Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-6499
  • E-ISSN: 2666-6502

Abstract

Traditional views of a sterile lung environment have been revised with the recognition of a complex pulmonary microbiome. The interaction of this microbiota with host immune responses plays a pivotal role in the pathogenesis of various respiratory diseases, including asthma. This review aims to explore the impact of the pulmonary microbiota on asthma development and assess the potential of probiotics as a therapeutic intervention. A mini-review was conducted in accordance with JBI methodology, focusing on studies that compared asthmatic patients with controls in terms of pulmonary microbiome composition. The primary sources were extracted and synthesized using JBI SUMARI, emphasizing studies involving probiotic interventions. Significant differences in the pulmonary microbiome between asthmatics and healthy individuals were noted, with dominant genera, such as and linked to inflammation and asthma severity. Importantly, preliminary studies suggest that probiotics may influence these microbial communities, potentially reducing inflammatory responses and improving asthma outcomes. The findings indicate a robust link between the pulmonary microbiome and asthma pathogenesis, with probiotics offering a promising avenue for modulating this interaction. The modulation of the lung microbiome through probiotics could represent a novel therapeutic pathway, potentially decreasing asthma severity by restoring microbial balance and enhancing immune homeostasis. This review underscores the critical role of the pulmonary microbiome in asthma and highlights the innovative potential of probiotic treatments. Future research should focus on clinical trials to verify the efficacy of probiotics in managing asthma, aiming to establish a new paradigm in therapeutic strategies.

Loading

Article metrics loading...

/content/journals/probiot/10.2174/0126666499325570241025074452
2024-10-30
2025-12-13
Loading full text...

Full text loading...

