Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Duchenne muscular dystrophy is a neuromuscular disease with an overall incidence of between 1 in 5,000 newborn males. Carriers may manifest progressive muscle weakness, resulting from the progressive degeneration of skeletal muscles, generating cardiac and respiratory disorders. Considering the lack of effective treatments, different therapeutic approaches have been developed, such as protein synthesis and extracellular matrix derivatives that can be used to improve muscle regeneration, maintenance, or repair. At the same time, the use of other anti-inflammatory drugs or biological agents to replace corticosteroids conjugated to these extracellular matrix derivatives may act more effectively in controlling the progression of Duchenne muscular dystrophy. Extracellular matrix-derived peptides (. laminin-111 derivatives) and the use of essential oils with anti-inflammatory activity in polymeric particles for application in the treatment of Duchenne muscular dystrophy are discussed. For this purpose, the literature of patents and scientific articles from 2012–2024 on LM-111 peptides and Duchenne muscular dystrophy was reviewed. Many patents focus on palliative technologies that seek to prolong the progressive effects of the disease, considering the control of the inflammatory process. The technological and scientific prospecting suggests the need for continuous research on systems that can serve as a treatment for Dystrophy.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878329404250106065202
2025-01-29
2025-09-30
Loading full text...

Full text loading...

References

  1. TagliettiV. KefiK. RiveraL. Thyroid-stimulating hormone receptor signaling restores skeletal muscle stem cell regeneration in rats with muscular dystrophy.Sci. Transl. Med.202315685eadd527510.1126/scitranslmed.add5275 36857434
    [Google Scholar]
  2. MarkatiT. OskouiM. FarrarM.A. DuongT. GoemansN. ServaisL. Emerging therapies for Duchenne muscular dystrophy.Lancet Neurol.202221981482910.1016/S1474‑4422(22)00125‑9 35850122
    [Google Scholar]
  3. FilgueirasLA Andrade dFCP HoritaIS Analysis of SIKVAV’s receptor affinity, pharmacokinetics, and pharmacological characteristics: A matrikine with potent biological function.J. Biomol. Struct. Dyn.2024202412310.1080/07391102.2024.2313709 38345036
    [Google Scholar]
  4. TavasoliM. LahireS. SokolenkoS. Mechanism of action and therapeutic route for a muscular dystrophy caused by a genetic defect in lipid metabolism.Nat. Commun.2022131155910.1038/s41467‑022‑29270‑z 35322809
    [Google Scholar]
  5. LjubicicV. BurtM. JasminB.J. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: Phenotypic modifiers as pharmacologic targets.FASEB J.201428254856810.1096/fj.13‑238071 24249639
    [Google Scholar]
  6. KalkanH. PaganoE. ParisD. Targeting gut dysbiosis against inflammation and impaired autophagy in Duchenne muscular dystrophy.EMBO Mol. Med.2023153e1622510.15252/emmm.202216225 36594243
    [Google Scholar]
  7. KariyawasamD. D’SilvaA. MowatD. Incidence of Duchenne muscular dystrophy in the modern era; An Australian study.Eur. J. Hum. Genet.202230121398140410.1038/s41431‑022‑01138‑2 35754057
    [Google Scholar]
  8. YedigaryanL. SampaolesiM. Therapeutic implications of miRNAs for muscle-wasting conditions.Cells20211011303510.3390/cells10113035 34831256
    [Google Scholar]
  9. AngulskiB.B.A. HosnyN. CohenH. Duchenne muscular dystrophy: Disease mechanism and therapeutic strategies.Frontiers Media, SAFront Physiol2023
    [Google Scholar]
  10. ValienteM.L. FernandezS.C. OuteiriñoR.L. Evaluation of pro-regenerative and anti-inflammatory effects of isolecanoric acid in the muscle: Potential treatment of duchenne muscular dystrophy.Biomed. Pharmacother.202417011605610.1016/j.biopha.2023.116056 38159372
