Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Non-ionic surfactant vesicles, commonly known as niosomes, have gained significant attention in the field of drug delivery because of their unique properties and advantages. Niosomes are self-assembled vesicles composed of non-ionic surfactants and cholesterol that can entrap both hydrophilic and hydrophobic drugs within their aqueous core or bilayer. This versatile drug delivery system offers improved stability, prolonged release profiles, reduced toxicity, and enhanced efficacy for a wide range of therapeutic agents. This comprehensive article delves into the structure, function, classification, and advances in niosomes for enhanced drug delivery. It explores various non-ionic surfactants used for niosome formulation and discusses their impact on encapsulation efficiency and stability. Moreover, it highlights the application of niosomes in the delivery of small molecules, proteins, and plant-derived natural products. This article provides an overview of the different formulation methods employed for niosome preparation and discusses recent advancements that have expanded their potential applications in targeted drug delivery systems.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878322982241126103404
2024-12-09
2025-09-30
Loading full text...

Full text loading...

References

  1. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  2. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.3330 26348965
    [Google Scholar]
  3. YousufI. BashirM. ArjmandF. TabassumS. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives.Coord. Chem. Rev.202144521410410.1016/j.ccr.2021.214104
    [Google Scholar]
  4. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (Niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  5. RichterR.P. BératR. BrissonA.R. Formation of solid-supported lipid bilayers: An integrated view.Langmuir20062283497350510.1021/la052687c 16584220
    [Google Scholar]
  6. ErdmannP. BruckmuellerH. MartínP. Dysregulation of mucosal membrane transporters and drug-metabolizing enzymes in ulcerative colitis.J. Pharm. Sci.201910821035104610.1016/j.xphs.2018.09.024 30267783
    [Google Scholar]
  7. KleinstiverB.P. PattanayakV. PrewM.S. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects.Nature2016529758749049510.1038/nature16526 26735016
    [Google Scholar]
  8. SharmaV. AnandhakumarS. SasidharanM. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery.Mater. Sci. Eng. C20155639340010.1016/j.msec.2015.06.049 26249606
    [Google Scholar]
  9. AzumN. RubM.A. AsiriA.M. BawazeerW.A. Micellar and interfacial properties of amphiphilic drug–non-ionic surfactants mixed systems: Surface tension, fluorescence and UV–vis studies.Colloids Surf. A Physicochem. Eng. Asp.201752218319210.1016/j.colsurfa.2017.02.093
    [Google Scholar]
  10. D’souzaA.A. ShegokarR. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications.Expert Opin. Drug Deliv.20161391257127510.1080/17425247.2016.1182485 27116988
    [Google Scholar]
  11. XueZ. HeD. XieX. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries.J. Mater. Chem. A Mater. Energy Sustain.2015338192181925310.1039/C5TA03471J
    [Google Scholar]
  12. YeoP.L. LimC.L. ChyeS.M. Kiong LingA.P. KohR.Y. Niosomes: A review of their structure, properties, methods of preparation, and medical applications.Asian Biomed.201811430131410.1515/abm‑2018‑0002
    [Google Scholar]
  13. AtanasovA.G. WaltenbergerB. Pferschy-WenzigE.M. Discovery and resupply of pharmacologically active plant-derived natural products: A review.Biotechnol. Adv.20153381582161410.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  14. ZhengH. ZhangY. LiuL. One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery.J. Am. Chem. Soc.2016138396296810.1021/jacs.5b11720 26710234
    [Google Scholar]
  15. MegahedM.A. El-SawyH.S. RedaA.M. Effect of nanovesicular surface-functionalization via chitosan and/or PEGylation on cytotoxicity of tamoxifen in induced-breast cancer model.Life Sci.202230712090810.1016/j.lfs.2022.120908 36028168