References

  1. LoverdosK. BellosG. KokolatouL. VasileiadisI. GiamarellosE. PecchiariM. KoulourisN. KoutsoukouA. RovinaN. Lung microbiome in asthma: Current perspectives.J. Clin. Med.2019811196710.3390/jcm811196731739446
    [Google Scholar]
  2. BuffingtonP SebghatiAM StewartKB LawsonS KaradutaO Consequences of a cesarean section on the neonatal gut microbiome and future outcomes: A qualitative analysis of the literature.Microb. Host.202311e23000610.1530/MAH‑23‑0006
    [Google Scholar]
  3. ZybailovB.L. GlazkoG.V. RahmatallahY. AndreyevD.S. McElroyT. KaradutaO. ByrumS.D. OrrL. TackettA.J. MackintoshS.G. EdmondsonR.D. KiefferD.A. MartinR.J. AdamsS.H. VaziriN.D. ArthurJ.M. Metaproteomics reveals potential mechanisms by which dietary resistant starch supplementation attenuates chronic kidney disease progression in rats.PLoS One2019141e019927410.1371/journal.pone.019927430699108
    [Google Scholar]
  4. CampbellC.D. GleesonM. SulaimanI. The role of the respiratory microbiome in asthma.Front. All.20234112099910.3389/falgy.2023.112099937324782
    [Google Scholar]
  5. LyuL. ZhouX. ZhangM. LiuL. NiuH. ZhangJ. ChenS. GongP. JiangS. PanJ. LiY. HanX. ChengD. ZhangL. Delivery mode affects intestinal microbial composition and the development of intestinal epithelial cells.Front. Microbiol.20211262614410.3389/fmicb.2021.62614434484131
    [Google Scholar]
  6. LiR. LiJ. ZhouX. Lung microbiome: New insights into the pathogenesis of respiratory diseases.Signal Transduct. Target. Ther.2024911910.1038/s41392‑023‑01722‑y38228603
    [Google Scholar]
  7. TretterC. KrätzigD.A.N. PecoraroM. LangeS. SeifertP. FrankenbergV.C. UntchJ. ZulegerG. WilhelmM. ZolgD.P. DreyerF.S. BräunleinE. EngleitnerT. UhrigS. BoxbergM. SteigerK. HuspeninaS.J. OchsenreitherS. BubnoffV.N. BauerS. BoerriesM. JostP.J. SchenckK. DresingI. BassermannF. FriessH. ReimD. GrützmannK. PfützeK. KlinkB. SchröckE. HallerB. KusterB. MannM. WeichertW. FröhlingS. RadR. HiltenspergerM. KrackhardtA.M. Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification.Nat. Commun.2023141463210.1038/s41467‑023‑39570‑737532709
    [Google Scholar]
  8. PanK. ZhangC. TianJ. The effects of different modes of delivery on the structure and predicted function of intestinal microbiota in neonates and early infants.Pol. J. Microbiol.2021701455510.33073/pjm‑2021‑00233815526
    [Google Scholar]
  9. AlkananiA.K. HaraN. GottliebP.A. IrD. RobertsonC.E. WagnerB.D. FrankD.N. ZiprisD. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes.Diabetes201564103510352010.2337/db14‑184726068542
    [Google Scholar]
  10. ChotirmallS.H. BogaertD. ChalmersJ.D. CoxM.J. HansbroP.M. HuangY.J. MolyneauxP.L. O’DwyerD.N. PragmanA.A. RogersG.B. SegalL.N. DicksonR.P. Therapeutic targeting of the respiratory microbiome.Am. J. Respir. Crit. Care Med.2022206553554410.1164/rccm.202112‑2704PP35549655
    [Google Scholar]
  11. TaylorS.L. LeongL.E.X. ChooJ.M. WesselinghS. YangI.A. UphamJ.W. ReynoldsP.N. HodgeS. JamesA.L. JenkinsC. PetersM.J. BaraketM. MarksG.B. GibsonP.G. SimpsonJ.L. RogersG.B. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology.J. Allergy Clin. Immunol.2018141194103.e1510.1016/j.jaci.2017.03.04428479329
    [Google Scholar]
  12. LiX. LeBlancJ. TruongA. VuthooriR. ChenS.S. LustgartenJ.L. RothB. AllardJ. IppolitiA. PresleyL.L. BornemanJ. BigbeeW.L. GopalakrishnanV. GraeberT.G. ElashoffD. BraunJ. GoodglickL. A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface.PLoS One2011611e2654210.1371/journal.pone.002654222132074
    [Google Scholar]
  13. HammadH. LambrechtB.N. The basic immunology of asthma.Cell202118461469148510.1016/j.cell.2021.02.01633711259
    [Google Scholar]
  14. RayA. KollsJ.K. Neutrophilic inflammation in asthma and association with disease severity.Trends Immunol.2017381294295410.1016/j.it.2017.07.00328784414
    [Google Scholar]
  15. ShaterianN. AbdiF. GhavidelN. AlidostF. Role of cesarean section in the development of neonatal gut microbiota: A systematic review.Open Med.202116162463910.1515/med‑2021‑027033869784
    [Google Scholar]
  16. DicksonR.P. HuffnagleG.B. The lung microbiome: New principles for respiratory bacteriology in health and disease.PLoS Pathog.2015117e100492310.1371/journal.ppat.100492326158874
    [Google Scholar]
  17. BaughmanR.P. ThorpeJ.E. StaneckJ. RashkinM. FrameP.T. Use of the protected specimen brush in patients with endotracheal or tracheostomy tubes.Chest198791223323610.1378/chest.91.2.2333802934
    [Google Scholar]
  18. ChavaliK. CokerH. YoungbloodE. KaradutaO. Proteogenomics in nephrology: A new frontier in nephrological research.Curr. Issues Mol. Biol.20244654595460810.3390/cimb4605027938785547
    [Google Scholar]
  19. HuangY.J. CharlsonE.S. CollmanR.G. HatchC.S. MartinezF.D. SeniorR.M. The role of the lung microbiome in health and disease. A national heart, lung, and blood institute workshop report.Am. J. Respir. Crit. Care Med.2013187121382138710.1164/rccm.201303‑0488WS23614695
    [Google Scholar]
  20. LeyR.E. PetersonD.A. GordonJ.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine.Cell2006124483784810.1016/j.cell.2006.02.01716497592
    [Google Scholar]
