  7. LalithaS. TripathiS. GuptaD. Enhanced speech emotion detection using deep neural networks.Int. J. Speech Technol.201922349751010.1007/s10772‑018‑09572‑8
    [Google Scholar]
  8. ParkS. LeeK.H. KoB. KimN. Unsupervised anomaly detection with generative adversarial networks in mammography.Sci. Rep.2023131292510.1038/s41598‑023‑29521‑z 36805637
    [Google Scholar]
  9. NguyenX.H. TranT.S. LeV.T. NguyenK.D. TruongD.T. Learning Spatio-temporal features to detect manipulated facial videos created by the Deepfake techniques.FSI Digital Invest.20213630110810.1016/j.fsidi.2021.301108
    [Google Scholar]
  10. BacciN. BriersN. SteynM. Assessing the effect of facial disguises on forensic facial comparison by morphological analysis.J. Forensic Sci.20216641220123310.1111/1556‑4029.14722 33885153
    [Google Scholar]
  11. LimS.Y. ChaeD.K. LeeS.C. Detecting deepfake voice using explainable deep learning techniques.Appl. Sci.2022128392610.3390/app12083926
    [Google Scholar]
  12. ShiZ. ShenX. KangH. LvY. Image manipulation detection and localization based on the dual-domain convolutional neural networks.IEEE Access20186764377645310.1109/ACCESS.2018.2883588
    [Google Scholar]
  13. AfyouniI. AghbariZ.A. RazackR.A. Multi-feature, multi-modal, and multi-source social event detection: A comprehensive survey.Inf. Fusion20227927930810.1016/j.inffus.2021.10.013
    [Google Scholar]
  14. HajiarbabiM. AgahA. Human skin detection in color images using deep learning.Int. J. Comput. Vis. Image Process.20155211310.4018/IJCVIP.2015070101
    [Google Scholar]
  15. ThiesJ. "Face2Face: Real-time facial reenactment", it - Information Technology2019612-314314610.1515/itit‑2019‑0006
    [Google Scholar]
  16. LuanX. ZhengJ. LiW. Learning unsupervised face normalization through frontal view reconstruction.IEEE Trans. Circ. Syst. Video Tech.20223285201521210.1109/TCSVT.2021.3136589
    [Google Scholar]
  17. WangG. ShiH. ChenY. WuB. Unsupervised image-to-image translation via long-short cycle-consistent adversarial networks.Appl. Intell.20235314172431725910.1007/s10489‑022‑04389‑0
    [Google Scholar]
  18. KhanS.A. DaiH. Video transformer for Deepfake detection with incremental learning.proceeding of the 29th ACM international conference on multimedia (MM’21). Association for computing machineryNew York, NY, USA20211821182810.1145/3474085.3475332
    [Google Scholar]
  19. MittalT. Emotions don’t lie: An audio-visual deepfake detection method using affective cuesProceedings of the 28th ACM International Conference on Multimedia20202823283210.1145/3394171.3413570
    [Google Scholar]
  20. ZiB. ChangM. ChenJ. MaX. JingYang Wild Deepfake: Achallanging real-world dataset for Deepfake detection.In procedings of the 28th ACM Intermational MachineryNew York, NY, USA2382239010.1145/3394171.3413769
    [Google Scholar]
  21. ScottH. Communication vignettes: Talking about death in dementia.End Life J.2013311410.1136/eoljnl‑03‑01.3
    [Google Scholar]
  22. WangY. WeiY. ZhangY. JinC. XinG. WangB. Few-shot learning in realistic settings for text CAPTCHA recognition.Neural Comput. Appl.20233515107511076410.1007/s00521‑023‑08262‑0
    [Google Scholar]
