Skip to content
2000
image of Nanotechnological Advancements in Diabetes Management: Unravelling the Therapeutic Efficacy of Phytosomes

Abstract

Introduction

Diabetes, a widespread condition, wreaks havoc on the body's systems over time, particularly affecting nerves and blood vessels, leading to a weakened immune system. According to data from the International Diabetes Federation (IDF), the top three countries with the highest number of diabetics in 2019 were China (116.4 million), India (77.0 million), and the United States (31 million). This article explores the pivotal role of phytosomes, cutting-edge nanotechnology, in addressing diabetes mellitus. This review aims to investigate the therapeutic potential of phytosomes, a novel nanotechnology, in managing diabetes mellitus and addressing its associated physiological challenges.

Methods

A thorough literature review was performed, encompassing research papers, clinical studies, and relevant data on diabetes and phytosomes. The focus is on understanding phytosomes' benefits and the complexities involved in diabetes management.

Results

Phytosomes have emerged as a game-changer in diabetes mellitus, offering superior efficacy compared to traditional dosage forms. Their unique properties, including small particle size, enhanced cellular uptake, low cytotoxicity, potent anti-inflammatory, antibacterial, and antioxidant activities, as well as excellent biocompatibility and biodegradability, position them as a promising therapeutic approach.

Discussion

Phytosomes significantly enhanced the bioavailability and therapeutic efficacy of plant-based compounds, thereby mitigating oxidative stress, inflammation, and insulin resistance.

Conclusion

By leveraging the advanced capabilities of phytosomes, healthcare practitioners can potentially overcome the challenges associated with diabetes, paving the way for improved patient outcomes and enhanced public health.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878374622251002170045
2025-11-05
2026-02-03
Loading full text...

Full text loading...

References

  1. Sapra A. Bhandari P. Diabetes. In: StatPearls Treasure Island (FL) StatPearls Publishing 2023 32644400
    [Google Scholar]
  2. American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care 2010 33 Suppl 1 S62 S69 10.2337/dc10‑S062 20042771
    [Google Scholar]
  3. Yau M. Maclaren N. K. Sperling M. A. Etiology and pathogenesis of diabetes mellitus in children and adolescents. Endotext Feingold K. R. Anawalt B. Blackman B. M. Gallo M. Gudzune K. A. Jensen M. D. Mandel S. J. South Dartmouth (MA) MDText.com, Inc. 2021 25905206
    [Google Scholar]
  4. American Diabetes Association 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021. Diabetes Care 2021 44 Suppl 1 S15 S33 10.2337/dc21‑S002 33298413
    [Google Scholar]
  5. Pradeepa R. Mohan V. Epidemiology of type 2 diabetes in India. Indian J. Ophthalmol. 2021 69 11 2932 2938 10.4103/ijo.IJO_1627_21 34708743
    [Google Scholar]
  6. Davies M. J. Aroda V. R. Collins B. S. Gabbay R. A. Green J. Maruthur N. M. Rosas S. E. Del Prato S. Mathieu C. Mingrone G. Rossing P. Tankova T. Tsapas A. Buse J. B. management of hyperglycemia in type 2 diabetes, 2022. a consensus report by the american diabetes association (ADA) and the european association for the study of diabetes (EASD). Diabetes Care 2022 45 11 2753 2786 10.2337/dci22‑0034 36128059
    [Google Scholar]
  7. Ansari P. Choudhury S. T. Seidel V. Rahman A. B. Aziz M. A. Richi A. E. Rahman A. Jafrin U. H. Hannan J. M. A. Abdel-Wahab Y. H. A. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus. Life 2022 12 8 1146 10.3390/life12081146 36013233
    [Google Scholar]
  8. Nakshine V. S. Development and evaluation of anti diabetic activity of phytosomes for better therapeutic effect of extract. J. Pharm. Negative Results 2023 14 3 1330 1343 10.47750/pnr.2023.14.03.178
    [Google Scholar]
  9. March C. A. Libman I. M. Becker D. J. Levitsky L. L. From antiquity to modern times: A history of diabetes mellitus and its treatments. Horm. Res. Paediatr. 2022 95 6 593 607 10.1159/000526441 35820464
    [Google Scholar]
  10. Karamanou M. Protogerou A. Tsoucalas G. Androutsos G. Poulakou-Rebelakou E. Milestones in the history of diabetes mellitus: The main contributors. World J. Diabetes 2016 7 1 1 7 10.4239/wjd.v7.i1.1 26865809
    [Google Scholar]
  11. Lakhtakia R. The history of diabetes mellitus. Sultan Qaboos Univ. Med. J. 2013 13 3 368 370 10.12816/0003257 23984042
    [Google Scholar]
  12. MacCracken J. Hoel D. Jovanovic L. From ants to analogues: Puzzles and promises in diabetes management. Postgrad. Med. 1997 101 4 138 150 10.3810/pgm.1997.04.195 9119561
    [Google Scholar]
  13. Ceranowicz P. Cieszkowski J. Warzecha Z. Kuśnierz-Cabala B. Dembiński A. The beginnings of pancreatology as a field of experimental and clinical medicine. BioMed Res. Int. 2015 2015 128095 10.1155/2015/128095 26171350
    [Google Scholar]
  14. Ahmed A. M. History of diabetes mellitus. Saudi Med. J. 2002 23 4 373 378 12007054
    [Google Scholar]
  15. Lovic D. Piperidou A. Zografou I. Grassos H. Pittaras A. Manolis A. The growing epidemic of diabetes mellitus. Curr. Vasc. Pharmacol. 2020 18 2 104 109 10.2174/1570161117666190405165911 30958112
    [Google Scholar]
  16. Litwack G. Hormones. Cambridge (MA) Academic Press 2022
    [Google Scholar]
  17. El Sayed S. A. Mukherjee S. Physiology, pancreas. StatPearls Treasure Island (FL) StatPearls Publishing 2023 31194438
    [Google Scholar]
  18. Lucier J. Weinstock R. S. Type 1 Diabetes. StatPearls Treasure Island (FL) StatPearls Publishing 2023 32809516