    [Google Scholar]
  16. GierlichP. MataA.I. DonohoeC. BritoR.M.M. SengeM.O. Gomes-da-SilvaL.C. Ligand-targeted delivery of photosensitizers for cancer treatment.Molecules20202522531710.3390/molecules25225317 33202648
    [Google Scholar]
  17. GaoY. YangR. ZhangZ. ChenL. SunZ. LiY. Solid lipid nanoparticles reduce systemic toxicity of docetaxel: Performance and mechanism in animal.Nanotoxicology20115463664910.3109/17435390.2010.551427 21306192
    [Google Scholar]
  18. LohseB. BolingerP.Y. StamouD. Encapsulation efficiency measured on single small unilamellar vesicles.J. Am. Chem. Soc.200813044143721437310.1021/ja805030w 18842043
    [Google Scholar]
  19. HasanA.A. Design and in vitro characterization of small unilamellar niosomes as ophthalmic carrier of dorzolamide hydrochloride.Pharm. Dev. Technol.201419674875410.3109/10837450.2013.829095 23964893
    [Google Scholar]
  20. YuM. YuanW. LiD. SchwendemanA. SchwendemanS.P. Predicting drug release kinetics from nanocarriers inside dialysis bags.J. Control. Release2019315233010.1016/j.jconrel.2019.09.016 31629038
    [Google Scholar]
  21. KamleshM. ArpitaS. SwarnimaP. NitishK. SiddhiquiM.A. Niosomes: Classification, preparation and application.IJIHD202129–32293210.46956/ijihd.vi.120
    [Google Scholar]
  22. ChengQ. CaoG. BaiY. ZhuZ. ZhangN. LiD. Probing the demulsification mechanism of emulsion with SPAN series based on the effect of solid phase particles.Molecules2023287326110.3390/molecules28073261 37050024
    [Google Scholar]
  23. SazaleeS.A. AhmadN. HashimR. Investigation of self-assembly properties and the effect of tween series co-surfactants on the stability of nonionic branched-chain glycolipid hexosomes.Colloids Surf. A Physicochem. Eng. Asp.201752921022110.1016/j.colsurfa.2017.05.085
    [Google Scholar]
  24. KwonH.Y. KimE.H. KimS.W. KimS.N. ParkJ.D. RheeD.K. Selective toxicity of ginsenoside Rg3 on multidrug resistant cells by membrane fluidity modulation.Arch. Pharm. Res.200831217117710.1007/s12272‑001‑1137‑y 18365686
    [Google Scholar]
  25. BaigentC. BlackwellL. EmbersonJ. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170 000 participants in 26 randomised trials.Lancet201037697531670168110.1016/S0140‑6736(10)61350‑5 21067804
    [Google Scholar]
  26. YasaminehS. YasaminehP. Ghafouri KalajahiH. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system.Int. J. Pharm.202262412187810.1016/j.ijpharm.2022.121878 35636629
    [Google Scholar]
  27. LeeB.J. CheemaY. BaderS. DuncanG.A. Shaping nanoparticle diffusion through biological barriers to drug delivery.JCIS Open2021410002510.1016/j.jciso.2021.100025
    [Google Scholar]
  28. SareenS. JosephL. MathewG. Improvement in solubility of poor water-soluble drugs by solid dispersion.Int. J. Pharm. Investig.201221121710.4103/2230‑973X.96921 23071955
    [Google Scholar]
  29. GharbaviM. JohariB. MousazadehN. Hybrid of niosomes and bio-synthesized selenium nanoparticles as a novel approach in drug delivery for cancer treatment.Mol. Biol. Rep.20204796517652910.1007/s11033‑020‑05704‑z 32767222
    [Google Scholar]
  30. ShahiwalaA.F. QawooghaS.S. FaruquiN. Designing optimum drug delivery systems using machine learning approaches: A prototype study of niosomes.AAPS PharmSciTech20232449410.1208/s12249‑023‑02547‑2 37012582
    [Google Scholar]
  31. HillerW. BrüllA. ArgyropoulosD. HoffmannE. PaschH. HPLC–NMR of fatty alcohol ethoxylates.Magn. Reson. Chem.200543972973510.1002/mrc.1627 16049957
    [Google Scholar]
  32. AcirI.H. GuentherK. Endocrine-disrupting metabolites of alkylphenol ethoxylates – A critical review of analytical methods, environmental occurrences, toxicity, and regulation.Sci. Total Environ.20186351530154610.1016/j.scitotenv.2018.04.079 29874777
    [Google Scholar]
  33. ZaafaranyI. AbdallahM. Ethoxylated fatty amide as corrosion inhibitors for carbon steel in hydrochloric acid solution.Int. J. Electrochem. Sci.201051182810.1016/S1452‑3981(23)15263‑1
    [Google Scholar]