    [Google Scholar]
  11. RobertsT.C. WoodM.J.A. DaviesK.E. Therapeutic approaches for Duchenne muscular dystrophy.Nat. Rev. Drug Discov.2023221191793410.1038/s41573‑023‑00775‑6 37652974
    [Google Scholar]
  12. BirnkrantD.J. BushbyK. BannC.M. Diagnosis and management of Duchenne muscular dystrophy, part 1: Diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management.Lancet Neurol.201817325126710.1016/S1474‑4422(18)30024‑3 29395989
    [Google Scholar]
  13. GlossD. MoxleyR.T.III AshwalS. OskouiM. Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy.Neurology201686546547210.1212/WNL.0000000000002337 26833937
    [Google Scholar]
  14. MahJ.K. ClemensP.R. GuglieriM. Efficacy and safety of vamorolone in duchenne muscular dystrophy.JAMA Netw. Open202251e214417810.1001/jamanetworkopen.2021.44178 35076703
    [Google Scholar]
  15. StewartD. NicholA. Inflammation, immunity and allergy.Anaesth. Intensive Care Med.202122848849310.1016/j.mpaic.2021.06.004
    [Google Scholar]
  16. ChenL. DengH. CuiH. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.23208 29467962
    [Google Scholar]
  17. GulatiK. GuhathakurtaS. JoshiJ. Cytokines and their role in health and disease: A brief overview.MOJ Immunol.201642121
    [Google Scholar]
  18. DuqueA.G. DescoteauxA. Macrophage cytokines: Involvement in immunity and infectious diseases.Front. Immunol.2014549110.3389/fimmu.2014.00491 25339958
    [Google Scholar]
  19. KawaharaK. HohjohH. InazumiT. TsuchiyaS. SugimotoY. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20151851441442110.1016/j.bbalip.2014.07.008 25038274
    [Google Scholar]
  20. AndradeD.C.P.D.F. MendesA.N. Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways.Sci. Rep.20201011620410.1038/s41598‑020‑73203‑z 33004893
    [Google Scholar]
  21. ForbesS.J. RosenthalN. Preparing the ground for tissue regeneration: From mechanism to therapy.Nat. Med.201420885786910.1038/nm.3653 25100531
    [Google Scholar]
  22. TidballJ.G. WelcS.S. HenricksW.M. Immunobiology of inherited muscular dystrophies.Compr. Physiol.2018841313135610.1002/cphy.c170052 30215857
    [Google Scholar]
  23. RussellB. MossC. RiggA. HemelrijckV.M. COVID-19 and treatment with NSAIDs and corticosteroids: Should we be limiting their use in the clinical setting?Ecancermedicalscience202014102310.3332/ecancer.2020.1023 32256706
    [Google Scholar]
  24. JervisP.J. AmorimC. PereiraT. MartinsJ.A. FerreiraP.M.T. Exploring the properties and potential biomedical applications of NSAID-capped peptide hydrogels.Soft Matter20201644100011001210.1039/D0SM01198C 32789370
    [Google Scholar]
  25. ZhangJ ZhangZ PuL AIEpred: An ensemble predictive model of classifier chain to identify anti-inflammatory peptides.IEEE/ACM Trans Comp Biol Bioinform202018518311840
    [Google Scholar]
  26. SahuT. RatreY.K. ChauhanS. BhaskarL.V.K.S. NairM.P. VermaH.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science.J. Drug Deliv. Sci. Technol.20216310248710.1016/j.jddst.2021.102487
    [Google Scholar]
  27. RadS.J. QuispeC. ButnariuM. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment.Cancer Cell Int.202121131810.1186/s12935‑021‑02025‑4 34167552
    [Google Scholar]
  28. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  29. DiasS.F.L. PereiraL.C.A. OliveiraA.P. SantosR.F. NunesL.C.C. Scientific and technological prospection on transdermal formulations and complementary therapies for the treatment of primary dysmenorrhea.Expert Opin. Ther. Pat.201929211512610.1080/13543776.2019.1562547 30587041
    [Google Scholar]
  30. XiangY. ZhangM. JiangD. The role of inflammation in autoimmune disease: A therapeutic target.Frontiers Media, SAFront Immunol2023
    [Google Scholar]
  31. RaimondoT.M. MooneyD.J. Anti-inflammatory nanoparticles significantly improve muscle function in a murine model of advanced muscular dystrophy.Sci. Adv.2021726eabh369310.1126/sciadv.abh3693