    [Google Scholar]
  19. Ginter E. Simko V. Type 2 diabetes mellitus, pandemic in 21st century. Adv. Exp. Med. Biol. 2012 771 42 50 10.1007/978‑1‑4614‑5441‑0_6 23395085
    [Google Scholar]
  20. Goyal R. Singhal M. Jialal I. Type 2 Diabetes. StatPearls Treasure Island (FL) StatPearls Publishing 2023 32644558
    [Google Scholar]
  21. Galicia-Garcia U. Benito-Vicente A. Jebari S. Larrea-Sebal A. Siddiqi H. Uribe K. B. Ostolaza H. Martín C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020 21 17 6275 10.3390/ijms21176275 32872570
    [Google Scholar]
  22. Wysham C. Shubrook J. Beta-cell failure in type 2 diabetes: Mechanisms, markers, and clinical implications. Postgrad. Med. 2020 132 8 676 686 10.1080/00325481.2020.1771047 32441999
    [Google Scholar]
  23. Nakshine V. S. Jogdand S. D. A comprehensive review of gestational diabetes mellitus: Impacts on maternal health, fetal development, childhood outcomes, and long-term treatment strategies. Cureus 2023 15 10 e47500 10.7759/cureus.47500 38025287
    [Google Scholar]
  24. Antar S. A. Ashour N. A. Sharaky M. Khattab M. Ashour N. A. Zaid R. T. Roh E. J. Elkamhawy A. Al-Karmalawy A. A. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed. Pharmacother. 2023 168 115734 10.1016/j.biopha.2023.115734 37862788
    [Google Scholar]
  25. Salsali A. Nathan M. A review of types 1 and 2 diabetes mellitus and their treatment with insulin. Am. J. Ther. 2006 13 4 349 361 16864906
    [Google Scholar]
  26. Shah S. C. Malone J. I. Simpson N. E. A randomized trial of intensive insulin therapy in newly diagnosed insulin-dependent diabetes mellitus. N. Engl. J. Med. 1989 320 9 550 554 10.1056/NEJM198903023200902 2644558
    [Google Scholar]
  27. Punthakee Z. Goldenberg R. Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can. J. Diabetes 2018 42 Suppl 1 S10 S15 10.1016/j.jcjd.2017.10.003 29477885
    [Google Scholar]
  28. American Diabetes Association Professional Practice Committee 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022. Diabetes Care 2022 45 Suppl 1 S17 S38 10.2337/dc22‑S002 34967784
    [Google Scholar]
  29. Hassali M. A. Nazir S. U. Saleem F. Masood I. Literature review: Pharmacists' interventions to improve control and management in type 2 diabetes mellitus. Altern. Ther. Health Med. 2015 21 1 28 35 25556947
    [Google Scholar]
  30. Ozougwu J. C. Obimba K. C. Belonwu C. D. Unakalamba C. B. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol. 2013 4 4 46 57
    [Google Scholar]
  31. Santoro D. Torreggiani M. Pellicanò V. Cernaro V. Messina R. M. Longhitano E. Siligato R. Gembillo G. Esposito C. Piccoli G. B. Kidney biopsy in type 2 diabetic patients: Critical reflections on present indications and diagnostic alternatives. Int. J. Mol. Sci. 2021 22 11 5425 10.3390/ijms22115425 34067341
    [Google Scholar]
  32. Wunna W. Tsoutsouki J. Chowdhury A. Chowdhury T. A. Advances in the management of diabetes: New devices for type 1 diabetes. Postgrad. Med. J. 2021 97 1148 384 390 10.1136/postgradmedj‑2020‑138016 33127814
    [Google Scholar]
  33. Rodger W. Non-insulin-dependent (type II) diabetes mellitus. CMAJ 1991 145 12 1571 1581 1752044
    [Google Scholar]
  34. Alberti G. Zimmet P. Shaw J. Bloomgarden Z. Kaufman F. Silink M. Type 2 diabetes in the young: The evolving epidemic: The international diabetes federation consensus workshop. Diabetes Care 2004 27 7 1798 1811 10.2337/diacare.27.7.1798 15220261
    [Google Scholar]
  35. Butler A. E. Misselbrook D. Distinguishing between type 1 and type 2 diabetes. BMJ 2020 370 m2992 10.1136/bmj.m2992 32816823
    [Google Scholar]
  36. Gedefa T. F. Wako D. A. Iticha G. T. Integrated data mining and knowledge based system to predict and advice of diabetes. Int. J. Adv. Stud. Comput. Sci. Eng. 2017 6 10 20 25
    [Google Scholar]
  37. Saeedi P. Petersohn I. Salpea P. Malanda B. Karuranga S. Unwin N. Colagiuri S. Guariguata L. Motala A. A. Ogurtsova K. Shaw J. E. Bright D. Williams R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019 157 107843 10.1016/j.diabres.2019.107843 31570045
    [Google Scholar]
  38. Ogurtsova K. da Rocha Fernandes J. D. Huang Y. Linnenkamp U. Guariguata L. Cho N. H. Cavan D. Shaw J. E. Makaroff L. E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017 128 40 50 10.1016/j.diabres.2017.03.024 28437731
    [Google Scholar]
  39. Cho N. H. Shaw J. E. Karuranga S. Huang Y. da Rocha Fernandes J. D. Ohlrogge A. W. Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018 138 271 281 10.1016/j.diabres.2018.02.023 29496023
    [Google Scholar]
  40. Al Mansour M. A. The Prevalence and Risk Factors of Type 2 Diabetes Mellitus (DMT2) in a Semi-Urban Saudi Population. Int. J. Environ. Res. Public Health 2019 17 1 7 10.3390/ijerph17010007 31861250
    [Google Scholar]
  41. Behera S. M. Behera P. Mohanty S. K. Singh R. R. Patro B. K. Mukherjee A. Epari V. Socioeconomic gradient of lean diabetes in India: Evidence from National Family Health Survey, 2019-21. PLoS Glob. Public Health 2024 4 5 e0003172 10.1371/journal.pgph.0003172 38743604
    [Google Scholar]
  42. Maiti S. Akhtar S. Upadhyay A. K. Mohanty S. K. Socioeconomic inequality in awareness, treatment and control of diabetes among adults in India: Evidence from National Family Health Survey of India (NFHS), 2019-2021. Sci. Rep. 2023 13 1 2971 10.1038/s41598‑023‑29978‑y 36797204
    [Google Scholar]
  43. Kalsi A. Singh S. Taneja N. Kukal S. Mani S. Current treatments for type 2 diabetes, their side effects and possible complementary treatments. Int. J. Diabetes Dev. Ctries. 2017 10 3
    [Google Scholar]