  23. NirkinY. KellerY. HassnerT. FSGANv2: Improved Subject Agnostic Face Swapping and Reenactment.IEEE Trans. Pattern Anal. Mach. Intell.202345156057510.1109/TPAMI.2022.3155571 35471874
    [Google Scholar]
  24. AnandShivendu Effective Mode of Learning Cartonization: White-box Cartoon Representations.Int. J. Eng. Techand Monog. Sci.202266
    [Google Scholar]
  25. SeowJ.W. LimM.K. PhanR.C.W. LiuJ.K. A comprehensive overview of Deepfake: Generation, detection, datasets, and opportunities.Neurocomputing202251335137110.1016/j.neucom.2022.09.135
    [Google Scholar]
  26. Samadi VahdatiD. StammM.C. Detecting GAN-generated synthetic images using semantic inconsistenciesIS&T Int. Symp. Electron. Imagingvol. 35, no. 4, pp. 380-1-, 380-6, 2023.10.2352/EI.2023.35.4.MWSF‑380
    [Google Scholar]
  27. TalibD.A. AbedA.A. Real-time deepfake image generation based on stylegan2-ADA.Revue d’Intelligence Artificielle202337239740510.18280/ria.370216
    [Google Scholar]
  28. MarchettiS. Rolling in the Deep(Fakes)SSRN, p.18, 2022.10.2139/ssrn.4032831
    [Google Scholar]
  29. DingF. ZhuG. LiY. ZhangX. AtreyP.K. LyuS. Anti-forensics for face swapping videos via adversarial training.IEEE Trans. Multimed.2022243429344110.1109/TMM.2021.3098422
    [Google Scholar]
  30. XingJ. LiX. WITHDRAWN: Feature extraction algorithm of audio and video based on clustering in sports video analysis.J. Vis. Commun. Image Represent.2019Nov10269410.1016/j.jvcir.2019.102694
    [Google Scholar]
  31. SemenovaN. LargerL. BrunnerD. Understanding and mitigating noise in trained deep neural networks.Neural Netw.202214615116010.1016/j.neunet.2021.11.008 34864223
    [Google Scholar]
  32. CaruanaM. VellaJ. 3D facial reconstruction from 2D portrait imagery.Inform. Secur.: Int. J.202047332834010.11610/isij.4724
    [Google Scholar]
  33. TangX. YuJ. SuY. Modeling driver’s visual fixation behavior using white-box representations.IEEE Trans. Intell. Transp. Syst.2022239154341544910.1109/TITS.2022.3140759
    [Google Scholar]
  34. KimH. GarridoP. TewariA. XuW. ThiesJ. NiessnerM. PérezP. RichardtC. ZollhöferM. TheobaltC. Deep video portraits.ACM Trans. Graph.201837411410.1145/3197517.3201283
    [Google Scholar]
  35. WeiX. GuoY. LiB. Black-box adversarial attacks by manipulating image attributes.Inf. Sci.202155028529610.1016/j.ins.2020.10.028
    [Google Scholar]
  36. ChenB. DuC. YuK. Neural fusion for voice cloning.IEEE/ACM Trans. Audio Speech Lang. Process.2022301993200110.1109/TASLP.2022.3171971
    [Google Scholar]
  37. SunT. FangW. ChenW. YaoY. BiF. WuB. High-resolution image inpainting based on multi-scale neural network.Electronics (Basel)2019811137010.3390/electronics8111370
    [Google Scholar]
  38. ShenH. WanW. WangH. Learning category-level generalizable object manipulation policy via generative adversarial self-imitation learning from demonstrations.IEEE Robot. Autom. Lett.202274111661117310.1109/LRA.2022.3196122
    [Google Scholar]
  39. DevinV.E. HoggD.C. Reactive memories: an interactive talking-head.Image Vis. Comput.20032113-141125113310.1016/j.imavis.2003.08.009
    [Google Scholar]