    [Google Scholar]
  32. ChangM. CaiY. GaoZ. Duchenne muscular dystrophy: Pathogenesis and promising therapies.J. Neurol.202327083733374910.1007/s00415‑023‑11796‑x 37258941
    [Google Scholar]
  33. WangS. ZhangL. ZhouY. LiuZ. ZhouZ. HuangJ. A review on pharmacokinetics of sinomenine and its anti-inflammatory and immunomodulatory effects.Int. Immunopharmacol.202311911022710.1016/j.intimp.2023.110227 37119677
    [Google Scholar]
  34. HaqueS.U. KohutM. YokotaT. Comprehensive review of adverse reactions and toxicology in ASO-based therapies for Duchenne Muscular Dystrophy: From FDA-approved drugs to peptide-conjugated ASO.Curr. Res. Toxicol.2024710018210.1016/j.crtox.2024.100182 38983605
    [Google Scholar]
  35. SubramanianS. JainM. MisraR. JainR. Peptide-based therapeutics targeting genetic disorders.Drug Discov. Today2024291210420910.1016/j.drudis.2024.104209 39419376
    [Google Scholar]
  36. ChoiM.C. JoJ. LeeM. ParkJ. YaoT.P. ParkY. Cathelicidin-related antimicrobial peptide mediates skeletal muscle degeneration caused by injury and Duchenne muscular dystrophy in mice.J. Cachexia Sarcopenia Muscle20221363091310510.1002/jcsm.13065 36059045
    [Google Scholar]
  37. LimK.R.Q. WooS. MeloD. Development of DG9 peptide-conjugated single- and multi-exon skipping therapies for the treatment of Duchenne muscular dystrophy.Proc. Natl. Acad. Sci.20221199e211254611910.1073/pnas.2112546119 35193974
    [Google Scholar]
  38. SahaniR. WallaceC.H. JonesB.K. BlemkerS.S. Diaphragm muscle fibrosis involves changes in collagen organization with mechanical implications in Duchenne muscular dystrophy.J. Appl. Physiol.2022132365367210.1152/japplphysiol.00248.2021 35050792
    [Google Scholar]
  39. LongA.M. KwonJ.M. LeeG. The extracellular matrix differentially directs myoblast motility and differentiation in distinct forms of muscular dystrophy.Matrix Biol.2024129445810.1016/j.matbio.2024.04.001 38582404
    [Google Scholar]
  40. LongA.M. LeeG. DemonbreunA.R. McNallyE.M. Extracellular matrix contribution to disease progression and dysfunction in myopathy.Am. J. Physiol. Cell Physiol.20233255C1244C125110.1152/ajpcell.00182.2023 37746696
    [Google Scholar]
  41. MorettiL. StalfortJ. BarkerT.H. AbebayehuD. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation.J. Biol. Chem.2022298210153010.1016/j.jbc.2021.101530 34953859
    [Google Scholar]
  42. BrásD.C.L.E. FrangogiannisN.G. Extracellular matrix-derived peptides in tissue remodeling and fibrosis.Matrix Biol.202091-9217618710.1016/j.matbio.2020.04.006 32438055
    [Google Scholar]
  43. SutherlandT.E. DyerD.P. AllenJ.E. The extracellular matrix and the immune system: A mutually dependent relationship.Science20233796633eabp8964
    [Google Scholar]
  44. D’AngeloM.G. GandossiniS. BoneschiF.M. Nitric oxide donor and non steroidal anti inflammatory drugs as a therapy for muscular dystrophies: Evidence from a safety study with pilot efficacy measures in adult dystrophic patients.Pharmacol. Res.201265447247910.1016/j.phrs.2012.01.006 22306844
    [Google Scholar]
  45. PatteR.J. BoittinF.X. VuadensP.O. RueggU.T. DorchiesO.M. Urocortins improve dystrophic skeletal muscle structure and function through both PKA- and Epac-dependent pathways.Am. J. Pathol.2012180274976210.1016/j.ajpath.2011.10.038 22192627
    [Google Scholar]
  46. HeierC.R. DamskerJ.M. YuQ. VBP15, a novel anti-inflammatory and membrane stabilizer, improves muscular dystrophy without side effects.EMBO Mol. Med.20135101569158510.1002/emmm.201302621 24014378
    [Google Scholar]
  47. ManningJ. KulbidaR. RaiP. Amitriptyline is efficacious in ameliorating muscle inflammation and depressive symptoms in the mdx mouse model of Duchenne muscular dystrophy.Exp. Physiol.201499101370138610.1113/expphysiol.2014.079475 24972834