  34. PalA GhoshYK BhattacharyaS Molecular mechanism of physical gelation of hydrocarbons by fatty acid amides of natural amino acids.ChemInform20073839chin.20073920310.1002/chin.200739203
    [Google Scholar]
  35. WuS. ZhangQ. SunD. Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery.Chem. Eng. J.202038312316210.1016/j.cej.2019.123162
    [Google Scholar]
  36. ŠmidrkalJ. CervenkovaR. FilipV. Two-stage synthesis of sorbitan esters, and physical properties of the products.Eur. J. Lipid Sci. Technol.20041061285185510.1002/ejlt.200401003
    [Google Scholar]
  37. StoneCA LiuY RellingMV Immediate hypersensitivity to polyethylene glycols and polysorbates: more common than we have recognized.201910.1016/j.jaip.2018.12.003
    [Google Scholar]
  38. G DBP VL. Recent advances of non-ionic surfactant-based nano-vesicles (niosomes and proniosomes): A brief review of these in enhancing transdermal delivery of drug.Future Journal of Pharmaceutical Sciences20206110010.1186/s43094‑020‑00117‑y
    [Google Scholar]
  39. GrijalvoS. PurasG. ZárateJ. Cationic niosomes as non-viral vehicles for nucleic acids: challenges and opportunities in gene delivery.Pharmaceutics20191125010.3390/pharmaceutics11020050 30678296
    [Google Scholar]
  40. Esmaeili RadM. EgilA.C. Ozaydin InceG. YuceM. ZarrabiA. Optimization of curcumin loaded niosomes for drug delivery applications.Colloids Surf. A Physicochem. Eng. Asp.202265412992110.1016/j.colsurfa.2022.129921
    [Google Scholar]
  41. AmidiM. MastrobattistaE. JiskootW. HenninkW.E. Chitosan-based delivery systems for protein therapeutics and antigens.Adv. Drug Deliv. Rev.2010621598210.1016/j.addr.2009.11.009 19925837
    [Google Scholar]
  42. RahmanH.S. OthmanH.H. HammadiN.I. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications.Int. J. Nanomedicine2020152439248310.2147/IJN.S227805 32346289
    [Google Scholar]
  43. SantosA.C. RodriguesD. SequeiraJ.A.D. Nanotechnological breakthroughs in the development of topical phytocompounds-based formulations.Int. J. Pharm.201957211878710.1016/j.ijpharm.2019.118787 31678376
    [Google Scholar]
  44. PaolinoD. CoscoD. MuzzalupoR. TrapassoE. PicciN. FrestaM. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer.Int. J. Pharm.20083531-223324210.1016/j.ijpharm.2007.11.037 18191509
    [Google Scholar]
  45. MishraJ. Kumar MishraA. Unusual sensitivity of tween20: Cholesterol niosome structure to the presence of sodium dodecyl sulfate: A study using multiple fluorescent molecular probes.Colloids Surf. B Biointerfaces201918152453210.1016/j.colsurfb.2019.05.070 31181435
    [Google Scholar]
  46. FaiziH.A. FreyS.L. SteinkühlerJ. DimovaR. VlahovskaP.M. Bending rigidity of charged lipid bilayer membranes.Soft Matter201915296006601310.1039/C9SM00772E 31298256
    [Google Scholar]
  47. SharmaS.B. SayyedR.Z. TrivediM.H. GobiT.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils.Springerplus20132158710.1186/2193‑1801‑2‑587 25674415
    [Google Scholar]
  48. LiQ. LiZ. ZengW. Proniosome-derived niosomes for tacrolimus topical ocular delivery: In vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection.Eur. J. Pharm. Sci.20146211512310.1016/j.ejps.2014.05.020 24905830
    [Google Scholar]
  49. GilaniS.J. ImamS.S. AhmedA. ChauhanS. MirzaM.A. TaleuzzamanM. Formulation and evaluation of thymoquinone niosomes: Application of developed and validated RP-HPLC method in delivery system.Drug Dev. Ind. Pharm.201945111799180610.1080/03639045.2019.1660366 31448962
    [Google Scholar]
  50. BahafidS. GhabezlooS. DucM. FaureP. SulemJ. Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density.Cement Concr. Res.20179527028110.1016/j.cemconres.2017.02.008
    [Google Scholar]
  51. SonwaiS. PodchongP. RousseauD. Crystallization kinetics of cocoa butter in the presence of sorbitan esters.Food Chem.201721449750610.1016/j.foodchem.2016.07.092 27507503
    [Google Scholar]
  52. KishoreR.S.K. PappenbergerA. DauphinI.B. Degradation of polysorbates 20 and 80: Studies on thermal autoxidation and hydrolysis.J. Pharm. Sci.2011100272173110.1002/jps.22290 20803573
    [Google Scholar]