  40. YaoG. YuanY. ShaoT. LiS. LiuS. LiuY. WangM. ZhouK. One-shot face reenactment using appearance adaptive normalization.Proc. Conf. AAAI Artif. Intell.20213543172318010.1609/aaai.v35i4.16427
    [Google Scholar]
  41. PatelN. ZaveriM. 3D facial model reconstruction, expressions synthesis and animation using single frontal face image.Signal Image Video Process.20137588989710.1007/s11760‑011‑0278‑9
    [Google Scholar]
  42. KarrasT. AilaT. LaineS. HervaA. LehtinenJ. Audio-driven facial animation by joint end-to-end learning of pose and emotion.ACM Trans. Graph.201736411210.1145/3072959.3073658
    [Google Scholar]
  43. TerryK. RadhakrishnanR. Detection and correction of lip-sync errors using audio and video fingerprints.SMPTE Motion Imaging J.20101193425210.5594/J11398
    [Google Scholar]
  44. LohN.H. Development of real-time lip sync animation framework based on viseme human speech.Archiv. Design Res.201411241910.15187/adr.2014.11.112.4.19
    [Google Scholar]
  45. TogoR. OgawaT. HaseyamaM. Synthetic gastritis image generation via loss function-based conditional PGGAN.IEEE Access20197874488745710.1109/ACCESS.2019.2925863
    [Google Scholar]
  46. XuY. XuF. LiuQ. ChenJ. Improved first-order motion model of image animation with enhanced dense motion and repair ability.Appl. Sci. (Basel)2023137413710.3390/app13074137
    [Google Scholar]
  47. ChhetriD.B. “Perception towards online and face to face learning”, Scholars’.Journal2022Dec13915710.3126/scholars.v5i1.55801
    [Google Scholar]
  48. CutlerM. WalshT.J. HowJ.P. Real-world reinforcement learning via multifidelity simulators.IEEE Trans. Robot.201531365567110.1109/TRO.2015.2419431
    [Google Scholar]
  49. WalczynaT. PiotrowskiZ. Quick overview of face swap deep fakes.Appl. Sci. (Basel)20231311671110.3390/app13116711
    [Google Scholar]
  50. PumarolaA. AgudoA. MartinezA.M. SanfeliuA. Moreno-NoguerF. GANimation: One-shot anatomically consistent facial animation.Int. J. Comput. Vis.2020128369871310.1007/s11263‑019‑01210‑3
    [Google Scholar]
  51. YanC-T. Li, and X. Lu, “Deepfake detection via joint unsupervised reconstruction and supervised classification,”SSRN202210.2139/ssrn.4305465
    [Google Scholar]
  52. CiftciU.A. DemirI. YinL. FakeCatcher: Detection of synthetic portrait videos using biological signalsIEEE Trans. Pattern Anal. Mach. Intell.vol. PP, pp. 1-1, 2020.10.1109/TPAMI.2020.3009287 32750816
    [Google Scholar]
  53. SoleimaniM. NazariA. MoghaddamM.E. Deepfake detection of occluded images using a patch-based approachSSRN20223610.2139/ssrn.4115555
    [Google Scholar]
  54. HubálovskýŠ. TrojovskýP. BacaninN. KV. Evaluation of deepfake detection using YOLO with local binary pattern histogramPeerJ Comput. Sci.20228e108610.7717/peerj‑cs.1086 36262154
    [Google Scholar]
  55. TomásJ. RegoA. Viciano-TudelaS. LloretJ. Incorrect facemask-wearing detection using convolutional neural networks with transfer learning.Healthcare (Basel)202198105010.3390/healthcare9081050 34442187
    [Google Scholar]
  56. ZhangB. BaoY. Age estimation of faces in videos using head pose estimation and convolutional neural networks.Sensors (Basel)20222211417110.3390/s22114171 35684792
    [Google Scholar]