    [Google Scholar]
  48. UaesoontrachoonK. QuinnJ.L. TatemK.S. Long-term treatment with naproxcinod significantly improves skeletal and cardiac disease phenotype in the mdx mouse model of dystrophy.Hum. Mol. Genet.201423123239324910.1093/hmg/ddu033 24463621
    [Google Scholar]
  49. ConklinL.S. DamskerJ.M. HoffmanE.P. Phase IIa trial in Duchenne muscular dystrophy shows vamorolone is a first-in-class dissociative steroidal anti-inflammatory drug.Pharmacol. Res.201813614015010.1016/j.phrs.2018.09.007 30219580
    [Google Scholar]
  50. SánchezG.J. TempranoS.A. DíazC.T. Improvement of Duchenne muscular dystrophy phenotype following obestatin treatment.J. Cachexia Sarcopenia Muscle2018961063107810.1002/jcsm.12338 30216693
    [Google Scholar]
  51. WoodmanK.G. ColesC.A. LamandéS.R. WhiteJ.D. Resveratrol promotes hypertrophy in wildtype skeletal muscle and reduces muscle necrosis and gene expression of inflammatory markers in Mdx mice.Molecules202126485310.3390/molecules26040853 33561994
    [Google Scholar]
  52. XuD. ZhaoL. LiS. Catalpol counteracts the pathology in a mouse model of Duchenne muscular dystrophy by inhibiting the TGF-β1/TAK1 signaling pathway.Acta Pharmacol. Sin.20214271080108910.1038/s41401‑020‑00515‑1 32939036
    [Google Scholar]
  53. MizobutiDS RochadGL SilvadHNM Antioxidant effects of bis-indole alkaloid indigo and related signaling pathways in the experimental model of Duchenne muscular dystrophy.Cell Stress Chaper.202227441742910.1007/s12192‑022‑01282‑0 35687225
    [Google Scholar]
  54. HoffmanE.P. SchwartzB.D. GawM.L.J. Vamorolone trial in Duchenne muscular dystrophy shows dose-related improvement of muscle function.Neurology20199313e1312e132310.1212/WNL.0000000000008168 31451516
    [Google Scholar]
  55. ScheuermannK. OrellanoL.A.A. VianaC.T.R. Amitriptyline downregulates chronic inflammatory response to biomaterial in mice.Inflammation202144258059110.1007/s10753‑020‑01356‑0 33034827
    [Google Scholar]
  56. MâncioR.D. HermesT.A. MacedoA.B. MizobutiD.S. RupcicI.F. MinatelE. Dystrophic phenotype improvement in the diaphragm muscle of mdx mice by diacerhein.PLoS One2017128e018244910.1371/journal.pone.0182449 28787441
    [Google Scholar]
  57. OzawaT. MorikawaM. MorishitaY. Systemic administration of monovalent follistatin-like 3-Fc-fusion protein increases muscle mass in mice.iScience202124510248810.1016/j.isci.2021.102488 34113826
    [Google Scholar]
  58. MooreU. SimónF.E. SchiavaM. Myostatin and follistatin as monitoring and prognostic biomarkers in dysferlinopathy.Neuromuscul. Disord.202333219920710.1016/j.nmd.2023.01.001 36689846
    [Google Scholar]
  59. SalmaninejadA. AbarghanJ.Y. QomiB.S. Common therapeutic advances for Duchenne muscular dystrophy (DMD).Int. J. Neurosci.2021131437038910.1080/00207454.2020.1740218 32241218
    [Google Scholar]
  60. SaitohM. TakayamaK. HitachiK. Discovery of a follistatin-derived myostatin inhibitory peptide.Bioorg. Med. Chem. Lett.202030312689210.1016/j.bmcl.2019.126892 31874826
    [Google Scholar]
  61. OzawaT. MiyazonoK. MorikawaM. Preparation of monovalent follistatin-like 3-Fc-fusion protein and evaluation of its effects on muscle mass in mice.STAR Protoc.20212410083910.1016/j.xpro.2021.100839 34585166
    [Google Scholar]
  62. IskenderianA. LiuN. DengQ. Myostatin and activin blockade by engineered follistatin results in hypertrophy and improves dystrophic pathology in mdx mouse more than myostatin blockade alone.Skelet. Muscle2018813410.1186/s13395‑018‑0180‑z 30368252
    [Google Scholar]
  63. BoccanegraB. CappellariO. MantuanoP. Growth hormone secretagogues modulate inflammation and fibrosis in mdx mouse model of Duchenne muscular dystrophy.Front. Immunol.202314111988810.3389/fimmu.2023.1119888 37122711
    [Google Scholar]