  44. Chawla M. Makkar B. M. Modi K. D. Phatak S. Waghdhare S. Satpathy A. Gupte P. Gupta D. Mohan V. A retrospective electronic medical record-based study of insulin usage and outcomes in insulin-naive Indian adults with T2DM: The REALITY study. Int. J. Diabetes Dev. Ctries. 2023 1 8
    [Google Scholar]
  45. Aloke C. Egwu C. O. Aja P. M. Obasi N. A. Chukwu J. Akumadu B. O. Ogbu P. N. Achilonu I. Current advances in the management of diabetes mellitus. Biomedicines 2022 10 10 2436 10.3390/biomedicines10102436 36291515
    [Google Scholar]
  46. Luna B. Feinglos M. N. Oral agents in the management of type 2 diabetes mellitus. Am. Fam. Physician 2001 63 9 1747 1756 11352518
    [Google Scholar]
  47. Kalra S. Bahendeka S. Sahay R. Ghosh S. Md F. Orabi A. Ramaiya K. Al Shammari S. Shrestha D. Shaikh K. Abhayaratna S. Shrestha P. K. Mahalingam A. Askheta M. A Rahim A. A. Eliana F. Shrestha H. K. Chaudhary S. Ngugi N. Mbanya J. C. Das A. K. Consensus recommendations on sulfonylurea and sulfonylurea combinations in the management of type 2 diabetes mellitus - International task force. Indian J. Endocrinol. Metab. 2018 22 1 132 157 10.4103/ijem.IJEM_556_17 29876356
    [Google Scholar]
  48. Costello R. A. Nicolas S. Shivkumar A. Sulfonylureas. In: StatPearls Treasure Island (FL) StatPearls Publishing 2023 32809633
    [Google Scholar]
  49. Vaughan E. M. Rueda J. J. Samson S. L. Hyman D. J. Reducing the burden of diabetes treatment: A review of low-cost oral hypoglycemic medications. Curr. Diabetes Rev. 2020 16 8 851 858 10.2174/1573399816666200206112318 32026857
    [Google Scholar]
  50. Milner Z. Akhondi H. Repaglinide. In: StatPearls Treasure Island (FL) StatPearls Publishing 2023 32491565
    [Google Scholar]
  51. Derosa G. Maffioli P. α-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci. 2012 8 5 899 906 10.5114/aoms.2012.31621 3502844
    [Google Scholar]
  52. Akmal M. Patel P. Wadhwa R. Alpha Glucosidase Inhibitors. StatPearls Treasure Island (FL) StatPearls Publishing 2024 32644547
    [Google Scholar]
  53. Gallwitz B. Review of sitagliptin phosphate: A novel treatment for type 2 diabetes. Vasc. Health Risk Manag. 2007 3 2 203 210 10.2147/vhrm.2007.3.2.203 17580626
    [Google Scholar]
  54. Dave D. J. Saxagliptin: A dipeptidyl peptidase-4 inhibitor in the treatment of type 2 diabetes mellitus. J. Pharmacol. Pharmacother. 2001 2 4 230 235 10.4103/0976‑500X.85934 22025946
    [Google Scholar]
  55. Phillips L. S. Grunberger G. Miller E. Patwardhan R. Rappaport E. B. Salzman A. Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care 2001 24 2 308 315 10.2337/diacare.24.2.308 11213885
    [Google Scholar]
  56. Jain R. Osei K. Kupfer S. Perez A. T. Zhang J. Long-term safety of pioglitazone versus glyburide in patients with recently diagnosed type 2 diabetes mellitus. Pharmacotherapy 2006 26 10 1388 1395 10.1592/phco.26.10.1388 17009890
    [Google Scholar]
  57. Padda I. S. Mahtani A. U. Parmar M. Sodium-Glucose Transport Protein 2 (SGLT2) Inhibitors. In: StatPearls Treasure Island (FL) StatPearls Publishing 2023 35206296
    [Google Scholar]
  58. Lytvyn Y. Bjornstad P. Udell J. A. Lovshin J. A. Cherney D. Z. I. Sodium glucose cotransporter-2 inhibition in heart failure: Potential mechanisms, clinical applications, and summary of clinical trials. Circulation 2017 136 17 1643 1658 10.1161/CIRCULATIONAHA.117.030012 29061571
    [Google Scholar]
  59. Gallwitz B. Glucagon-like peptide-1-based therapies for the treatment of type 2 diabetes mellitus. Treat. Endocrinol. 2005 4 6 361 370 10.2165/00024677‑200504060‑00005 16295240
    [Google Scholar]
  60. Rubin R. Khanna N. R. McIver L. A. Aspart Insulin. StatPearls Treasure Island (FL) StatPearls Publishing 2024 32491632
    [Google Scholar]
  61. Islam N. Khanna N. R. Patel P. Zito P. M. Insulin Lispro. In: StatPearls Treasure Island (FL) StatPearls Publishing 2024 32491563
    [Google Scholar]
  62. White J. R. J. A brief history of the development of diabetes medications. Diabetes Spectr. 2014 27 2 82 86 10.2337/diaspect.27.2.82 25061226
    [Google Scholar]
  63. Mehmet E. O. Ioannis D. K. Panoraia I. S. Diabetes mellitus: A review on pathophysiology, current status of oral medications and future perspectives. Acta Pharm. Sci. 2017 55 1 P61 82 10.23893/1307‑0098.55.006
    [Google Scholar]
  64. Kirby M. Fifty years of diabetes management in primary care. Br. J. Diabetes Vasc. Dis. 2002 2 6 457 461 10.1177/14746514020020061101
    [Google Scholar]
  65. Bailey C. J. The origins of type 2 diabetes medications. Br. J. Diabetes 2022 22 2 112 120 10.15277/bjd.2022.348
    [Google Scholar]
  66. Messana J. A. Schwartz S. S. Townsend R. R. An evidence-based practice-oriented review focusing on canagliflozin in the management of type 2 diabetes. Vasc. Health Risk Manag. 2017 13 43 54 10.2147/VHRM.S105721 28203027
    [Google Scholar]
  67. De Marsilis A. Mantzoros C. S. The continuum of insulin development viewed in the context of a collaborative process toward leveraging science to save lives: Following the trail of publications and patents one century after insulin's first use in humans. Metabolism 2022 135 155251 10.1016/j.metabol.2022.155251 35995082
    [Google Scholar]
  68. MacLean C. D. Littenberg B. Kennedy A. G. Limitations of diabetes pharmacotherapy: Results from the Vermont Diabetes Information System study. BMC Fam. Pract. 2006 7 50 10.1186/1471‑2296‑7‑50 16911796
    [Google Scholar]
  69. Rai V. K. Mishra N. Agrawal A. K. Jain S. Yadav N. P. Novel drug delivery system: An immense hope for diabetics. Drug Deliv. 2012 23 7 2371 2390 10.3109/10717544.2014.991001 25557762
