Skip to content
2000
image of Advancement in Nanotablet Research: An Overview

Abstract

Modern technologies such as nanotechnology are being applied in almost every sector to deliver affordable, environmentally friendly products. The integration of nanotechnology in medicine has revolutionized drug delivery systems, with nanotechnology emerging as a promising frontier. This review explores the synthesis and characterization of nanotablet drug formulations designed to enhance their potential across various applications. By employing characterization techniques such as X-ray diffraction, electron microscopy, and physisorption analysis, researchers have developed innovative drug delivery systems like Sophora Alopecuroides nanotablets to treat deadly diseases such as cancer. Evaluation of pre- and post-compression results indicated that nanotablets exhibited good hardness and flow properties, making these formulations potential drug delivery systems for enhanced bioavailability and sustained release properties. Specifically, sublingual sufentanil nanotablets, such as Zalviso®, have demonstrated efficacy in managing moderate to severe pain in healthcare settings when used in conjunction with a PCA device. However, recent regulatory updates indicate changes in the marketing authorization status of Zalviso®. In conclusion, this novel approach for synthesizing nanotablets presents a promising avenue for diverse applications, and based on the results, it is worth considering for future work.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878330529250324042529
2025-05-13
2025-09-05
Loading full text...

Full text loading...

References

  1. MalikS. MuhammadK. WaheedY. Nanotechnology: A revolution in modern industry.Molecules202328266110.3390/molecules2802066136677717
    [Google Scholar]
  2. DewiM.K. ChaerunisaaA.Y. MuhaiminM. JoniI.M. Improved activity of herbal medicines through nanotechnology.Nanomaterials20221222407310.3390/nano1222407336432358
    [Google Scholar]
  3. PateiroM. GómezB. MunekataP.E.S. BarbaF.J. PutnikP. KovačevićD.B. LorenzoJ.M. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products.Molecules2021266154710.3390/molecules2606154733799855
    [Google Scholar]
  4. GunasekaranT. HaileT. NigusseT. DhanarajuM.D. DhanarajuM.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine.Asian Pac. J. Trop. Biomed.20144Suppl. 1S1S710.12980/APJTB.4.2014C98025183064
    [Google Scholar]
  5. OthayothR. KalivarapuS. BotlaguntaM. BotlaguntaM. Nanophytomedicine and drug formulations.Int. J. Nanotechnol. Appl.20144318
    [Google Scholar]
  6. JahangirM.A. Nanophytomedicine in clinical management: An introductory evidence-based review.J. Pharm. Res. Sci. Tech.202261263710.31531/jprst.1000158
    [Google Scholar]
  7. KalivarapuS. BotlaguntaM. Nano.Int. J. Nanotechnol. Appl.20144318
    [Google Scholar]
  8. SuriS.S. FenniriH. SinghB. Nanotechnology-based drug delivery systems.J. Occup. Med. Toxicol.2007211610.1186/1745‑6673‑2‑1618053152
    [Google Scholar]
  9. MurthyS.K. Nanoparticles in modern medicine: State of the art and future challenges.Int. J. Nanomed.20072212914117722542
    [Google Scholar]
  10. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotech.20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  11. BaigN. KammakakamI. FalathW. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges.Mater. Adv.2021261821187110.1039/D0MA00807A
    [Google Scholar]
  12. RaiN. SinghS. GuptaP. VermaA. SinghA.K. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics.Bioengineering202310776010.3390/bioengineering10070760