  64. ChangL. NiuF. ChenJ. Ghrelin improves muscle function in dystrophin-deficient mdx mice by inhibiting NLRP3 inflammasome activation.Life Sci.201923211665410.1016/j.lfs.2019.116654 31306657
    [Google Scholar]
  65. HaupenthalD.P.S. PossatoJ.C. ZaccaronR.P. Effects of chronic treatment with gold nanoparticles on inflammatory responses and oxidative stress in mdx mice.J. Drug Target.2020281465410.1080/1061186X.2019.1613408 31046473
    [Google Scholar]
  66. TurjemanK. YanayN. ElbazM. Liposomal steroid nano-drug is superior to steroids as-is in mdx mouse model of Duchenne muscular dystrophy.Nanomedicine201916344410.1016/j.nano.2018.11.012 30529791
    [Google Scholar]
  67. SamraA.M. BoursereauR. LecompteS. NoelL. BrichardS.M. Potential therapeutic action of adiponectin in duchenne muscular dystrophy.Am. J. Pathol.201718771577158510.1016/j.ajpath.2017.02.018 28463682
    [Google Scholar]
  68. ZelikovichA.S. QuattrocelliM. SalamoneI.M. KuntzN.L. McNallyE.M. Moderate exercise improves function and increases adiponectin in the mdx mouse model of muscular dystrophy.Sci. Rep.201991577010.1038/s41598‑019‑42203‑z 30962487
    [Google Scholar]
  69. SamraA.M. SelvaisC.M. BoursereauR. LecompteS. NoelL. BrichardS.M. AdipoRon, a new therapeutic prospect for Duchenne muscular dystrophy.J. Cachexia Sarcopenia Muscle202011251853310.1002/jcsm.12531 31965757
    [Google Scholar]
  70. DortJ. OrfiZ. FabreP. Resolvin-D2 targets myogenic cells and improves muscle regeneration in Duchenne muscular dystrophy.Nat. Commun.2021121626410.1038/s41467‑021‑26516‑0 34716330
    [Google Scholar]
  71. SunZ. XuD. ZhaoL. A new therapeutic effect of fenofibrate in Duchenne muscular dystrophy: The promotion of myostatin degradation.Br. J. Pharmacol.202217961237125010.1111/bph.15678 34553378
    [Google Scholar]
  72. GaoX. ShenX. DongX. Peptide nucleic acid promotes systemic dystrophin expression and functional rescue in dystrophin-deficient mdx mice.Mol. Ther. Nucleic Acids2015410e25510.1038/mtna.2015.27 26440599
    [Google Scholar]
  73. AlghamdiN.J. BurnsC.T. ValdesR.Jr The urocortin peptides: Biological relevance and laboratory aspects of UCN3 and its receptor.Crit. Rev. Clin. Lab. Sci.202259857358510.1080/10408363.2022.2080175 35738909
    [Google Scholar]
  74. LautherbachN. GonçalvesD.A.P. SilveiraW.A. Urocortin 2 promotes hypertrophy and enhances skeletal muscle function through cAMP and insulin/IGF-1 signaling pathways.Mol. Metab.20226010149210.1016/j.molmet.2022.101492 35390501
    [Google Scholar]
  75. BettsC.A. SalehA.F. CarrC.A. Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice.Sci. Rep.201551898610.1038/srep08986 25758104
    [Google Scholar]
  76. ZhaoJ. YangH.T. WasalaL. Dystrophin R16/17 protein therapy restores sarcolemmal nNOS in trans and improves muscle perfusion and function.Mol. Med.20192513110.1186/s10020‑019‑0101‑6 31266455
    [Google Scholar]
  77. MorgoulisD. BerensteinP. CazacuS. sPIF promotes myoblast differentiation and utrophin expression while inhibiting fibrosis in Duchenne muscular dystrophy via the H19/miR-675/let-7 and miR-21 pathways.Cell Death Dis.20191028210.1038/s41419‑019‑1307‑9 30692507
    [Google Scholar]
  78. LeonR.E.A. CovarrubiasL.I.M. RodriguezS.R.A. Serum ghrelin and obestatin levels in HIV-infected patients: Effect of 36 weeks of antiretroviral treatment.Endocrinol. Diabetes Nutr.201966141010.1016/j.endien.2019.01.002 30316761
    [Google Scholar]
  79. HongY. LeeJ.H. JeongK.W. ChoiC.S. JunH.S. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy.J. Cachexia Sarcopenia Muscle201910490391810.1002/jcsm.12434 31020810
    [Google Scholar]
  80. MyszkaM. MuchaO. PodkalickaP. WaśniowskaU. DulakJ. ŁobodaA. Sodium hydrosulfide moderately alleviates the hallmark symptoms of Duchenne muscular dystrophy in mdx mice.Eur. J. Pharmacol.202395517592810.1016/j.ejphar.2023.175928 37507045
    [Google Scholar]