    [Google Scholar]
  70. Nie X. Chen Z. Pang L. Wang L. Jiang H. Chen Y. Zhang Z. Fu C. Ren B. Zhang J. Oral nano drug delivery systems for the treatment of type 2 diabetes mellitus: An available administration strategy for antidiabetic phytocompounds. Int. J. Nanomedicine 2020 15 10215 10240 10.2147/IJN.S285134 33402772
    [Google Scholar]
  71. Khan M. G. Topic–the novel drug delivery system. 2017 World J. Pharm. Sci. 6 477 487 10.5402/2012/625341
    [Google Scholar]
  72. Pandey S. A review article on novel drug delivery system. Int. J. Res. Pharm. Pharm. Sci. 2021 1 2 1 10
    [Google Scholar]
  73. Agrawal A. K. Harde H. Thanki K. Jain S. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules 2014 15 1 350 360 10.1021/bm4014902
    [Google Scholar]
  74. Rathee S. Kamboj A. Optimization and development of antidiabetic phytosomes by the Box-Behnken design. J. Liposome Res. 2018 28 2 161 172 10.1080/08982104.2017.1311913 28368142
    [Google Scholar]
  75. Amin T. Bhat S. V. A review on phytosome technology as a novel approach to improve the bioavailability of nutraceuticals. Int. J. Adv. Res. Technol. 2012 1 3 1 5 10.3126/ijrrt.v1i3.5901
    [Google Scholar]
  76. Rani A. Kumar S. Khar R. K. Murraya koenigii extract loaded phytosomes prepared using antisolvent precipitation technique for improved antidiabetic and hypolidemic activity. 2022 Indian J. Pharm. Educ. Res. 2022 56 s326 s338 10.5530/ijper.56.2s.101
    [Google Scholar]
  77. Bhokare S. G. Dongaonkar C. C. Lahane S. V. Salunke P. B. Sawale V. S. Thombare M. S. Herbal novel drug delivery: A review. World J. Pharm. Pharm. Sci. 2016 5 8 593 611
    [Google Scholar]
  78. Dwivedi J. Sachan P. Wal P. Dwivedi S. Sharma M. C. Rao S. P. Detailed review on phytosomal formulation attenuating new pharmacological therapies. Adv. Tradit. Med. 2023 1 26 10.1007/s13596‑023‑00778‑8
    [Google Scholar]
  79. Otari K. Galave V. Nadaf K. Menkudale A. Nangare P. Kakade V. Kulkarni V. A review: Phytosomes and ethosomes novel drug release system. Int. J. Res. Dev. Pharm. Life Sci. 2015 4 6 1916 1925
    [Google Scholar]
  80. Imam S. S. Nanoparticles: The future of drug delivery. Int. J. Curr. Pharm. Sci. 2023 15 6 8 15 10.22159/ijcpr.2023.v15i6.2081
    [Google Scholar]
  81. Kim S. M. Imm J. Y. The effect of chrysin-loaded phytosomes on insulin resistance and blood sugar control in type 2 diabetic *db/db* mice. Molecules 2023 25 23 5503 10.3390/molecules25235503 33233816
    [Google Scholar]
  82. Ghanbarzadeh B. Babazadeh A. Hamishehkar H. Nano-phytosome as a potential food-grade delivery system. Food Biosci. 2016 15 126 135 10.1016/j.fbio.2016.06.002
    [Google Scholar]
  83. Palol V. V. Saravanan S. K. Vuree S. Chinnadurai R. K. Subramanyam V. Nanophytosome formulation of β-1,3-glucan and *Euglena gracilis* extract for drug delivery applications. MethodsX 2021 11 102480 10.1016/j.mex.2023.102480 38152594
    [Google Scholar]
  84. Prasathkumar M. Anisha S. Dhrisya C. Becky R. Sadhasivam S. Therapeutic and pharmacological efficacy of selective Indian medicinal plants–a review. Phytomed. Plus 2021 1 2 100029 10.1016/j.phyplu.2021.100029
    [Google Scholar]
  85. Cicero A. F. G. Sahebkar A. Fogacci F. Bove M. Giovannini M. Borghi C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial. Eur. J. Nutr. 2020 59 2 477 483 10.1007/s00394‑019‑01916‑7 30937553
    [Google Scholar]
  86. Lu M. Qiu Q. Luo X. Liu X. Sun J. Wang C. Lin X. Deng Y. Song Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J. Pharm. Sci. 2019 14 3 265 274 10.1016/j.ajps.2018.05.011 32104323
    [Google Scholar]
  87. Gohari Mahmoudabad A. Gheybi F. Mehrabi M. Masoudi A. Mobasher Z. Vahedi H. Gharravi A. M. Bitaraf F. S. Rezayat Sorkhabadi S. M. Synthesis, characterization and hepatoprotective effect of silymarin phytosome nanoparticles on ethanol-induced hepatotoxicity in rats. Bioimpacts 2023 13 4 301 311 10.34172/bi.2023.24128 37198751
    [Google Scholar]
  88. Kumar D. S. Deivasigamani K. Roy B. Development and optimization of phytosome for enhancement of therapeutic potential of epiyangambin in *tinospora cordifolia* extract identified by GC–MS and docking analysis. Pharmacogn. Mag. 2023 19 2 371 384 10.4103/pm.pm_104_23
    [Google Scholar]
  89. McKeirnan K. C. Rodin N. M. α-Glucosidase inhibitors. In: 2024-25 Guide to Medications for the Treatment of Diabetes Mellitus American Diabetes Association 2022 190 10.2337/9781580408387.ch11
    [Google Scholar]
  90. Barani M. Sangiovanni E. Angarano M. Rajizadeh M. A. Mehrabani M. Piazza S. Gangadharappa H. V. Pardakhty A. Mehrbani M. Dell'Agli M. Nematollahi M. H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int. J. Nanomedicine 2021 16 6983 7022 10.2147/IJN.S318416 34707399
    [Google Scholar]
  91. Sharma D. Bhujbale A. A. Phytosomes is a novel drug delivery system based herbal formulation: An review. PharmaTutor 2018 6 3 23 26
    [Google Scholar]
  92. Shakeri A. Sahebkar A. Opinion paper: Phytosome: A fatty solution for efficient formulation of phytopharmaceuticals. Recent Pat. Drug Deliv. Formul. 2016 10 1 7 10 10.2174/1872211309666150813152305 26278854
    [Google Scholar]
  93. Babazadeh A. Zeinali M. Hamishehkar H. Nano-phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Curr. Drug Targets 2018 19 2 170 180 10.2174/1389450118666170508095250 28495048
    [Google Scholar]
  94. Tripathy S. Patel D. K. Barob L. Naira S. K. A review on phytosomes, their characterization, advancement & potential for transdermal application. J. Drug Deliv. Ther. 2013 3 3 147 152 10.22270/jddt.v3i3.528
    [Google Scholar]
