Skip to content
2000
image of Revolutionizing Hyperlipidaemia Treatment: Magnetic Nanoparticle-Based Delivery Systems

Abstract

Intramuscular magnetic field-driven therapies are a novel means for drug delivery, and, specifically, for the treatment of hyperlipidaemia. With this paradigm shift, the drug delivery system is intended to overcome the limitations of conventional systemic therapies and deliver the drug with precision to the site of action. Magnetic Drug Delivery Systems (MDDS) take advantage of specific properties of magnetic nanoparticles (MNPs) to increase drug localisation and penetration within tissues using external magnetic fields, that is, ensuring targeted delivery of therapeutic agents to the target tissues in a controlled and efficient manner. In this review, MDDS was applied to hyperlipidaemia management, including Orlistat-enhanced magnetic systems for lipid-lowering therapy. Green chemistry advances, biomimetic coatings and intelligent carriers are discussed in the synthesis and design of magnetic nanoparticles. Computational models, techniques, and animal studies that represent preclinical innovations are explored to demonstrate the translational potential of these systems. Long-term nanoparticle stability and biocompatibility are given special attention, and ethical, regulatory and safety concerns are critically analysed. Finally, this review explored the potential of next-generation technologies like magnetoelectric nanoparticles, AI-driven magnetic field modulation, and integration with wearable health technology to illuminate a new path towards personalised and targeted therapy.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878383901250918195712
2025-10-03
2025-12-13
Loading full text...

Full text loading...

References

  1. WHO Fact-Sheets Cardiovascular diseases (CVDs) WHO 2021
    [Google Scholar]
  2. Grundy S.M. Stone N.J. Bailey A.L. Beam C. Birtcher K.K. Blumenthal R.S. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/ APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2018 139 2019
    [Google Scholar]
  3. Lu AH Salabas EL Schüth F Magnetic nanoparticles: Synthesis,protection, functionalization, and application. Angew Chem Int Ed Engl 2007 46: 1222 10.1002/anie.200602866
    [Google Scholar]
  4. Kami D. Takeda S. Itakura Y. Gojo S. Watanabe M. Toyoda M. Application of magnetic nanoparticles to gene delivery. Int. J. Mol. Sci. 2011 12 6 3705 3722 10.3390/ijms12063705 21747701
    [Google Scholar]
  5. Alexiou C. Arnold W. Hulin P. Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J. Magn. Magn. Mater. 2001 225 1-2 187 193 10.1016/S0304‑8853(00)01256‑7
    [Google Scholar]
  6. Estelrich J. Escribano E. Queralt J. Busquets M. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 2015 16 4 8070 8101 10.3390/ijms16048070 25867479
    [Google Scholar]
  7. Liu Y.L. Chen D. Shang P. Yin D.C. A review of magnet systems for targeted drug delivery. J. Control. Release 2019 302 90 104 10.1016/j.jconrel.2019.03.031
    [Google Scholar]
  8. Mir M. Ishtiaq S. Rabia S. Nanotechnology: From in vivo imaging system to controlled drug delivery. Nanoscale Res. Lett. 2017 12 1 500 10.1186/s11671‑017‑2249‑8 28819800
    [Google Scholar]
  9. Vandghanooni S. Eskandani M. Barar J. Omidi Y. AS1411 aptamer-decorated cisplatin-loaded poly(lactic- co -glycolic acid) Nanoparticles for Targeted Therapy of miR-21-inhibited Ovarian Cancer Cells. Nanomedicine (Lond.) 2018 13 21 2729 2758 10.2217/nnm‑2018‑0205 30394201
    [Google Scholar]