  81. CerviaD. ZecchiniS. PincigherL. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling.Free Radic. Biol. Med.202422519320710.1016/j.freeradbiomed.2024.09.037 39326684
    [Google Scholar]
  82. GuediraG. PetermannO. ScapozzaL. IsmailH.M. Diapocynin treatment induces functional and structural improvements in an advanced disease state in the mdx mice.Biomed. Pharmacother.202417711695710.1016/j.biopha.2024.116957 38908198
    [Google Scholar]
  83. AbdelkaderD.H. BelalA.M. ElkordyE.A. SarhanN.I. EssaE.A. Fabrication and in-vivo evaluation of polyvinyl pyrrolidone/poloxamer 188 hybrid nanofibers of deflazacort.Int. J. Pharm.202465512399710.1016/j.ijpharm.2024.123997 38484861
    [Google Scholar]
  84. LeydenM.C. OviedoF. SaxenaS. KumarR. LeN. ReinekeT.M. Synergistic polymer blending informs efficient terpolymer design and machine learning discerns performance trends for pDNA delivery.Bioconjug. Chem.202435789791110.1021/acs.bioconjchem.4c00028 38924453
    [Google Scholar]
  85. AndrysiakK. FerdekP.E. SanetraA.M. Upregulation of utrophin improves the phenotype of Duchenne muscular dystrophy hiPSC-derived CMs.Mol. Ther. Nucleic Acids202435310224710.1016/j.omtn.2024.102247 39035791
    [Google Scholar]
  86. EmamiM.R. BrimbleM.A. EspinozaA. Single cell and TCR analysis of immune cells from AAV gene therapy-dosed Duchenne muscular dystrophy patients.Mol. Ther. Methods Clin. Dev.202432410134910.1016/j.omtm.2024.101349 39524974
    [Google Scholar]
  87. MassenetJ. GayetW.M. BandukwalaH. Epigenetic control of myogenic identity of human muscle stem cells in Duchenne muscular dystrophy.iScience2024271211135010.1016/j.isci.2024.111350
    [Google Scholar]
  88. BirchSM LawlorMW ConlonTJ Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy.Sci Transl Med202415677eabo1815
    [Google Scholar]
  89. (a AngulskiBBA HosnyN CohenH Duchenne muscular dystrophy: Disease mechanism and therapeutic strategies.Front Physiol202314118310110.3389/fphys.2023.1183101 37435300
    [Google Scholar]
  90. (a AngulskiBBA HosnyN CohenH Duchenne muscular dystrophy: Disease mechanism and therapeutic strategies.Front Physiol202314118310110.3389/fphys.2023.1183101 37435300
    [Google Scholar]
  91. (a AngulskiBBA HosnyN CohenH Duchenne muscular dystrophy: Disease mechanism and therapeutic strategies.Front Physiol202314118310110.3389/fphys.2023.1183101 37435300
    [Google Scholar]
  92. (a AngulskiBBA HosnyN CohenH Duchenne muscular dystrophy: Disease mechanism and therapeutic strategies.Front Physiol202314118310110.3389/fphys.2023.1183101 37435300
    [Google Scholar]
  93. (a AngulskiBBA HosnyN CohenH Duchenne muscular dystrophy: Disease mechanism and therapeutic strategies.Front Physiol202314118310110.3389/fphys.2023.1183101 37435300
    [Google Scholar]
  94. (a AngulskiBBA HosnyN CohenH Duchenne muscular dystrophy: Disease mechanism and therapeutic strategies.Front Physiol202314118310110.3389/fphys.2023.1183101 37435300
    [Google Scholar]
  95. FalzaranoM.S. PassarelliC. FerliniA. Nanoparticle delivery of antisense oligonucleotides and their application in the exon skipping strategy for Duchenne muscular dystrophy.Nucleic Acid Ther.20142418710010.1089/nat.2013.0450 24506782
    [Google Scholar]
  96. NanceM.E. HakimC.H. YangN.N. DuanD. Nanotherapy for Duchenne muscular dystrophy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2018102e147210.1002/wnan.1472 28398005
    [Google Scholar]
  97. AngeliniG. MuraG. MessinaG. Therapeutic approaches to preserve the musculature in Duchenne Muscular Dystrophy: The importance of the secondary therapies.Exp. Cell Res.2022410211296810.1016/j.yexcr.2021.112968 34883113
    [Google Scholar]
  98. BiomolecolariFS LyonCBU Università degli Studi di Torino Dottorato in Biocompatible nanosystems for innovative applications of small therapeutic molecules.