    [Google Scholar]
  13. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  14. ChengX. XieQ. SunY. Advances in nanomaterial-based targeted drug delivery systems.Front. Bioeng. Biotechnol.202311117715110.3389/fbioe.2023.117715137122851
    [Google Scholar]
  15. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.00419186176
    [Google Scholar]
  16. ChatterjeeP. AlviM.M. AlviM.M. Excipients and active pharmaceutical ingredients.AAPS Adv. Pharm. Sci. Ser.20141134736110.1007/978‑1‑4899‑8011‑3_24
    [Google Scholar]
  17. VermaV. RyanK.M. PadrelaL. Production and isolation of pharmaceutical drug nanoparticles.Int. J. Pharm.202160312070810.1016/j.ijpharm.2021.12070833992712
    [Google Scholar]
  18. ShanmugamS. Granulation techniques and technologies: Recent progresses.Bioimpacts201751556310.15171/bi.2015.0425901297
    [Google Scholar]
  19. PorterS. SackettG. LiuL. Chapter 34 - Development, optimization, and scale-up of process parameters: Pan coating.Developing Solid Oral Dosage Forms (Second Edition)United StatesAcademic Press201710.1016/B978‑0‑12‑802447‑8.00034‑0
    [Google Scholar]
  20. SeoK.S. BajracharyaR. LeeS.H. HanH.K. Pharmaceutical application of tablet film coating.Pharmaceutics202012985310.3390/pharmaceutics1209085332911720
    [Google Scholar]
  21. WangZ.C. MaY.P. ZhaoY.X. WuX.N. MaJ.B. HeS.G. DingX.L. Nearly monodispersed perylene nanotablets: Easy fabrication and unique optical properties.J. Nanosci. Nanotechnol.20111112106961070010.1166/jnn.2011.404022408976
    [Google Scholar]
  22. ZhangX. ZhangX. ZouK. LeeC.S. LeeS.T. Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular charge-transfer organic molecules.J. Am. Chem. Soc.2007129123527353210.1021/ja064210917341067
    [Google Scholar]
  23. DengC. HuH. GeX. HanC. YangB. Facile sonochemical synthesis of hierarchical porous CuO nanotablets.J. Nanosci. Nanotechnol.20121243150315310.1166/jnn.2012.584122849078
    [Google Scholar]
  24. LiX.Q. ZengH.C. Calcium carbonate nanotablets: Bridging artificial to natural nacre.Adv. Mater.201224476277628210.1002/adma.20120273322976169
    [Google Scholar]
  25. LiaoW. ZhangL. ZhongY. ShenY. LiC. AnN. Fabrication of ultrasmall WS2 quantum dots-coated periodic mesoporous organosilica nanoparticles for intracellular drug delivery and synergistic chemo-photothermal therapy.OncoTargets Ther.2018111949196010.2147/OTT.S16074829670370
    [Google Scholar]
  26. SekarS. KimD. LeeS. Excellent oxygen evolution reaction of activated carbon‐anchored NiO nanotablets prepared by green routes.Nanomaterials2020107138210.3390/nano1007138232679812
    [Google Scholar]
  27. MohitheM.P. MurthyC.K.N. RajB.V. NaiduA. Sustained release nanotablets of catechin rich extract for enhanced bioavailability.World J. Pharm. Sci.201431212461265
    [Google Scholar]
  28. BharateS. BajajA. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: A comprehensive review.J. Excip. Food Chem.20101326
    [Google Scholar]
  29. NieX. GuoT. DuQ. LiuR. LiuL. ZhaoR. ZhangJ. DuJ. LiJ. Mesoporous carbon nanotablets coupled with Mo2C nanoparticles: Combining morphology and structure to realize high activity for efficient hydrogen evolution.ChemistrySelect20205205974598010.1002/slct.202001285
    [Google Scholar]
  30. YaoT. WangH. Metal-organic framework derived vanadium-doped TiO2@carbon nanotablets for high-performance sodium storage.J. Coll. Interf. Sci.202160418819710.1016/j.jcis.2021.06.14334265679
    [Google Scholar]