  10. Comanescu C. Recent advances in surface functionalization of magnetic nanoparticles. Coatings 2023 13 10 1772 10.3390/coatings13101772
    [Google Scholar]
  11. Dang Y. Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med 2020 1 10 19 10.1016/j.smaim.2020.04.001 34553138
    [Google Scholar]
  12. Materón E.M. Miyazaki C.M. Carr O. Joshi N. Picciani P.H.S. Dalmaschio C.J. Magnetic nanoparticles in biomedical applications: A review. Appl Surf Sci Adv 2021 6 100163 10.1016/j.apsadv.2021.100163
    [Google Scholar]
  13. Priya N. Naveen, Kaur K, Sidhu AK. Green synthesis: An eco-friendly route for the synthesis of iron oxide nanoparticles. Front Nanotechnol 2021 3 655062 10.3389/fnano.2021.655062
    [Google Scholar]
  14. Włodarczyk A. Gorgoń S. Radoń A. Bajdak-Rusinek K. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: Challenges and perspectives. Nanomaterials 2022 12 11 1807 10.3390/nano12111807 35683663
    [Google Scholar]
  15. Alsenousy A.H.A. El-Tahan R.A. Ghazal N.A. The anti-obesity potential of superparamagnetic iron oxide nanoparticles against high-fat diet-induced obesity in rats: Possible involvement of mitochondrial biogenesis in the adipose tissues. Pharmaceutics 2022 14 10 2134 10.3390/pharmaceutics14102134 36297569
    [Google Scholar]
  16. Uti D.E. Alum E.U. Atangwho I.J. Lipid-based nano-carriers for the delivery of anti-obesity natural compounds: Advances in targeted delivery and precision therapeutics. J. Nanobiotechnol 2025 23 336 10.1186/s12951‑025‑03412‑z
    [Google Scholar]
  17. Babu B.R. Pranitha M. Formulation and evaluation of solid lipid nanoparticles loaded with orlistat for enhanced oral bioavailability. Mathews J Pharm Sci 2025 9 1 43 10.30654/MJPS.10043
    [Google Scholar]
  18. Payghan S. Payghan V. Nangare K. Dahiwade L. Khavane K. Phalke R. Preparation and characterization of orlistat bionanocomposites using natural carriers. Turk J Pharm Sci 2022 19 2 168 179 10.4274/tjps.galenos.2021.71363 35509842
    [Google Scholar]
  19. Trandafir L.M. Dodi G. Frasinariu O. Tackling dyslipidemia in obesity from a nanotechnology perspective. Nutrients 2022 14 18 3774 10.3390/nu14183774 36145147
    [Google Scholar]
  20. Sreeharsha N. Chitrapriya N. Jang Y.J. Kenchappa V. Evaluation of nanoparticle drug-delivery systems used in preclinical studies. Ther. Deliv. 2021 12 4 325 336 10.4155/tde‑2020‑0116 33759568
    [Google Scholar]
  21. Cromer Berman S.M. Walczak P. Bulte J.W.M. Tracking stem cells using magnetic nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011 3 4 343 355 10.1002/wnan.140 21472999
    [Google Scholar]
  22. Wang Q. Ma X. Liao H. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 2020 14 2 2053 2062 10.1021/acsnano.9b08660 31999433
    [Google Scholar]
  23. Ramezanpour M. Leung S.S.W. Delgado-Magnero K.H. Bashe B.Y.M. Thewalt J. Tieleman D.P. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim. Biophys. Acta Biomembr. 2016 1858 7 1688 1709 10.1016/j.bbamem.2016.02.028 26930298
    [Google Scholar]
  24. Semeano A.T. Tofoli F.A. Corrêa-Velloso J.C. Effects of magnetite nanoparticles and static magnetic field on neural differentiation of pluripotent stem cells. Stem Cell Rev. Rep. 2022 18 4 1337 1354 10.1007/s12015‑022‑10332‑0 35325357
    [Google Scholar]
  25. Duan H. Wang D. Li Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015 44 16 5778 5792 10.1039/C4CS00363B 25615873
    [Google Scholar]
  26. Yew Y.P. Shameli K. Miyake M. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab. J. Chem. 2020 13 1 2287 2308 10.1016/j.arabjc.2018.04.013