  95. Kumar A. Kumar B. Singh S. K. Kaur B. Singh S. A review on phytosomes: Novel approach for herbal phytochemicals. Asian J. Pharm. Clin. Res. 2017 10 10 41 47 10.22159/ajpcr.2017.v10i10.19890
    [Google Scholar]
  96. Shefrin S. Sreelaxmi C. S. Vishnu V. Sreeja C. N. Enzymosomes: A rising effectual tool for targeted drug delivery system. Int. J. Appl. Pharm. 2017 9 6 1 9 10.22159/ijap.2017v9i6.20844
    [Google Scholar]
  97. Divya A. Ujjwal N. Ethosomes A review. Int. J. Pharm. Med. Res. 2016 4 4 101 106
    [Google Scholar]
  98. Maniyar M. M. Deshmukh A. S. Shelke S. J. Ethosomes: A carrier for transdermal drug delivery system. Asian J. Pharm. Res. 2022 12 3 225 228 10.31838/ajpr/2022.12.03.354
    [Google Scholar]
  99. Amit P. Y. S. T. Tanwar Y. S. Rakesh S. Poojan P. Phytosome: Phytolipid drug delivery system for improving bioavailability of herbal drug. J. Pharm. Sci. Biosci. Res. 2013 3 2 51 57
    [Google Scholar]
  100. Nagpal G. Chaudhary R. Chaudhary R. G. Singh N. B. Emerging trends of nanotechnology in cosmetics. In: Appl. Emerg. Nanomater. Nanotechnol. 2023 148 127 169 10.21741/9781644902554‑5
    [Google Scholar]
  101. Bhattacharya S. Phytosomes: The new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int. J. Health Res. 2009 2 3 225 232
    [Google Scholar]
  102. Mane K. Baokar S. Bhujbal A. Pharande S. Patil G. Patil R. Baviskar K. Shinde A. Pandey A. Phyto-phospholipid complexes (phytosomes): A novel approach to improve the bioavailability of active constituents. J. Adv. Sci. Res. 2020 11 3 68 78
    [Google Scholar]
  103. Gaikwad A. R. Ahire K. D. Gosavi A. A. Salunkhe K. S. Khalkar A. Phytosome as a novel drug delivery system for bioavailability enhancement of phytoconstituents and its applications: A review. J. Drug Deliv. Ther. 2021 11 3 138 152 10.22270/jddt.v11i3.4831
    [Google Scholar]
  104. Patil V. V. Galge R. V. Thorat B. N. Extraction and purification of phosphatidylcholine from soyabean lecithin. Sep. Purif. Technol. 2010 75 2 138 144 10.1016/j.seppur.2010.08.006
    [Google Scholar]
  105. Shurtleff W. Aoyagi A. Horvath-History of His Work with Soybeans and Soyfoods (1886-1979): Extensively Annotated Bibliography and Sourcebook. Lafayette Soyinfo Center 2011
    [Google Scholar]
  106. Lutfi M. F. Abdel-Moneim A. H. Alsharidah A. S. Mobark M. A. Abdellatif A. A. H. Saleem I. Y. Al Rugaie O. Mohany K. M. Alsharidah M. Thymoquinone lowers blood glucose and reduces oxidative stress in a rat model of diabetes. Molecules 2021 26 8 2348 10.3390/molecules26082348 33924046
    [Google Scholar]
  107. Alhakamy N. A. Badr-Eldin S. M. Fahmy U. A. Alruwaili N. K. Awan Z. A. Caruso G. Alfaleh M. A. Alaofi A. L. Arif F. O. Ahmed O. A. A. Alghaith A. F. Thymoquinone-loaded soy-phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells. Pharmaceutics 2020 12 8 761 10.3390/pharmaceutics12080761 32806653
    [Google Scholar]
  108. Zhao F. Li R. Liu Y. Chen H. Perspectives on lecithin from egg yolk: Extraction, physicochemical properties, modification, and applications. Front. Nutr. 2023 9 1082671 10.3389/fnut.2022.1082671 36845347
    [Google Scholar]
  109. Palacios L. E. Wang T. Extraction of egg‐yolk lecithin. J. Am. Oil Chem. Soc. 2005 82 8 565 569 10.1007/s11746‑005‑1111‑5
    [Google Scholar]
  110. Tan D. Tseng H. H. L. Zhong Z. Wang S. Vong C. T. Wang Y. Glycyrrhizic acid and its derivatives: Promising candidates for the management of type 2 diabetes mellitus and its complications. Int. J. Mol. Sci. 2022 23 19 10988 10.3390/ijms231910988 36232938
    [Google Scholar]
  111. Liu Z. Chen H. Qiang Q. Bai S. Gao W. Zhang J. Glycyrrhizic acid-phospholipid complex: Preparation process optimization and therapeutic and pharmacokinetic evaluation in rats. Lat. Am. J. Pharm. 2011 30 809 816 22256428
    [Google Scholar]
  112. Khan J. Alexander A. Ajazuddin A. Saraf S. Saraf S. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J. Control. Release 2013 168 1 50 60 10.1016/j.jconrel.2013.02.025 23499712
    [Google Scholar]
  113. Sebaaly C. Greige-Gerges H. Stainmesse S. Fessi H. Charcosset C. Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Biosci. 2016 15 1 10 10.1016/j.fbio.2016.05.002
    [Google Scholar]
  114. Li J. He Y. Anankanbil S. Guo Z. Phospholipid-based surfactants. Biobased Surfactants Zhi G. Urbana AOCS Press 2019 243 286 10.1016/B978‑0‑12‑812705‑6.00008‑8
    [Google Scholar]
  115. Neeharika T. S. V. R. Rani K. P. Kumar T. P. Karuna M. S. L. Prasad R. B. N. Optimization of continuous hydrogenation of soybean lecithin using factorial design. Int. Food Res. J. 2014 21 3 1061 1067
    [Google Scholar]
  116. Zhang J. Wang S. Antidiabetic potential of sinigrin against streptozotocin-induced diabetes via modulating inflammation and oxidative stress. Appl. Biochem. Biotechnol. 2022 194 10 4279 4291 10.1007/s12010‑021‑03739‑x 35032230
    [Google Scholar]
  117. Mazumder A. Dwivedi A. Fox L. T. Brümmer A. Du Preez J. L. Gerber M. Du Plessis J. In vitro skin permeation of sinigrin from its phytosome complex. J. Pharm. Pharmacol. 2016 68 12 1577 1583 10.1111/jphp.12658 27943360
    [Google Scholar]
  118. Susilawati Y. Chaerunisa A. Y. Purwaningsih H. Phytosome drug delivery system for natural cosmeceutical compounds: Whitening agent and skin antioxidant agent. J. Adv. Pharm. Technol. Res. 2021 12 4 327 334 10.4103/japtr.JAPTR_100_20 35018047
    [Google Scholar]
  119. Kumar Vishwakarma D. Narayan Mishra J. Kumar Shukla A. Pratap Singh A. Phytosomes: As a Novel Approach of Drug Delivery System. London IntechOpen 2024 10.5772/intechopen.113914
    [Google Scholar]