  31. YuC. SongT. LiuA. JiaJ. LinJ. HuangY. ZhangY. LiuZ. TangC. p-BNMR/TiO2 hybrid materials with exposing the 001 facet for enhanced photocatalytic application in treatment of antibiotic contaminants.Colloids Surf. A Physicochem. Eng. Asp.202058412405210.1016/j.colsurfa.2019.124052
    [Google Scholar]
  32. ChenJ.F. ZhangJ.Y. ShenZ.G. ZhongJ. YunJ. Preparation and characterization of amorphous cefuroxime axetil drug nanoparticles with novel technology: High-gravity antisolvent precipitation.Ind. Eng. Chem. Res.200645258723872710.1021/ie060445h
    [Google Scholar]
  33. ShenY. LiX. LeY. Amorphous nanoparticulate formulation of sirolimus and its tablets.Pharmaceutics201810315510.3390/pharmaceutics1003015530208637
    [Google Scholar]
  34. SnickV.B. HolmanJ. CunninghamC. KumarA. VercruysseJ. BeerD.T. RemonJ.P. VervaetC. Continuous direct compression as manufacturing platform for sustained release tablets.Int. J. Pharm.20175191-239040710.1016/j.ijpharm.2017.01.01028069390
    [Google Scholar]
  35. AhmedM.M. ZhaoR. HayytovB. ShangY. LiJ. DuJ. Morphology evolution of ZnO by controlling solvent and electrochemical sensing of hexagonal nanotablets toward amines.Chin. Chem. Lett.20203182091209410.1016/j.cclet.2020.01.014
    [Google Scholar]
  36. KumarM. RanjanR. DandapatS. SrivastavaR. SinhaM.P. XRD analysis for characterization of green nanoparticles: A mini review.Global J. Pharm. Pharm. Sci.202210155577910.19080/GJPPS.2022.10.555779
    [Google Scholar]
  37. YiZ. LuW. QianC. ZengT. YinL. WangH. RaoL. LiuH. ZengS. Urchin-like Ce/Tb co-doped GdPO 4 hollow spheres for in vivo luminescence/X-ray bioimaging and drug delivery.Biomater. Sci.20142101404141110.1039/C4BM00158C32481916
    [Google Scholar]
  38. ShuklaU. Fourier transform infrared spectroscopy: A powerful method for creating fingerprint of molecules of nanomaterials.J. Mol. Struct.202413222140454
    [Google Scholar]
  39. KrishnaD.N.G. PhilipJ. Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges.Appl. Surf. Sci. Adv.202212100332
    [Google Scholar]
  40. LuL.T. Water-dispersible magnetic NPs for biomedical applications: Synthesis and characterisation.2011Available from: https://www.academia.edu/84336168/Water_dispersible_magnetic_nanoparticles_for_biomedical_applications_synthesis_and_characterisation
  41. BechnakL. KurdiE.R. PatraD. Fluorescence sensing of nucleic acid by curcumin encapsulated poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) based nanocapsules.J. Fluoresc.202030354755610.1007/s10895‑020‑02528‑932198670
    [Google Scholar]
  42. ChaturbedyP. KumarM. SalikolimiK. DasS. SinhaS.H. ChatterjeeS. SumaB.S. KunduT.K. EswaramoorthyM. Shape-directed compartmentalized delivery of a nanoparticle-conjugated small-molecule activator of an epigenetic enzyme in the brain.J. Control. Release201521715115910.1016/j.jconrel.2015.08.04326325406
    [Google Scholar]
  43. AlyamaniA. LemineO.M. FE-SEM Characterization of Some Nanomaterial.Scanning Electron Microscopy.London, UKInTechOpen201210.5772/34361
    [Google Scholar]
  44. TaheraslaniM. GardeniersH. High-resolution SEM and EDX characterization of deposits formed by ch4+ar dbd plasma processing in a packed bed reactor.Nanomaterials20199458910.3390/nano904058930974810
    [Google Scholar]
  45. DeabateS. FourgeotF. HennF. X-ray diffraction and micro-Raman spectroscopy analysis of new nickel hydroxide obtained by electrodialysis.J. Power Sources2000871-212513610.1016/S0378‑7753(99)00437‑1
    [Google Scholar]
  46. JayawardenaH.S.N. LiyanageS.H. RathnayakeK. PatelU. YanM. Analytical methods for characterization of nanomaterial surfaces.Anal. Chem.20219341889191110.1021/acs.analchem.0c0520833434434
    [Google Scholar]