    [Google Scholar]
  99. GuptaS. SharmaS.N. KunduJ. PattanayakS. SinhaS. Morpholino oligonucleotide-mediated exon skipping for DMD treatment: Past insights, present challenges and future perspectives.J. Biosci.20234843810.1007/s12038‑023‑00365‑z 37846020
    [Google Scholar]
  100. SyedD.S. KhanM.S. AfnanU. Muscular dystrophy: Underlying cellular and molecular mechanisms and various nanotherapeutic approaches for muscular dystrophy.Mechanism and genetic susceptibility of neurological disorders.Singapore: Springer Nature Singapore202414519710.1007/978‑981‑99‑9404‑5_7
    [Google Scholar]
  101. CheyY.C.J. ArudkumarJ. RusA.A. AdikusumaF. ThomasP.Q. CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies.WIREs Mech. Dis.2023151e158010.1002/wsbm.1580 35909075
    [Google Scholar]
  102. PuriS. MazzaM. RoyG. Evolution of nanomedicine formulations for targeted delivery and controlled release.Adv. Drug Deliv. Rev.202320011496210.1016/j.addr.2023.114962 37321376
    [Google Scholar]
  103. IslamA.M. ParkT.E. FirdousJ. Essential cues of engineered polymeric materials regulating gene transfer pathways.Prog. Mater. Sci.202212810096110.1016/j.pmatsci.2022.100961
    [Google Scholar]
  104. SchneiderA.F.E. RusA.A. Developments in reading frame restoring therapy approaches for Duchenne muscular dystrophy.Expert Opin. Biol. Ther.202121334335910.1080/14712598.2021.1832462 33074029
    [Google Scholar]
  105. NajmA. MoldoveanuE.T. NiculescuA.G. GrumezescuA.M. BeuranM. GasparB.S. Advancements in drug delivery systems for the treatment of sarcopenia: An updated overview.Int. J. Mol. Sci.202425191076610.3390/ijms251910766 39409095
    [Google Scholar]
  106. EguchiA. GonzalezA.F.G.S. BigioT.S.I. TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs.Proc. Natl. Acad. Sci.20231206e220996712010.1073/pnas.2209967120 36719921
    [Google Scholar]
  107. WangY. SongW. LiY. Metformin-loaded PLGA microspheres combined with an in situ-formed injectable SA/BG hydrogel alleviate rotator cuff muscle degeneration.Mater. Today Bio20232310087410.1016/j.mtbio.2023.100874 38075252
    [Google Scholar]
  108. AhmedZ. QaisarR. Nanomedicine for treating muscle dystrophies: Opportunities, challenges, and future perspectives.Int. J. Mol. Sci.202223191203910.3390/ijms231912039 36233338
    [Google Scholar]
  109. AndreanaI. MalatestaM. LacavallaM.A. L-Carnitine functionalization to increase skeletal muscle tropism of PLGA nanoparticles.Int. J. Mol. Sci.202224129410.3390/ijms24010294 36613739
    [Google Scholar]
  110. HuangD. YueF. QiuJ. DengM. KuangS. Polymeric nanoparticles functionalized with muscle-homing peptides for targeted delivery of phosphatase and tensin homolog inhibitor to skeletal muscle.Acta Biomater.202011819620610.1016/j.actbio.2020.10.009 33053428
    [Google Scholar]
  111. AndreanaI. KneppersA. LarbiB.S. Polymeric nanoparticles delivery of AMPK activator 991 prevents its toxicity and improves muscle homeostasis in Duchenne Muscular Dystrophy.bioRxiv20242024.01.16.57584010.1101/2024.01.16.575840
    [Google Scholar]
  112. JeongG.J. CastelsH. KangI. AliyaB. JangY.C. Nanomaterial for skeletal muscle regeneration.Tissue Eng. Regen. Med.202219225326110.1007/s13770‑022‑00446‑4 35334091