  53. Micó-TormosA. Simó-AlfonsoE.F. Ramis-RamosG. Determination of fatty alcohol ethoxylates by derivatization with phthalic anhydride followed by liquid chromatography with UV–vis detection.J. Chromatogr. A200812031475310.1016/j.chroma.2008.07.017 18649884
    [Google Scholar]
  54. KeckC.M. KovačevićA MüllerRH SavićS VuletaG MilićJ. Formulation of solid lipid nanoparticles (SLN): The value of different alkyl polyglucoside surfactants.Int. J. Pharm.20144741-2334110.1016/j.ijpharm.2014.08.008 25108048
    [Google Scholar]
  55. LiuM. FangH. JinZ. Interfacial tensions of ethoxylated fatty acid methyl ester solutions against crude oil.J. Surfactants Deterg.201720496196710.1007/s11743‑017‑1973‑5
    [Google Scholar]
  56. FengF.F. LiuX.Y. CheungC.W. MaJ.A. Tungsten-catalyzed transamidation of tertiary alkyl amides.ACS Catal.202111127070707910.1021/acscatal.1c01840
    [Google Scholar]
  57. CabralH. MiyataK. OsadaK. KataokaK. Block copolymer micelles in nanomedicine applications.Chem. Rev.2018118146844689210.1021/acs.chemrev.8b00199 29957926
    [Google Scholar]
  58. ChenG. LiD. JinY. Deformable liposomes by reverse-phase evaporation method for an enhanced skin delivery of (+)-catechin.Drug Dev. Ind. Pharm.201440226026510.3109/03639045.2012.756512 23356860
    [Google Scholar]
  59. BaldinoL ReverchonE Niosomes formation using a continuous supercritical CO2 assisted process.J CO2 Util20215210166910.1016/j.jcou.2021.101669
    [Google Scholar]
  60. ZhangH. Thin-Film hydration followed by extrusion method for liposome preparation.Methods Mol. Biol.20171522172210.1007/978‑1‑4939‑6591‑5_2 27837527
    [Google Scholar]
  61. RavalikaV. SailajaA.K. Formulation and evaluation of etoricoxib niosomes by thin film hydration technique and ether injection method.Nano Biomed. Eng.20179310.5101/nbe.v9i3.p242‑248
    [Google Scholar]
  62. ChenH. PanH. LiP. The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system.Colloids Surf. B Biointerfaces201614345546210.1016/j.colsurfb.2016.03.061 27037783
    [Google Scholar]
  63. WangX. KlugeJ.A. LeiskG.G. KaplanD.L. Sonication-induced gelation of silk fibroin for cell encapsulation.Biomaterials20082981054106410.1016/j.biomaterials.2007.11.003 18031805
    [Google Scholar]
  64. KaragiannidisP.G. HodgeS.A. LombardiL. Microfluidization of graphite and formulation of Graphene-Based conductive inks.ACS Nano20171132742275510.1021/acsnano.6b07735 28102670
    [Google Scholar]
  65. BertrandN. BouvetC. MoreauP. LerouxJ.C. Transmembrane pH-gradient liposomes to treat cardiovascular drug intoxication.ACS Nano20104127552755810.1021/nn101924a 21067150
    [Google Scholar]
  66. BragagniM. MenniniN. GhelardiniC. MuraP. Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting.J. Pharm. Pharm. Sci.201215118419610.18433/J3230M 22365096
    [Google Scholar]
  67. DoenchJ.G. FusiN. SullenderM. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.Nat. Biotechnol.201634218419110.1038/nbt.3437 26780180
    [Google Scholar]
  68. MawaziS.M. AnnT.J. WidodoR.T. Application of niosomes in cosmetics: A systematic review.Cosmetics20229612710.3390/cosmetics9060127
    [Google Scholar]
  69. MariotteP. MehrabiZ. BezemerT.M. Plant–soil feedback: Bridging natural and agricultural sciences.Trends Ecol. Evol.201833212914210.1016/j.tree.2017.11.005 29241940
    [Google Scholar]
  70. Pérez-AlfoceaF. AlbaceteA. GhanemM.E. DoddI.C. Hormonal regulation of source - sink relations to maintain crop productivity under salinity: A case study of root-to-shoot signalling in tomato.Funct. Plant Biol.201037759210.1071/FP10012
    [Google Scholar]
  71. PaolinoD. LucaniaG. MardenteD. AlhaiqueF. FrestaM. Ethosomes for skin delivery of ammonium glycyrrhizinate: In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers.J. Control. Release20051061-29911010.1016/j.jconrel.2005.04.007 15935505
    [Google Scholar]
  72. AhmedT.A. El-SayK.M. AljaeidB.M. FahmyU.A. Abd-AllahF.I. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation.Int. J. Pharm.20165001-224525410.1016/j.ijpharm.2016.01.017 26775063
    [Google Scholar]