  47. LiX. XuZ.H. WangR. In situ observation of nanograin rotation and deformation in nacre.Nano Lett.20066102301230410.1021/nl061775u17034101
    [Google Scholar]
  48. MourdikoudisS. PallaresR.M. ThanhN.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties.Nanoscale20181027128711293410.1039/C8NR02278J29926865
    [Google Scholar]
  49. GillP. MoghadamT.T. RanjbarB. Differential scanning calorimetry techniques: Applications in biology and nanoscience.J. Biomol. Tech.201021416719321119929
    [Google Scholar]
  50. AltammarK.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges.Front. Microbiol.202314115562210.3389/fmicb.2023.115562237180257
    [Google Scholar]
  51. MarklD. StrobelA. SchlossniklR. BøtkerJ. BawuahP. RidgwayC. RantanenJ. RadesT. GaneP. PeiponenK.E. ZeitlerJ.A. Characterisation of pore structures of pharmaceutical tablets: A review.Int. J. Pharm.20185381-218821410.1016/j.ijpharm.2018.01.01729341913
    [Google Scholar]
  52. KishoreK.A. AmareshwarP. Quality evaluation and comparative study on tablet formulations of different pharmaceutical companies.J Curr Chem Pharm Sc.2012212431
    [Google Scholar]
  53. HariyadiD.M. HendradiE. ErawatiT. JannahE.N. FebrinaW. Influence of drug-polymer ratio on physical characteristics and release of metformin hydrochloride from metforminalginate microspheres.Trop. J. Pharm. Res.20181771229123310.4314/tjpr.v17i7.1
    [Google Scholar]
  54. SinghA. DhamiH.S. SinhaM.K. KumarR. Evaluation and comparison of mineralogical, micromeritics and rheological properties of waste machining chips, coal fly ash particulates with metal and ceramic powders.Powder Technol.202240811769610.1016/j.powtec.2022.117696
    [Google Scholar]
  55. ShahR.B. TawakkulM.A. KhanM.A. Comparative evaluation of flow for pharmaceutical powders and granules.AAPS Pharm. Sci. Tech.20089125025810.1208/s12249‑008‑9046‑818446489
    [Google Scholar]
  56. HabibW.A. AlaniziA.S. AbdelhamidM.M. AlaniziF.K. Accuracy of tablet splitting: Comparison study between hand splitting and tablet cutter.Saudi Pharm. J.201422545445910.1016/j.jsps.2013.12.01425473334
    [Google Scholar]
  57. KurashimaH. UchidaS. KashiwaguraY. TanakaS. NamikiN. Evaluation of weight variation in mini-tablets manufactured by a multiple-tip tool.Chem. Pharm. Bull.2020681098198810.1248/cpb.c20‑0046032999150
    [Google Scholar]
  58. KhatoonS. SinghA. KumarP. HashmiM. Review article on in-process problems and evaluation tests of tablets manufacturing.J. Res. Appl. Sci. Biotech.20232319820110.55544/jrasb.2.3.26
    [Google Scholar]
  59. HellbergE. WestbergA. AppelbladP. MattssonS. Evaluation of dissolution techniques for orally disintegrating mini-tablets.J. Drug Deliv. Sci. Technol.20216110219110.1016/j.jddst.2020.102191
    [Google Scholar]
  60. SahuS.B. ShendeH.R. KamdeK.D. A review on tablets: Its formulation and evaluation.Int. J. Novel. Res. Dev.20249216
    [Google Scholar]
  61. JhaS.K. Design, development and evaluation of aceclofenac sustained release matrix tablets.Int. J. Drug Dev. Res.201131307312
    [Google Scholar]
  62. SaleemM. ShahinM. SrinivasB. BegumA. Evaluation of tablets by friability apparatus.Int. J. Res. Pharm. Chem.201444837840
    [Google Scholar]
  63. SilvaD.A. WebsterG.K. Bou-ChacraN. LöbenbergR. The significance of disintegration testing in pharmaceutical development.Dissolut. Technol.2018253303810.14227/DT250318P30
    [Google Scholar]
  64. SamineniR. ChimakurthyJ. KonidalaS. Emerging role of biopharmaceutical classification and biopharmaceutical drug disposition system in dosage form development: A systematic review.Turk. J. Pharm. Sci.202219670671310.4274/tjps.galenos.2021.7355436544401