  120. Dwivedi J. Sachan P. Wal P. Kosey S. Khan M. Uzzaman M. Progressive journey of phytosomes: Preparation, characterization, patents, clinical trials & commercial products. J. Res. Pharm. 2023 27 5 1372 1383 10.29333/jrp.2023.275159
    [Google Scholar]
  121. Yanyu X. Yunmei S. Zhipeng C. Qineng P. The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int. J. Pharm. 2006 307 1 77 82 10.1016/j.ijpharm.2005.10.001 16298514
    [Google Scholar]
  122. Ademiluyi F. T. Mepba H. D. Yield and properties of ethanol biofuel produced from different whole cassava flours. ISRN Biotechnol. 2013 2013 916481 10.5402/2013/916481 27169186
    [Google Scholar]
  123. Sachin K. S. Nesalin J. A. J. Mani T. T. Preparation and evaluation of curcumin phytosomes by rotary evaporation method. Int. J. Pharm. Biomed. Res. 2019 6 1 29 34
    [Google Scholar]
  124. Hartwig A. Dichloromethane [MAK Value Documentation, 2015]. MAK Coll. Occup. Health Saf. 2015 1 3 1704 1742
    [Google Scholar]
  125. Dhase A. S. Saboo S. S. Preparation and evaluation of phytosomes containing methanolic extract of leaves of Aegle marmelos (Bael). Int. J. Pharm. Technol. Res. 2015 8 6 231 240
    [Google Scholar]
  126. Emergency and Continuous Exposure Limits for Selected Airborne Contaminants Washington (DC) National Academies Press (US) 1984
    [Google Scholar]
  127. Hou Z. Li Y. Huang Y. Zhou C. Lin J. Wang Y. Cui F. Zhou S. Jia M. Ye S. Zhang Q. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery. Mol. Pharm. 2013 10 1 90 101 10.1021/mp300489p 23227756
    [Google Scholar]
  128. Hayduk W. Laudie H. Smith O. H. Viscosity, freezing point, vapor-liquid equilibriums, and other properties of aqueous-tetrahydrofuran solutions. J. Chem. Eng. Data 1973 18 4 373 376 10.1021/je60059a013
    [Google Scholar]
  129. Freag M. S. Elnaggar Y. S. Abdallah O. Y. Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: Optimization and ex vivo permeation. Int. J. Nanomedicine 2013 8 2385 2397 10.2147/IJN.S45231 23825946
    [Google Scholar]
  130. Dimethyl sulfoxide. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Dimethyl-Sulfoxide
  131. Matias D. Roque L. Simões M. D. F. Diaz-Lanza A. Rijo P. Reis C. P. Plectranthus madagascariensis phytosomes: Formulation optimization. J. Biomed. Biopharm. Res. 2015 12 223 231
    [Google Scholar]
  132. Remler R. F. The solvent properties of acetone. Ind. Eng. Chem. 1923 15 7 717 720 10.1021/ie50163a033
    [Google Scholar]
  133. Gnananath K. Sri Nataraj K. Ganga Rao B. Phospholipid complex technique for superior bioavailability of phytoconstituents. Adv. Pharm. Bull. 2017 7 1 35 42 10.15171/apb.2017.005 28421118
    [Google Scholar]
  134. Afanas' eva Y. G. Fakhretdinova E. R. Spirikhin L. V. Nasibullin R. S. Mechanism of interaction of certain flavonoids with phosphatidylcholine of cellular membranes. Pharm. Chem. J. 2007 41 354 356 10.1007/s11094‑007‑0069‑4
    [Google Scholar]
  135. Etsassala N. G. E. R. Hussein A. A. Nchu F. Potential application of some Lamiaceae species in the management of diabetes. Plants 2021 10 2 279 10.3390/plants10020279 33535515
    [Google Scholar]
  136. Ban C. Park J. B. Cho S. Kim H. R. Kim Y. J. Bae H. Kim C. Kang H. Jang D. Shin Y. S. Kim D. O. Kim H. Kweon D. H. Characterization of Ginkgo biloba leaf flavonoids as neuroexocytosis regulators. Molecules 2020 25 8 1829 10.3390/molecules25081829 32295052
    [Google Scholar]
  137. Riva A. Ronchi M. Petrangolini G. Bosisio S. Allegrini P. Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin. Eur. J. Drug Metab. Pharmacokinet. 2019 44 2 169 177 10.1007/s13318‑018‑0517‑3 30535655
    [Google Scholar]
  138. Deshpande P. K. Gothalwal R. Pathak A. K. Evaluation for efficiency of drug delivery systems in vitro and in vivo plasmodium culture using crude extract of Artemisia annua and artesunate. Curr. Res. Pharm. Sci. 2014 64 69
    [Google Scholar]
  139. Usman M. R. M. Ghuge P. R. Jain B. V. Niosomes: A novel trend of drug delivery. Eur. J. Biomed. Pharm. Sci. 2017 4 7 436 442
    [Google Scholar]
  140. Gaurav V. Paliwal S. Singh A. Pandey S. Aqil M. Phytosomes: Preparation, evaluation and application. Int. J. Res. Eng. Sci. 2021 9 21 35 39
    [Google Scholar]
  141. Sharma N. Purwar N. Gupta P. C. Microspheres as drug carriers for controlled drug delivery: A review. Int. J. Pharm. Sci. Res. 2015 6 11 4579 4592
    [Google Scholar]
  142. Sikarwar M. S. Sharma S. Jain A. K. Parial S. D. Preparation, characterization and evaluation of Marsupsin-phospholipid complex. AAPS PharmSciTech 2008 9 1 129 137 10.1208/s12249‑007‑9020‑x 18446452
    [Google Scholar]
  143. Quispe C. Herrera-Bravo J. Javed Z. Khan K. Raza S. Gulsunoglu-Konuskan Z. Daştan S. D. Sytar O. Martorell M. Sharifi-Rad J. Calina D. Therapeutic applications of curcumin in diabetes: A review and perspective. BioMed Res. Int. 2022 2022 1375892 10.1155/2022/1375892 35663737
    [Google Scholar]
  144. Jäger R. Lowery R. P. Calvanese A. V. Joy J. M. Purpura M. Wilson J. M. Comparative absorption of curcumin formulations. Nutr. J. 2014 13 11 10.1186/1475‑2891‑13‑11 24447545
    [Google Scholar]
  145. Rajendar M. Saraswathi B. Preparation And Optimization of Diclofenac Encapsulated Liposomes Using Lipid Hydration. Bull. Mater. Sci. Med. J. 2024 10.1007/s44174‑025‑00277‑6
    [Google Scholar]
  146. Taleuzzaman M. Sartaj A. Kumar Gupta D. Gilani S. J. Mirza M. A. Phytosomal gel of Manjistha extract (MJE) formulated and optimized with central composite design of Quality by Design (QbD). J. Dispers. Sci. Technol. 2023 44 2 236 244 10.1080/01932691.2021.2014022
    [Google Scholar]