  57. KarandikarA. Deepfake video detection using convolutional neural network.Int. J. Adv. Trends Comput. Sci. Eng.2020921311131510.30534/ijatcse/2020/62922020
    [Google Scholar]
  58. WangJ. SunY. TangJ. LiSiam: Localization Invariance Siamese Network for Deepfake Detection.IEEE Trans. Inf. Forensics Security2022172425243610.1109/TIFS.2022.3186803
    [Google Scholar]
  59. MalikA. KuribayashiM. AbdullahiS.M. KhanA.N. DeepFake Detection for Human Face Images and Videos: A Survey.IEEE Access202210187571877510.1109/ACCESS.2022.3151186
    [Google Scholar]
  60. LuW. LiuL. ZhangB. LuoJ. ZhaoX. ZhouY. HuangJ. Detection of Deepfake Videos Using Long-Distance AttentionIEEE Trans. Neural Netw. Learn. Syst.vol. PP, pp. 1-14, 2023.10.1109/TNNLS.2023.3294810 37018601
    [Google Scholar]
  61. FoscoC. JosephsE. AndonianA. OlivaA. Deepfake Caricatures: Human-guided Motion Magnification Improves Deepfake Detection by Humans and Machines.J. Vis.20222214407910.1167/jov.22.14.4079
    [Google Scholar]
  62. YangW. ZhouX. ChenZ. GuoB. BaZ. XiaZ. CaoX. RenK. AVoiD-DF: Audio-Visual Joint Learning for Detecting Deepfake.IEEE Trans. Inf. Forensics Security2023182015202910.1109/TIFS.2023.3262148
    [Google Scholar]
  63. IsmailA. ElpeltagyM. ZakiM.S. EldahshanK. A New Deep Learning-Based Methodology for Video Deepfake Detection Using XGBoost.Sensors (Basel)20212116541310.3390/s21165413 34450855
    [Google Scholar]
  64. ArslanF. Deepfake technology: A criminological literature review.Sakarya Üniversitesi Hukuk Fakültesi Dergisi202311170172010.56701/shd.1293642
    [Google Scholar]
  65. MishraA. VermaA. DeyA. SinghA. DEEPFAKE DETECTION USING COMPUTER VISION.International Journal of Engineering Applied Sciences and Technology20216210.33564/IJEAST.2021.v06i02.010
    [Google Scholar]
  66. HuB.G. What are the differences between Bayesian classifiers and mutual-information classifiers?IEEE Trans. Neural Netw. Learn. Syst.201425224926410.1109/TNNLS.2013.2274799 24807026
    [Google Scholar]
  67. GroshevA. MaltsevaA. ChesakovD. KuznetsovA. DimitrovD. GHOST—A New Face Swap Approach for Image and Video Domains.IEEE Access202210834528346210.1109/ACCESS.2022.3196668
    [Google Scholar]
  68. ChenH. LiY. LinD. LiB. WuJ. Watching the BiG artifacts: Exposing DeepFake videos via Bi-granularity artifacts.Pattern Recognit.202313510917910.1016/j.patcog.2022.109179
    [Google Scholar]
  69. KorkmazŞ. AlkanM. Deepfake Video Detection Using Deep Learning Algorithms.Politeknik Dergisi202326285586210.2339/politeknik.1063104
    [Google Scholar]
  70. WubetW.M. The Deepfake Challenges and Deepfake Video Detection.Int. J. Innov. Technol. Explor. Eng.20209678979610.35940/ijitee.E2779.049620
    [Google Scholar]
  71. HasanM.K. AlamM.A. DasD. HossainE. HasanM. Diabetes Prediction Using Ensembling of Different Machine Learning Classifiers.IEEE Access20208765167653110.1109/ACCESS.2020.2989857
    [Google Scholar]
  72. ThambawitaV. IsaksenJ.L. HicksS.A. GhouseJ. AhlbergG. LinnebergA. GrarupN. EllervikC. OlesenM.S. HansenT. GraffC. Holstein-RathlouN.H. StrümkeI. HammerH.L. MaleckarM.M. HalvorsenP. RieglerM.A. KantersJ.K. DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine.Sci. Rep.20211112189610.1038/s41598‑021‑01295‑2 34753975