    [Google Scholar]
  65. ShenJ. BurgessD.J. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: Recent developments and challenges.Drug Deliv. Transl. Res.20133540941510.1007/s13346‑013‑0129‑z24069580
    [Google Scholar]
  66. DashS. MurthyP.N. NathL. ChowdhuryP. Kinetic modeling on drug release from controlled drug delivery systems.Acta Pol. Pharm.201067321722320524422
    [Google Scholar]
  67. PaarakhP. JoseP.A. SettyC.M. ChristoperP. Release kinetics - Concepts and applications.Int J Pharm Res Technol.20181018
    [Google Scholar]
  68. BainK. RodriguezJ.M.G. TownsM.H. Zero-order chemical kinetics as a context to investigate student understanding of catalysts and half-life.J. Chem. Educ.201895571672510.1021/acs.jchemed.7b00974
    [Google Scholar]
  69. KalamM. HumayunM. ParvezN. YadavS. Garga. Release kinetics of modified pharmaceutical dosage forms: A review.Cont J Pharm Sci.200713035
    [Google Scholar]
  70. SarkarP.K. ChaudharyA. Ayurvedic bhasma: The most ancient application of nanomedicine.J. Sci. Ind. Res.20106912901905
    [Google Scholar]
  71. AminA.R.M.R. KucukO. KhuriF.R. ShinD.M. Perspectives for cancer prevention with natural compounds.J. Clin. Oncol.200927162712272510.1200/JCO.2008.20.623519414669
    [Google Scholar]
  72. NuneS.K. ChandaN. ShuklaR. KattiK. KulkarniR.R. ThilakavathyS. MekapothulaS. KannanR. KattiK.V. Green nanotechnology from tea: Phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles.J. Mater. Chem.200919192912292010.1039/b822015h20161162
    [Google Scholar]
  73. RippsH. ShenW. Review: Taurine: A “very essential” amino acid.Mol. Vis.2012182673268623170060
    [Google Scholar]
  74. SenanayakeN.S.P.J. Green tea extract: Chemistry, antioxidant properties and food applications – A review.J. Funct. Foods2013541529154110.1016/j.jff.2013.08.011
    [Google Scholar]
  75. PrasanthM.I. SivamaruthiB.S. ChaiyasutC. TencomnaoT. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy.Nutrients201911247410.3390/nu1102047430813433
    [Google Scholar]
  76. HuJ. WebsterD. CaoJ. ShaoA. The safety of green tea and green tea extract consumption in adults – Results of a systematic review.Regul. Toxicol. Pharmacol.20189541243310.1016/j.yrtph.2018.03.01929580974
    [Google Scholar]
  77. TeixeiraD.C. BarbosaO.P. Oliveira de SouzaM. Effects of guarana (Paullinia cupana) powder on obesity-associated diseases in animal models: A systematic review.J. Funct. Foods202411210594410.1016/j.jff.2023.105944
    [Google Scholar]
  78. HackB. PennaE.M. TalikT. ChandrashekharR. Millard-StaffordM. Effect of guarana (Paullinia cupana) on cognitive performance: A systematic review and meta-analysis.Nutrients202315243410.3390/nu1502043436678305
    [Google Scholar]
  79. TorresE.A.F.S. Pinaffi-LangleyA.C.C. FigueiraM.S. CordeiroK.S. NegrãoL.D. SoaresM.J. SilvaD.C.P. AlfinoM.C.Z. SampaioG.R. CamargoD.A.C. Effects of the consumption of guarana on human health: A narrative review.Compr. Rev. Food Sci. Food Saf.202221127229510.1111/1541‑4337.1286234755935
    [Google Scholar]
  80. BoY. ZhuY. TaoY. LiX. ZhaiD. BuY. WanZ. WangL. WangY. YuZ. Association between folate and health outcomes: An umbrella review of meta-analyses.Front. Public Health2020855075310.3389/fpubh.2020.55075333384976
    [Google Scholar]
  81. RubioC. CámaraM. GinerR.M. González-MuñozM.J. López-GarcíaE. MoralesF.J. Moreno-ArribasM.V. PortilloM.P. BethencourtE. Caffeine, D-glucuronolactone and taurine content in energy drinks: Exposure and risk assessment.Nutrients20221423510310.3390/nu1423510336501132