    [Google Scholar]
  27. Iqubal A. Iqubal M.K. Khan A. Ali J. Baboota S. Haque S.E. Gene Therapy, A novel therapeutic tool for neurological disorders: current progress, challenges and future prospective. Curr. Gene Ther. 2020 20 3 184 194 10.2174/1566523220999200716111502 32674730
    [Google Scholar]
  28. Patitsa M. Karathanou K. Kanaki Z. Magnetic nanoparticles coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications. Sci. Rep. 2017 7 1 775 10.1038/s41598‑017‑00836‑y 28396592
    [Google Scholar]
  29. Malehmir S. Esmaili M.A. Khaksary Mahabady M. A review: Hemocompatibility of magnetic nanoparticles and their regenerative medicine, cancer therapy, drug delivery, and bioimaging applications. Front Chem. 2023 11 1249134 10.3389/fchem.2023.1249134 37711315
    [Google Scholar]
  30. Morshedi Rad D. Alsadat Rad M. Razavi Bazaz S. Kashaninejad N. Jin D. Ebrahimi Warkiani M. A comprehensive review on intracellular delivery. Adv. Mater. 2021 33 13 2005363 10.1002/adma.202005363 33594744
    [Google Scholar]
  31. Mittal A. Roy I. Gandhi S. Magnetic nanoparticles: An overview for biomedical applications. Magnetochemistry 2022 8 9 107 10.3390/magnetochemistry8090107
    [Google Scholar]
  32. Li J. Cha R. Luo H. Hao W. Zhang Y. Jiang X. Nanomaterials for the theranostics of obesity. Biomaterials 2019 223 119474 10.1016/j.biomaterials.2019.119474
    [Google Scholar]
  33. Szwed M. Marczak A. Application of nanoparticles for magnetic hyperthermia for cancer treatment—the current state of knowledge. Cancers 2024 16 6 1156 10.3390/cancers16061156 38539491
    [Google Scholar]
  34. Soumya R.S. Raghu K.G. Recent advances on nanoparticle-based therapies for cardiovascular diseases. J. Cardiol. 2023 81 1 10 18 10.1016/j.jjcc.2022.02.009 35210166
    [Google Scholar]
  35. Yuan M. Wang Y. Qin Y.X. Engineered nanomedicine for neuroregeneration: Light emitting diode-mediated superparamagnetic iron oxide-gold core-shell nanoparticles functionalized by nerve growth factor. Nanomedicine 2019 21 102052
    [Google Scholar]
  36. Reddy L.H. Arias J.L. Nicolas J. Couvreur P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012 112 11 5818 5878 10.1021/cr300068p 23043508
    [Google Scholar]
  37. Ebbesen M. Jensen T.G. Nanomedicine: Techniques, potentials, and ethical implications. J. Biomed. Biotechnol. 2006 2006 51516 10.1155/JBB/2006/51516
    [Google Scholar]
  38. Markides H. Rotherham M. El Haj A.J. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater. 2012 2012 1 614094 10.1155/2012/614094
    [Google Scholar]
  39. Fooladi S. Rabiee N. Iravani S. Genetically engineered bacteria: A new frontier in targeted drug delivery. J. Mater. Chem. B Mater. Biol. Med. 2023 11 42 10072 10087 10.1039/D3TB01805A 37873584
    [Google Scholar]
  40. Nosrati H. Salehiabar M. Fridoni M. New insight about biocompatibility and biodegradability of iron oxide magnetic nanoparticles: Stereological and in vivo MRI monitor. Sci. Rep. 2019 9 1 7173 10.1038/s41598‑019‑43650‑4 31073222
    [Google Scholar]
  41. Dave V. Sur S. Gupta N. Current framework, ethical consideration and future challenges of regulatory approach for nano-based products. Nanopharmaceutical Advanced Delivery Systems. Wiley 2021
    [Google Scholar]
  42. Stepien G. Moros M. Pérez-Hernández M. Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in Vivo. ACS Appl. Mater. Interfaces 2018 10 5 4548 4560 10.1021/acsami.7b18648 29328627
    [Google Scholar]