    [Google Scholar]
  73. GongD. Deepfake Forensics, an AI-synthesized Detection with Deep Convolutional Generative Adversarial Networks.International Journal of Advanced Trends in Computer Science and Engineering2020932861287010.30534/ijatcse/2020/58932020
    [Google Scholar]
  74. SutabriT. PamungkurP. KurniawanA. SaragihR.E. Automatic Attendance System for University Student Using Face Recognition Based on Deep Learning.Int. J. Mach. Learn. Comput.20199566867410.18178/ijmlc.2019.9.5.856
    [Google Scholar]
  75. MyvizhiD. Miraclin Joyce PamilaJ.C. Extensive Analysis of Deep Learning-based Deepfake Video Detection.20221914396440910.36548/jucct.2022.1.001
    [Google Scholar]
  76. JungT. KimS. KimK. DeepVision: Deepfakes Detection Using Human Eye Blinking Pattern.IEEE Access20208831448315410.1109/ACCESS.2020.2988660
    [Google Scholar]
  77. DobrobabaM.B. Deepfakes as a Threat to Human Rights.Lex Russica2022751111211910.17803/1729‑5920.2022.192.11.112‑119
    [Google Scholar]
  78. KimY.S. SongH.J. HanJ.H. A Study on the Development of Deepfake-Based Deep Learning Algorithm for the Detection of Medical Data Manipulation.Webology20221914396440910.14704/WEB/V19I1/WEB19289
    [Google Scholar]
  79. SuY. DengJ. SunR. LinG. SuH. WuQ. A Unified Transformer Framework for Group-based Segmentation: Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection.IEEE Trans. Multimed.20242631332510.1109/TMM.2023.3264883
    [Google Scholar]
  80. KumarV. KansalV. GaurM. Multiple Forgery Detection in Video Using Convolution Neural Network.Comput. Mater. Continua20227311347136410.32604/cmc.2022.023545
    [Google Scholar]
  81. DoT.L. TranM.K. NguyenH.H. TranM.T. Potential Attacks of DeepFake on eKYC Systems and Remedy for eKYC with DeepFake Detection Using Two-Stream Network of Facial Appearance and Motion Features.SN Computer Science20223646410.1007/s42979‑022‑01364‑x
    [Google Scholar]
  82. GuoZ. YangG. ChenJ. SunX. Exposing Deepfake Face Forgeries with Guided Residuals.IEEE Trans. Multimed.20232511410.1109/TMM.2023.3237169
    [Google Scholar]
  83. TrojovskypKV Hubaiovskys. 2023, VIOLA jones algorithm with capsule graph network for deepfake detection.Peer J computer science9e131310.7717/peerj‑cs.1313
    [Google Scholar]
  84. UstubiogluA. UstubiogluB. UlutasG. Mel spectrogram-based audio forgery detection using CNN.Signal Image Video Process.20231752211221910.1007/s11760‑022‑02436‑4
    [Google Scholar]
  85. PapadimitriouI. VafeiadisA. LalasA. VotisK. TzovarasD. Audio-Based Event Detection at Different SNR Settings Using Two-Dimensional Spectrogram Magnitude Representations.Electronics (Basel)2020910159310.3390/electronics9101593
    [Google Scholar]
  86. DasR. NegiG. SmeatonA.F. Detecting Deepfake Videos Using Euler Video MagnificationIS&T Int. Symp. Electron. Imaging2021334272-1272-710.2352/ISSN.2470‑1173.2021.4.MWSF‑272
    [Google Scholar]
  87. GrazianiM. LompechT. MüllerH. DepeursingeA. AndrearczykV. On the Scale Invariance in State of the Art CNNs Trained on ImageNet.Machine Learning and Knowledge Extraction20213237439110.3390/make3020019