    [Google Scholar]
  82. MunteanuC. SchwartzB. B vitamins, glucoronolactone and the immune system: Bioavailability, doses and efficiency.Nutrients20231612410.3390/nu1601002438201854
    [Google Scholar]
  83. ChambialS. DwivediS. ShuklaK.K. JohnP.J. SharmaP. Vitamin C in disease prevention and cure: An overview.Indian J. Clin. Biochem.201328431432810.1007/s12291‑013‑0375‑324426232
    [Google Scholar]
  84. SeeX.Z. YeoW.S. SaptoroA. A comprehensive review and recent advances of vitamin C: Overview, functions, sources, applications, market survey and processes.Chem. Eng. Res. Des.202420610812910.1016/j.cherd.2024.04.048
    [Google Scholar]
  85. GuptaR.K. KumarS. TrivediA. VermaR. Yogesh Yogesh. Vitamin C and its role in body.Int. J. Pharm. Pharm. Sci.20221421510.22159/ijpps.2022v14i2.43394
    [Google Scholar]
  86. GargA. SharmaA. KrishnamoorthyP. GargJ. VirmaniD. SharmaT. StefaniniG. KostisJ.B. MukherjeeD. SikorskayaE. Role of niacin in current clinical practice: A systematic review.Am. J. Med.2017130217318710.1016/j.amjmed.2016.07.03827793642
    [Google Scholar]
  87. MacKayD. HathcockJ. GuarneriE. Niacin: Chemical forms, bioavailability, and health effects.Nutr. Rev.201270635736610.1111/j.1753‑4887.2012.00479.x22646128
    [Google Scholar]
  88. GanjiS.H. KamannaV.S. KashyapM.L. Niacin and cholesterol: Role in cardiovascular disease (review).J. Nutr. Biochem.200314629830510.1016/S0955‑2863(02)00284‑X12873710
    [Google Scholar]
  89. LavigneP.M. KarasR.H. The current state of niacin in cardiovascular disease prevention: A systematic review and meta-regression.J. Am. Coll. Cardiol.201361444044610.1016/j.jacc.2012.10.03023265337
    [Google Scholar]
  90. HannaM. JaquaE. NguyenV. ClayJ. B vitamins: Functions and uses in medicine.Perm. J.2022262899710.7812/TPP/21.20435933667
    [Google Scholar]
  91. SonawaneS. Dalaya AgrawalP. LandgeN. GuptaR. Vitamin-B complex– A review.IP Inter. J. Periodont. Implant.20203412212310.18231/2457‑0087.2018.0027
    [Google Scholar]
  92. IbrahimM. KhanS. PathakS. MazharM. SinghH. Vitamin B-Complex and its relationship with the health of vegetarian people.Nat. Res. Hum. Health20233334235410.53365/nrfhh/169824
    [Google Scholar]
  93. MurthyM.K. KhandayatarayP. PadhiaryS. SamalD. A review on chromium health hazards and molecular mechanism of chromium bioremediation.Rev. Environ. Health202338346147810.1515/reveh‑2021‑013935537040
    [Google Scholar]
  94. HossiniH. ShafieB. NiriA.D. NazariM. EsfahlanA.J. AhmadpourM. NazmaraZ. AhmadimaneshM. MakhdoumiP. MirzaeiN. HoseinzadehE. A comprehensive review on human health effects of chromium: Insights on induced toxicity.Environ. Sci. Pollut. Res. Int.20222947706867070510.1007/s11356‑022‑22705‑636042133
    [Google Scholar]
  95. PuttacharS.L. CorreiaS.R. MascarenhasV. Natural caffeine, sources, extraction, usage, and effect of caffeine on human health.Int. J. Adv. Res.2024Jun84385710.21474/IJAR01/18948
    [Google Scholar]
  96. VersterJ.C. KoenigJ. Caffeine intake and its sources: A review of national representative studies.Crit. Rev. Food Sci. Nutr.20185881250125910.1080/10408398.2016.124725228605236
    [Google Scholar]
  97. TempleJ.L. BernardC. LipshultzS.E. CzachorJ.D. WestphalJ.A. MestreM.A. The safety of ingested caffeine: A comprehensive review.Front. Psychiatry201788010.3389/fpsyt.2017.0008028603504
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878330529250324042529
Loading
/content/journals/raddf/10.2174/0126673878330529250324042529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test