  147. Shariare M. H. Afnan K. Iqbal F. Altamimi M. A. Ahamad S. R. Aldughaim M. S. Alanazi F. K. Kazi M. Development and optimization of epigallocatechin-3-gallate (egcg) nano phytosome using design of experiment (DoE) and their in vivo anti-inflammatory studies. Molecules 2020 25 22 5453 10.3390/molecules25225453 33233633
    [Google Scholar]
  148. Edulakanti A. Phytosomes: An emerging trend for herbal drug delivery. Int. J. Pharmacogn. Pharm. Sci. 2023 5 1 8 12 10.22271/27069542.2023.v5.i1a.110
    [Google Scholar]
  149. Kumar S. Baldi A. Sharma D. K. Phytosomes: A modernistic approach for novel herbal drug delivery-enhancing bioavailability and revealing endless frontier of phytopharmaceuticals. J. Dev. Drugs 2019 9 1 8 10.4172/2329‑6631.1000216
    [Google Scholar]
  150. Moghtaderi M. Sedaghatnia K. Bourbour M. Fatemizadeh M. Salehi Moghaddam Z. Hejabi F. Heidari F. Quazi S. Farasati Far B. Niosomes: A novel targeted drug delivery system for cancer. Med. Oncol. 2022 39 12 240 10.1007/s12032‑022‑01836‑3 36414777
    [Google Scholar]
  151. Dewan N. Dasgupta D. Pandit S. Ahmed P. Review on-Herbosomes, a new arena for drug delivery. J. Pharmacogn. Phytochem. 2016 5 4 104 108
    [Google Scholar]
  152. Dogheim M.G. Abd El-Maksod E.A. El-Maradny Y.A. Elshindidy M.M. Mahdy D.M. Emerging techniques for herbosomes. London IntechOpen 2024 10.5772/intechopen.1005232
    [Google Scholar]
  153. Kim S.J. Lee B.M. Lee B.C. Kim H.S. Kim H. Lee Y.W. Recrystallization of cyclotetramethylenetetranitramine (HMX) using gas anti-solvent (GAS) process. J. Supercrit. Fluids 2011 59 108 116
    [Google Scholar]
  154. Nandhini S. Ilango K. Development and characterization of a nano-drug delivery system containing vasaka phospholipid complex to improve bioavailability using quality by design approach. Res. Pharm. Sci. 2020 16 1 103 117 10.4103/1735‑5362.305193
    [Google Scholar]
  155. Vargas-Sánchez K. Garay-Jaramillo E. González-Reyes R.E. Effects of Moringa oleifera on glycaemia and insulin levels: A review of animal and human studies. Nutrients 2019 11 12 2907 10.3390/nu11122907 31810205
    [Google Scholar]
  156. Wanjiru J. Gathirwa J. Sauli E. Swai H.S. Formulation, optimization, and evaluation of Moringa oleifera leaf polyphenol-loaded phytosome delivery system against breast cancer cell lines. Molecules 2022 27 14 4430 10.3390/molecules27144430
    [Google Scholar]
  157. Jaradat E. Weaver E. Meziane A. Lamprou D.A. Microfluidics technology for the design and formulation of nanomedicines. Nanomaterials 2021 11 12 3440 10.3390/nano11123440
    [Google Scholar]
  158. Rivera-Mancía S. Trujillo J. Chaverri J.P. Utility of curcumin for the treatment of diabetes mellitus: Evidence from preclinical and clinical studies. J. Nutr. Intermed. Metab. 2018 14 29 41
    [Google Scholar]
  159. Kar P. Laight D. Rooprai H.K. Shaw K.M. Cummings M. Effects of grape seed extract in type 2 diabetic subjects at high cardiovascular risk: A double-blind randomized placebo-controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet. Med. 2009 26 5 526 531 10.1111/j.1464‑5491.2009.02727.x 19646029
    [Google Scholar]
  160. MacDonald-Ramos K. Michán L. Martínez-Ibarra A. Cerbón M. Silymarin is an ally against insulin resistance: A review. Ann. Hepatol. 2021 23 100255 10.1016/j.aohep.2020.08.072 32882585
    [Google Scholar]
  161. Dey P. Singh J. Suluvoy J.K. Dilip K.J. Nayak J. Utilization of Swertia chirayita plant extracts for management of diabetes and associated disorders: Present status, future prospects and limitations. Nat. Prod. Bioprospect. 2020 10 6 431 443 10.1007/s13659‑020‑00277‑7 32840742
    [Google Scholar]
  162. Erba D. Riso P. Bordoni A. Foti P. Biagi P.L. Testolin G. Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J. Nutr. Biochem. 2005 16 3 144 149 10.1016/j.jnutbio.2004.11.006 15741052
    [Google Scholar]
  163. Belcaro G. Ledda A. Hu S. Cesarone M.R. Feragalli B. Dugall M. Greenselect phytosome for borderline metabolic syndrome. Evid. Based Complement. Alternat. Med. 2013 2013 869061 10.1155/2013/869061 24288470
    [Google Scholar]
  164. Amudha S. Prabal K.M. Jeganathan N.S. Evaluation of anti-diabetic activity of Syzygium cumini extract and its phytosome formulation against streptozotocin-induced diabetic rats. Pharma Innov. J. 2018 7 603 608
    [Google Scholar]
  165. Cheng D. Liang B. Li Y. Antihyperglycemic effect of Ginkgo biloba extract in streptozotocin-induced diabetes in rats. BioMed Res. Int. 2013 2013 162724 10.1155/2013/162724 23607062
    [Google Scholar]
  166. Gandhi A. Dutta A. Pal A. Bakshi P. Recent trends of phytosomes for delivering herbal extract with improved bioavailability. J. Pharmacogn. Phytochem. 2012 1 4 6 14
    [Google Scholar]
  167. Ramalingam S. Packirisamy M. Karuppiah M. Vasu G. Gopalakrishnan R. Gothandam K. Thiruppathi M. Effect of β-sitosterol on glucose homeostasis by sensitization of insulin resistance via enhanced protein expression of PPRγ and glucose transporter 4 in high fat diet and streptozotocin-induced diabetic rats. Cytotechnology 2020 72 3 357 366 10.1007/s10616‑020‑00382‑y 32314115
    [Google Scholar]
  168. Djekic L. Čalija B. Micov A. Tomić M. Stepanović-Petrović R. Topical hydrogels with escin β-sitosterol phytosome and escin: Formulation development and in vivo assessment of antihyperalgesic activity. Drug Dev. Res. 2019 80 7 921 932 10.1002/ddr.21572 31063234
    [Google Scholar]
  169. Aierken A. Buchholz T. Chen C. Zhang X. Melzig M.F. Hypoglycemic effect of hawthorn in type II diabetes mellitus rat model. J. Sci. Food Agric. 2017 97 13 4557 4561 10.1002/jsfa.8323 28419616
    [Google Scholar]