    [Google Scholar]
  88. YangJ. KangX. WongE.K. ShiY.Q. JPEG steganalysis with combined dense connected CNNs and SCA-GFR.Multimedia Tools Appl.20197878481849510.1007/s11042‑018‑6878‑4
    [Google Scholar]
  89. ThiesJ. ZollhöferM. StammingerM. TheobaltC. NießnerM. Face2Face.Commun. ACM20186219610410.1145/3292039
    [Google Scholar]
  90. MokadyR. TzabanR. BenaimS. BermanoA.H. Cohen-OrD. JOKR: Joint Keypoint Representation for Unsupervised Video Retargeting.Comput. Graph. Forum202241624525710.1111/cgf.14616
    [Google Scholar]
  91. PandeyR.C. PrasadS. SinghS.K. ShuklaK. Image Splicing Detection using HMRF-GMM Based Segmentation Technique and Local Noise Variances.vol.5223228 2016.10.5958/2277‑4912.2016.00043.6
    [Google Scholar]
  92. TzirakisP. TrigeorgisG. NicolaouM.A. SchullerB.W. ZafeiriouS. End-to-End Multimodal Emotion Recognition Using Deep Neural Networks.IEEE J. Sel. Top. Signal Process.20171181301130910.1109/JSTSP.2017.2764438
    [Google Scholar]
  93. MeelP. VishwakarmaD.K. HAN, image captioning, and forensics ensemble multimodal fake news detection.Inf. Sci.2021567234110.1016/j.ins.2021.03.037
    [Google Scholar]
  94. PahujaL. KamalA. Enlfade: Ensemble Learning Based Fake Account Detection on Ethereum BlockchainSSRN20202210.2139/ssrn.4180768
    [Google Scholar]
  95. KokkinosI. Yu-DenC. Adversarial attacks against deep learning models in multi-modal deep fake detectionarXiv preprint arXiv:110.08854.
    [Google Scholar]
  96. ManiN. MohM. MohT.S. Defending Deep Learning Models Against Adversarial Attacks.Int. J. Softw. Sci. Comput. Intell.2021131728910.4018/IJSSCI.2021010105
    [Google Scholar]
  97. YousafB. UsamaM. SultaniW. MahmoodA. QadirJ. Fake visual content detection using two-stream convolutional neural networks.Neural Comput. Appl.202234107991800410.1007/s00521‑022‑06902‑5
    [Google Scholar]
  98. AutherithS. PasquiniC. Detecting Morphing Attacks through Face Geometry Features.J. Imaging202061111510.3390/jimaging6110115 34460559
    [Google Scholar]
  99. Haji AliN. HarunF. Video forgery detection based-on passive (blind) approach.Journal of Advances in Technology and Engineering Research20195510.20474/jater‑5.5.2
    [Google Scholar]
  100. GogiaG. RughaniP.H. AN ML BASED DIGITAL FORENSICS SOFTWARE FOR TRIAGE ANALYSIS THROUGH FACE RECOGNITION. Journal of Digital ForensicsSecurity and Law202317210.58940/1558‑7223.1772a
    [Google Scholar]
  101. VermaJ. BhandariA. SinghG. iNIDS: SWOT Analysis and TOWS Inferences of State-of-the-Art NIDS solutions for the development of Intelligent Network Intrusion Detection System.Comput. Commun.202219522724710.1016/j.comcom.2022.08.022
    [Google Scholar]
  102. VermaJ. BhandariA. SinghG. REVIEW OF EXISTING DATA SETS FOR NETWORK INTRUSION DETECTION SYSTEM.Advances in Mathematics: Scientific Journal2020963849385410.37418/amsj.9.6.64
    [Google Scholar]
  103. SnehiJ. BhandariA. BagganV. SnehiM. Diverse Methods for Signature based Intrusion Detection Schemes Adopted.International Journal of Recent Technology and Engineering (IJRTE)2020924449[IJRTE].10.35940/ijrte.A2791.079220
    [Google Scholar]