  43. Domey J. Bergemann C. Bremer-Streck S. Long-term prevalence of NIRF-labeled magnetic nanoparticles for the diagnostic and intraoperative imaging of inflammation. Nanotoxicology 2016 10 1 20 31 [PMID: 25686713
    [Google Scholar]
  44. Dash S. Das T. Patel P. Panda P.K. Suar M. Verma S.K. Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases. J. Nanobiotechnology 2022 20 1 393 10.1186/s12951‑022‑01595‑3 36045375
    [Google Scholar]
  45. Zelepukin I.V. Yaremenko A.V. Ivanov I.N. Long-term fate of magnetic particles in mice: A comprehensive study. ACS Nano 2021 15 7 11341 11357 10.1021/acsnano.1c00687 34250790
    [Google Scholar]
  46. Rodzinski A. Guduru R. Liang P. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Sci. Rep. 2016 6 1 20867 10.1038/srep20867 26875783
    [Google Scholar]
  47. Nosrati H. Nosrati M. Artificial intelligence in regenerative medicine: Applications and implications. Biomimetics 2023 8 5 442 10.3390/biomimetics8050442 37754193
    [Google Scholar]
  48. Smith I.T. Zhang E. Yildirim Y.A. Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 15 2 e1849 10.1002/wnan.1849 36056752
    [Google Scholar]
  49. Tietze R. Zaloga J. Unterweger H. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun. 2015 468 3 463 470 10.1016/j.bbrc.2015.08.022 26271592
    [Google Scholar]
  50. Vora L.K. Gholap A.D. Jetha K. Thakur R.R.S. Solanki H.K. Chavda V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023 15 7 1916 10.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  51. Kar A. Ahamad N. Dewani M. Awasthi L. Patil R. Banerjee R. Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials 2022 283 121435 10.1016/j.biomaterials.2022.121435 35227964
    [Google Scholar]
  52. Merino S. Martín C. Kostarelos K. Prato M. Vázquez E. Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. Vol. 9. ACS Nano 2015 9 5 4686 4697 10.1021/acsnano.5b01433 25938172
    [Google Scholar]
  53. Kyriakides T.R. Ivanova O.S. Bormashenko E. Biocompatibility of nanomaterials and their immunological effects. Cells 2021 10 10 2906
    [Google Scholar]
  54. Tan M. Xu Y. Gao Z. Recent advances in intelligent wearable medical devices integrating biosensing and drug delivery. Adv. Mater. 2022 34 27 2108491 10.1002/adma.202108491
    [Google Scholar]
  55. Tyler J. Choi S.W. Tewari M. Real-time, personalized medicine through wearable sensors and dynamic predictive modeling: A new paradigm for clinical medicine. Curr. Opin. Syst. Biol. 2020 20 17 25 10.1016/j.coisb.2020.07.001 32984661
    [Google Scholar]
  56. Namiki Y. Fuchigami T. Tada N. Nanomedicine for cancer: Lipid-based nanostructures for drug delivery and monitoring. Acc. Chem. Res. 2011 44 10 1080 1093 10.1021/ar200011r 21786832
    [Google Scholar]
  57. Kumar C.S.S.R. Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 2011 63 9 789 808 10.1016/j.addr.2011.03.008 21447363
    [Google Scholar]
  58. Bar-Zeev M. Livney Y.D. Assaraf Y.G. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist. Updat. 2017 31 15 30 10.1016/j.drup.2017.05.002 28867241
    [Google Scholar]
  59. Haleem A. Javaid M. Singh R.P. Rab S. Suman R. Applications of nanotechnology in medical field: A brief review. Glob Health J 2023 7 2 70 77 10.1016/j.glohj.2023.02.008
    [Google Scholar]
  60. El-Sherbiny I.M. Elbaz N.M. Sedki M. Elgammal A. Yacoub M.H. Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases. Nanomedicine (Lond.) 2017 12 4 387 402 10.2217/nnm‑2016‑0341 28078950
    [Google Scholar]
  61. Mejías R. Gutiérrez L. Salas G. Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. J. Control. Release 2013 171 2 225 233 10.1016/j.jconrel.2013.07.019 23906866