  73. MokhtarM. SammourO.A. HammadM.A. MegrabN.A. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes.Int. J. Pharm.20083611-210411110.1016/j.ijpharm.2008.05.031 18577437
    [Google Scholar]
  74. LahaS. RajputA. LahaS.S. JadhavR. A concise and systematic review on non-invasive glucose monitoring for potential diabetes management.Biosensors2022121196510.3390/bios12110965 36354474
    [Google Scholar]
  75. SivasankaranS. JonnalagaddaS. Advances in controlled release hormonal technologies for contraception: A review of existing devices, underlying mechanisms, and future directions.J. Control. Release202133079781110.1016/j.jconrel.2020.12.044 33370578
    [Google Scholar]
  76. ElsayedM.M.A. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery.Int. J. Pharm.20063221-2606610.1016/j.ijpharm.2006.05.027 16806755
    [Google Scholar]
  77. ĆwiklikL. Tear film lipid layer: A molecular level view.Biochim Biophys Acta Biomembr201618581024213010.1016/j.bbamem.2016.02.020 26898663
    [Google Scholar]
  78. MuzzalupoR. MazzottaE. Do niosomes have a place in the field of drug delivery?Expert Opin. Drug Deliv.201916111145114710.1080/17425247.2019.1663821 31496311
    [Google Scholar]
  79. JeganathS. NitishB. KhalifaF.K. Niosomes as target drug delivery system: A Review.IJRPS20201133198320310.26452/ijrps.v11i3.2435
    [Google Scholar]
  80. ObeaidN.G. Al-Tu’maF.J. MajeedA.M.K. Enhancement of anti-inflammatory activity of curcumin through hyaluronic acid decorated niosomal nanoparticles for effective treatment of rheumatoid arthritis patients.J. Cluster Sci.20243572405241810.1007/s10876‑024‑02667‑0
    [Google Scholar]
  81. SaharawatS. VermaS. A comprehensive review on niosomes as a strategy in targeted drug delivery: Pharmaceutical, and herbal cosmetic applications.Curr. Drug Deliv.2024211114601473
    [Google Scholar]
  82. VermaR. RaoL. NagpalD. Emerging nanotechnology-based therapeutics: A new insight into promising drug delivery system for lung cancer therapy.Recent Pat. Nanotechnol.202418439541410.2174/1872210517666230613154847 37537775
    [Google Scholar]
  83. ApoloA.B. InfanteJ.R. BalmanoukianA. Avelumab, an anti–programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: Results from a multicenter, phase ib study.J. Clin. Oncol.201735192117212410.1200/JCO.2016.71.6795 28375787
    [Google Scholar]
  84. MoghassemiS. HadjizadehA. OmidfarK. Formulation and characterization of bovine serum albumin-loaded niosome.AAPS PharmSciTech2017181273310.1208/s12249‑016‑0487‑1 26817764
    [Google Scholar]
  85. SharifF. NazariR. Fasihi-RamandiM. TaheriR.A. ZargarM. Intranasal and intraperitoneal immunization against Brucella infection using niosome and mannosylated niosomes containing Brucella recombinant trigger factor/Bp26/Omp31 chimeric protein in a mouse model.Clin. Exp. Vaccine Res.202413323224110.7774/cevr.2024.13.3.232 39144123
    [Google Scholar]
  86. MasjediM. MontahaeiT. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications.J. Drug Deliv. Sci. Technol.20216110223410.1016/j.jddst.2020.102234
    [Google Scholar]
  87. ChenS. HanningS. FalconerJ. LockeM. WenJ. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications.Eur. J. Pharm. Biopharm.2019144183910.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  88. JahanR. BodrattiA.M. TsianouM. AlexandridisP. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications.Adv. Colloid Interface Sci.202027510206110.1016/j.cis.2019.102061 31767119
    [Google Scholar]
  89. LianH. PengY. ShiJ. WangQ. Effect of emulsifier hydrophilic-lipophilic balance (HLB) on the release of thyme essential oil from chitosan films.Food Hydrocoll.20199710521310.1016/j.foodhyd.2019.105213
    [Google Scholar]
  90. GanC. ChengR. XuK. Preparation and physicochemical properties of coenzyme Q10 loaded niosomal hydrogels based on carbomer and scleroglucan.Polym. Eng. Sci.20236392999301210.1002/pen.26423
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878322982241126103404
Loading
/content/journals/raddf/10.2174/0126673878322982241126103404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test