  104. SnehiM. SnehiJ. DhirR. Issues and Emerging Trends in Identity Management.Int. J. Comput. Technol.20123229429710.24297/ijct.v3i2b.6773
    [Google Scholar]
  105. SimaiyaS. LilhoreU. K. SandhuJ. K. SnehiJ. GargA. ManharA. LoRa-Based IoT Architecture Using Ant Colony Optimization for Intelligent Traffic System.10.1007/978‑981‑19‑5868‑7_56
    [Google Scholar]
  106. BlutC. WilbrandtJ. FelsD. GirgelE.I. LunauK. The ‘sparkle’ in fake eyes - the protective effect of mimic eyespots in lepidoptera.Entomol. Exp. Appl.2012143323124410.1111/j.1570‑7458.2012.01260.x
    [Google Scholar]
  107. NadikattuA.K.R. Machine Learning vs Deep Learning Models for Detecting Fake News: A Comparative Analysis on Fake-NewsNet DatasetSSRN202310.2139/ssrn.4382241
    [Google Scholar]
  108. KansalI. KhullarV. VermaJ. PopliR. KumarR. IoT-Fog-enabled robotics-based robust classification of hazy and normal season agricultural images for weed detection.Paladyn20231412022010510.1515/pjbr‑2022‑0105
    [Google Scholar]
  109. ErdalK. Why one fakes a head injury affects how one fakes a head injury.Appl. Neuropsychol.2009161424810.1080/09084280802644136 19205947
    [Google Scholar]
  110. YuP. XiaZ. FeiJ. LuY. A Survey on Deepfake Video Detection.IET Biom.202110660762410.1049/bme2.12031
    [Google Scholar]
  111. MasoodM. NawazM. MalikK.M. JavedA. IrtazaA. MalikH. Deepfakes generation and detection: state-of-the-art, open challenges, countermeasures, and way forward.Appl. Intell.20235343974402610.1007/s10489‑022‑03766‑z
    [Google Scholar]
  112. SeowJ. W. LimM. K. PhanR. C. LiuJ. K. 10.1016/j.neucom.2022.09.135
  113. DagarD. VishwakarmaD.K. A literature review and perspectives in deepfakes: generation, detection, and applications.Int. J. Multimed. Inf. Retr.202211321928910.1007/s13735‑022‑00241‑w
    [Google Scholar]
  114. PassosL.A. JodasD.S. RibeiroL.C.F. AkioM. de SouzaA.N. PapaJ.P. Handling imbalanced datasets through Optimum-Path Forest.Knowl. Base. Syst.202224210844510.1016/j.knosys.2022.108445
    [Google Scholar]
  115. StroebelL. LlewellynM. HartleyT. IpT.S. AhmedM. A systematic literature review on the effectiveness of deepfake detection techniques.Journal of Cyber Security Technology2023728311310.1080/23742917.2023.2192888
    [Google Scholar]
  116. RanaM.S. NobiM.N. MuraliB. SungA.H. Deepfake Detection: A Systematic Literature Review.IEEE Access202210254942551310.1109/ACCESS.2022.3154404
    [Google Scholar]
  117. KhanjaniZ. WatsonG. JanejaV.P. Audio deepfakes: A survey.Frontiers in Big Data20235100106310.3389/fdata.2022.1001063 36700137
    [Google Scholar]
  118. GargA. LilhoreU.K. GhoshP. PrasadD. SimaiyaS. Machine Learning-based Model for Prediction of Student’s Performance in Higher Education10.1109/SPIN52536.2021.9565999
    [Google Scholar]
  119. KoundalD. GuptaS. SinghS. Computer aided thyroid nodule detection system using medical ultrasound images.Biomed. Signal Process. Control20184011713010.1016/j.bspc.2017.08.025
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965269334231117112747
Loading
/content/journals/raeeng/10.2174/0123520965269334231117112747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test