    [Google Scholar]
  62. Stueber D.D. Villanova J. Aponte I. Xiao Z. Colvin V.L. Magnetic nanoparticles in biology and medicine: Past, present, and future trends. Pharmaceutics 2021 13 7 943 10.3390/pharmaceutics13070943 34202604
    [Google Scholar]
  63. Andreadou I. Schulz R. Badimon L. Hyperlipidaemia and cardioprotection: Animal models for translational studies. Br. J. Pharmacol. 2020 177 23 5287 5311 10.1111/bph.14931 31769007
    [Google Scholar]
  64. Rahman T. Hosen I. Islam M.M.T. Shekhar H.U. Oxidative stress and human health. Adv. Biosci. Biotechnol. 2012 3 7 997 1019 10.4236/abb.2012.327123
    [Google Scholar]
  65. Chen Z. Wang Z. Gu Z. Bioinspired and biomimetic nanomedicines. Acc. Chem. Res. 2019 52 5 1255 1264 10.1021/acs.accounts.9b00079 30977635
    [Google Scholar]
  66. Potrč T. Nemec S. Roškar R. Pajk S. Kocbek P. Kralj S. One-pot method for preparation of magnetic multi-core nanocarriers and study of orlistat loading/release. Materials 2019 12 3 540 10.3390/ma12030540 30759725
    [Google Scholar]
  67. Lee B.K. Yun Y.H. Park K. Smart nanoparticles for drug delivery: Boundaries and opportunities. Chem. Eng. Sci. 2015 125 158 164 10.1016/j.ces.2014.06.042 25684780
    [Google Scholar]
  68. Manshadi M.K.D. Saadat M. Mohammadi M. Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy. Drug Deliv. 2018 25 1 1963 1973 10.1080/10717544.2018.1497106 30799655
    [Google Scholar]
  69. Agotegaray M.A. Campelo A.E. Zysler R.D. Magnetic nanoparticles for drug targeting: From design to insights into systemic toxicity. Preclinical evaluation of hematological, vascular and neurobehavioral toxicology. Biomater. Sci. 2017 5 4 772 783 10.1039/C6BM00954A 28256646
    [Google Scholar]
  70. Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano 2013 7 9 7442 7447 10.1021/nn404501g
    [Google Scholar]
  71. Ashofteh A Marqués R Callejas A Muñoz R Melchor J Numerical modelling of magnetic nanoparticle behavior in an alternating magnetic field based on multiphysics coupling. Mech Adv Mater Struct 2024 31 6 10.1080/15376494.2022.2136805
    [Google Scholar]
  72. Agiotis L. Theodorakos I. Samothrakitis S. Papazoglou S. Zergioti I. Raptis Y.S. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications. J. Magn. Magn. Mater. 2016 401 956 964 10.1016/j.jmmm.2015.10.111
    [Google Scholar]
  73. Ganesan P. Ramalingam P. Karthivashan G. Ko Y.T. Choi D.K. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int. J. Nanomedicine 2018 13 1569 1583 10.2147/IJN.S155593
    [Google Scholar]
  74. Liu X.L. Chen S. Zhang H. Zhou J. Fan H.M. Liang X.J. Magnetic nanomaterials for advanced regenerative medicine: The promise and challenges. Adv. Mater. 2019 31 45 1804922 10.1002/adma.201804922 30511746
    [Google Scholar]
  75. Rodenak-Kladniew B. Noacco N. Pérez de Berti I. Design of magnetic hybrid nanostructured lipid carriers containing 1,8-cineole as delivery systems for anticancer drugs: Physicochemical and cytotoxic studies. Colloids Surf. B Biointerfaces 2021 202 111710 10.1016/j.colsurfb.2021.111710 33765626
    [Google Scholar]
  76. Chen X Hussain S Abbas A Hao Y Malik AH Tian X Conjugated polymer nanoparticles and their nanohybrids as smart photoluminescent and photoresponsive material for biosensing, imaging, and theranosticsMicrochimica Acta 2022 189
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878383901250918195712
Loading
/content/journals/raddf/10.2174/0126673878383901250918195712
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test