    [Google Scholar]
  113. CohenA.S. YameenS.H. FuocoC. GargioliC. SeliktarD. Injectable hydrogel microspheres for sustained gene delivery of antisense oligonucleotides to restore the expression of dystrophin protein in duchenne muscular dystrophy.Eur. Polym. J.202216611103810.1016/j.eurpolymj.2022.111038
    [Google Scholar]
  114. AndreanaI. RepellinM. CartonF. Nanomedicine for gene delivery and drug repurposing in the treatment of muscular dystrophies.Pharmaceutics202113227810.3390/pharmaceutics13020278 33669654
    [Google Scholar]
  115. TacchiF. AguilarO.J. GutiérrezD. Scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration.Nanomedicine202116282521253810.2217/nnm‑2021‑0224 34743611
    [Google Scholar]
  116. MbakamH.C. LamotheG. TremblayG. TremblayJ.P. CRISPR-Cas9 gene therapy for duchenne muscular dystrophy.Neurotherapeutics202219393194110.1007/s13311‑022‑01197‑9 35165856
    [Google Scholar]
  117. ZhangY. LiH. NishiyamaT. A humanized knockin mouse model of Duchenne muscular dystrophy and its correction by CRISPR-Cas9 therapeutic gene editing.Mol. Ther. Nucleic Acids20222952553710.1016/j.omtn.2022.07.024 36035749
    [Google Scholar]
  118. MollanooriH. RahmatiY. HassaniB. MehrH.M. TeimourianS. Promising therapeutic approaches using CRISPR/Cas9 genome editing technology in the treatment of Duchenne muscular dystrophy.Genes Dis.20218214615610.1016/j.gendis.2019.12.007 33997161
    [Google Scholar]
  119. ErkutE. YokotaT. CRISPR therapeutics for duchenne muscular dystrophy.Int. J. Mol. Sci.2022233183210.3390/ijms23031832 35163754
    [Google Scholar]
  120. ChaeS.Y. JeongE. KangS. YimY. KimJ.S. MinD.H. Rationally designed nanoparticle delivery of Cas9 ribonucleoprotein for effective gene editing.J. Control. Release202234510811910.1016/j.jconrel.2022.02.035 35247491
    [Google Scholar]
  121. LuX. ZhangM. LiG. Applications and research advances in the delivery of CRISPR/Cas9 systems for the treatment of inherited diseases.Int. J. Mol. Sci.202324171320210.3390/ijms241713202 37686009
    [Google Scholar]
  122. PipernoA. SciortinoM.T. GiustoE. Recent advances and challenges in gene delivery mediated by polyester-based nanoparticles.Int. J. Nanomed.2021165981600210.2147/IJN.S321329
    [Google Scholar]
  123. XiuK. SaundersL. WenL. Delivery of CRISPR/Cas9 plasmid DNA by hyperbranched polymeric nanoparticles enables efficient gene editing.Cells202212115610.3390/cells12010156 36611948
    [Google Scholar]
  124. XuN. WongM. BalistreriG. NanceE. Neonatal pharmacokinetics and biodistribution of polymeric nanoparticles and effect of surfactant.Pharmaceutics2023154117610.3390/pharmaceutics15041176 37111661
    [Google Scholar]
  125. BeachM.A. NayanatharaU. GaoY. Polymeric nanoparticles for drug delivery.Chem. Rev.202412495505561610.1021/acs.chemrev.3c00705 38626459
    [Google Scholar]
  126. KumarM. KulkarniP. LiuS. ChemuturiN. ShahD.K. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles.Adv. Drug Deliv. Rev.202319411470810.1016/j.addr.2023.114708 36682420
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878329404250106065202
Loading
/content/journals/raddf/10.2174/0126673878329404250106065202
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test