  170. Singh A. Saharan V.A. Singh M. Bhandari A. Phytosome: Drug delivery system for polyphenolic phytoconstituents. Iran. J. Pharm. Sci. 2011 7 4 209 219 10.22037/ijps.v7.41292
    [Google Scholar]
  171. Hasan M.K. Ara I. Mondal M.S.A. Kabir Y. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 2021 7 6 e07251 10.1016/j.heliyon.2021.e07251 34195325
    [Google Scholar]
  172. Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed. Pharmacother. 2022 146 112560 10.1016/j.biopha.2021.112560 34990886
    [Google Scholar]
  173. Maramaldi G. Togni S. Pagin I. Giacomelli L. Cattaneo R. Eggenhöffner R. Burastero S.E. Soothing and anti-itch effect of quercetin phytosome in human subjects: A single-blind study. Clin. Cosmet. Investig. Dermatol. 2016 9 55 62 10.2147/CCID.S98890 26937176
    [Google Scholar]
  174. The effect of high-dose silybin-phytosome in men with prostate cancer; NCT00487721. 2014 Available from: https://clinicaltrials.gov/ct2/show/NCT00487721
  175. Alharbi W.S. Almughem F.A. Almehmady A.M. Jarallah S.J. Alsharif W.K. Alzahrani N.M. Alshehri A.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics 2021 13 9 1475 10.3390/pharmaceutics13091475 34577663
    [Google Scholar]
  176. Flaig T.W. Glodé M. Gustafson D. van Bokhoven A. Tao Y. Wilson S. Su L.J. Li Y. Harrison G. Agarwal R. Crawford E.D. Lucia M.S. Pollak M. A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer. Prostate 2010 70 8 848 855 10.1002/pros.21118 20054817
    [Google Scholar]
  177. Flaig T.W. Gustafson D.L. Su L.J. Zirrolli J.A. Crighton F. Harrison G.S. Pierson A.S. Agarwal R. Glodé L.M. A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Invest. New Drugs 2007 25 2 139 146 10.1007/s10637‑006‑9019‑2 17160706
    [Google Scholar]
  178. Toma L. Deleanu M. Sanda G.M. Barbălată T. Niculescu L.S. Sima A.V. Stancu C.S. Bioactive compounds formulated in phytosomes administered as complementary therapy for metabolic disorders. Int. J. Mol. Sci. 2024 25 8 4162 10.3390/ijms25084162 38674512
    [Google Scholar]
  179. Di Pierro F. Bressan A. Ranaldi D. Rapacioli G. Giacomelli L. Bertuccioli A. Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: Preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Eur. Rev. Med. Pharmacol. Sci. 2015 19 21 4195 4202 26592881
    [Google Scholar]
  180. Effectiveness of the assumption of a berberine phytosoma-based supplement on the hematic values of glucose in a group of patients with altered fasting glucose; NCT05031715. 2022 Available from: https://clinicaltrials.gov/ct2/show/NCT05031715
  181. Artichoke and bergamot phytosome: A randomized double blind clinical trial in bergamot poor-responders; NCT04697121. 2020 Available from: https://clinicaltrials.gov/ct2/show/NCT04697121
  182. Evaluation of a computational model that predicts the effects of quercetin on metabolic health using biological age and other lipid-related blood metrics; NCT05297032. 2022 Available from: https://clinicaltrials.gov/ct2/show/NCT05297032
  183. Effects of short-term curcumin and multi-polyphenol supplementation on the anti-inflammatory properties of HDL; NCT02998918. 2020 Available from: https://clinicaltrials.gov/ct2/show/NCT02998918
  184. Evaluation of the effect of a food supplementation with eufortyn colesterolo plus on the modulation of LDL cholesterolemia in subjects affected by polygenic hypercholesterolemia: A two-arm double-blind, placebo- controlled, randomized; NCT04574505. 2022 Available from: https://clinicaltrials.gov/ct2/show/NCT04574505
  185. Mazumder A. Das S. Novel Mentha arvensis-based phytosomes for the prevention and management of diabetic nephropathy. IN Patent 202311053639 2023
  186. Behrad D. Helia A. Gel containing dual l-carnosine/aloe vera nanophytosomes for accelerating diabetic wound healing. WO Patent 2023052808 2023
  187. Tiwari V. Tiwari A. Investigating the berberine hydrochloride loaded phyto-phospholipid complex, hplc studies and in vitro antioxidant activity. IN Patent 202111011487 2021
  188. Rani A. Kumar S. Phytosomes of Murraya koenigii extract for antidiabetic and hypolipidemic activity. IN Patent 202111002294 2021
  189. Akhter M. Devidas H. A pharmaceutical composition for the treatment of diabetic neuropathy and process of preparation thereof. IN Patent 201921029053 2019
  190. Gaikwad S.S. Morade Y.Y. Kothule A.M. Kshirsagar S.J. Laddha U.D. Salunkhe K.S. Overview of phytosomes in treating cancer: Advancement, challenges, and future outlook. Heliyon 2023 9 6 e16561 10.1016/j.heliyon.2023.e16561 37313028
    [Google Scholar]
  191. Agarwal A. Chakraborty P. Chakraborty D.D. Saharan V.A. Phytosomes: Complexation, utilisation and commerical status. J. Biol. Active Prod. Nat. 2012 2 2 65 77
    [Google Scholar]
  192. Pal P. Dave V. Paliwal S. Sharma M. Potdar M.B. Tyagi A. Phytosomes—nanoarchitectures' promising clinical applications and therapeutics. In: Nanopharmaceutical Advanced Delivery Systems Palm Bay Apple Academic Press 2021 187 216
    [Google Scholar]
  193. Mahapatra D.K. Patil S. Patil A.G. The progressive journey of phytosomes in herbal based pharmacotherapeutics. Curr. Bioact. Compd. 2020 16 6 853 886
    [Google Scholar]
  194. Rayate Y.T. Yadav A.R. Mohite S.K. Novel drug delivery systems and its future prospects. World J. Appl. Pharm. 2023 1 1 14 19
    [Google Scholar]
  195. Kaur P. Mandal U.K. Phytosomes: Preparations, characterization, and future uses. In: Medicinal Plants Palm Bay Apple Academic Press 2022 319 335
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878374622251002170045
Loading
/content/journals/raddf/10.2174/0126673878374622251002170045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test