  21. MendisM. LeclercE. SimsekS. Arabinoxylans, gut microbiota and immunity.Carbohydr. Polym.201613915916610.1016/j.carbpol.2015.11.06826794959
    [Google Scholar]
  22. MaratheS.J. SniderM.A. TorresF.A.S. DubinP.J. SamarasingheA.E. Human matters in asthma: Considering the microbiome in pulmonary health.Front. Pharmacol.202213102013310.3389/fphar.2022.102013336532717
    [Google Scholar]
  23. BeckJ.M. YoungV.B. HuffnagleG.B. The microbiome of the lung.Transl. Res.2012160425826610.1016/j.trsl.2012.02.00522683412
    [Google Scholar]
  24. AxelssonG.T. JonmundssonT. WooY. FrickE.A. AspelundT. LoureiroJ.J. OrthA.P. JenningsL.L. GudmundssonG. EmilssonV. GudmundsdottirV. GudnasonV. Proteomic associations with forced expiratory volume: A Mendelian randomisation study.Respir. Res.20242514410.1186/s12931‑023‑02587‑z38238732
    [Google Scholar]
  25. McCauleyK. DurackJ. ValladaresR. FadroshD.W. LinD.L. CalatroniA. LeBeauP.K. TranH.T. FujimuraK.E. LaMereB. MeranaG. LynchK. CohenR.T. PongracicJ. HersheyK.G.K. KercsmarC.M. GillM. LiuA.H. KimH. KattanM. TeachS.J. TogiasA. BousheyH.A. GernJ.E. JacksonD.J. LynchS.V. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma.J. Allergy Clin. Immunol.201914451187119710.1016/j.jaci.2019.05.03531201890
    [Google Scholar]
  26. AakkoJ. PietiläS. SuomiT. MahmoudianM. ToivonenR. KouvonenP. RokkaA. HänninenA. EloL.L. Data-independent acquisition mass spectrometry in metaproteomics of gut microbiota—implementation and computational analysis.J. Proteome Res.202019143243610.1021/acs.jproteome.9b0060631755272
    [Google Scholar]
  27. ZhangY. FuF. ZhangQ. LiL. LiuH. DengC. XueQ. ZhaoY. SunW. HanH. GaoZ. GuoC. ZhengQ. HuH. SunY. LiY. DingC. ChenH. Evolutionary proteogenomic landscape from pre-invasive to invasive lung adenocarcinoma.Cell Rep. Med.20245110135810.1016/j.xcrm.2023.10135838183982
    [Google Scholar]
  28. SchraubenS.J. ShouH. ZhangX. AndersonA.H. BonventreJ.V. ChenJ. CocaS. FurthS.L. GreenbergJ.H. GutierrezO.M. IxJ.H. LashJ.P. ParikhC.R. RebholzC.M. SabbisettiV. SarnakM.J. ShlipakM.G. WaikarS.S. KimmelP.L. VasanR.S. FeldmanH.I. SchellingJ.R. Association of multiple plasma biomarker concentrations with progression of prevalent diabetic kidney disease: Findings from the chronic renal insufficiency cohort (CRIC) study.J. Am. Soc. Nephrol.202132111512610.1681/ASN.202004048733122288
    [Google Scholar]
  29. KohG.Y. WhitleyE.M. MancoskyK. LooY.T. GrapentineK. BowersE. SchalinskeK.L. RowlingM.J. Dietary resistant starch prevents urinary excretion of vitamin D metabolites and maintains circulating 25-hydroxycholecalciferol concentrations in Zucker diabetic fatty rats.J. Nutr.2014144111667167310.3945/jn.114.19820025165393
    [Google Scholar]
  30. WangJ JiaH. Metagenome-wide association studies: Fine-mining the microbiome.Nat. Rev. Microbiol.20161485082210.1038/nrmicro.2016.83
    [Google Scholar]
  31. SwiatczakB. Struggle within: Evolution and ecology of somatic cell populations.Cell. Mol. Life Sci.20217821-226797680610.1007/s00018‑021‑03931‑634477897
    [Google Scholar]
  32. DarbandiA. AsadiA. GhanavatiR. AfifiradR. EmamieD.A. kakanjM. TalebiM. The effect of probiotics on respiratory tract infection with special emphasis on COVID-19: Systemic review 2010–20.Int. J. Infect. Dis.20211059110410.1016/j.ijid.2021.02.01133578007
    [Google Scholar]
  33. SekaranK. VargheseR.P. Doss CG.P. AlsammanA.M. ZayedH. AllaliE.A. Airway and oral microbiome profiling of SARS-CoV-2 infected asthma and non-asthma cases revealing alterations–A pulmonary microbial investigation.PLoS One2023188e028989110.1371/journal.pone.028989137590197
    [Google Scholar]
  34. KiefferD.A. PiccoloB.D. VaziriN.D. LiuS. LauW.L. KhazaeliM. NazertehraniS. MooreM.E. MarcoM.L. MartinR.J. AdamsS.H. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats.Am. J. Physiol. Renal Physiol.20163109F857F87110.1152/ajprenal.00513.201526841824
    [Google Scholar]
  35. VaziriN.D. LiuS.M. LauW.L. KhazaeliM. NazertehraniS. FarzanehS.H. KiefferD.A. AdamsS.H. MartinR.J. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.PLoS One2014912e11488110.1371/journal.pone.011488125490712
    [Google Scholar]
  36. NataliniJ.G. SinghS. SegalL.N. The dynamic lung microbiome in health and disease.Nat. Rev. Microbiol.202321422223510.1038/s41579‑022‑00821‑x36385637
    [Google Scholar]
  37. KaradutaO. DvanajscakZ. ZybailovB. Metaproteomics—An advantageous option in studies of host-microbiota interaction.Microorganisms20219598010.3390/microorganisms905098033946610
    [Google Scholar]
  38. RantalaA. BehmL. RosénH. Quality is in the eye of the beholder—A focus group study from the perspective of ambulance clinicians, physicians, and managers.Healthcare2019714110.3390/healthcare701004130871138
    [Google Scholar]
  39. ShinoharaR. NakashimaH. EmotoT. YamashitaT. SaitoY. YoshidaN. InoueT. YamanakaK. OkadaK. HirataK. Gut microbiota influence the development of abdominal aortic aneurysm by suppressing macrophage accumulation in mice.Hypertension202279122821282910.1161/HYPERTENSIONAHA.122.1942236252141
    [Google Scholar]
  40. LiuQ. ZhangJ. GuoC. WangM. WangC. YanY. SunL. WangD. ZhangL. YuH. HouL. WuC. ZhuY. JiangG. ZhuH. ZhouY. FangS. ZhangT. HuL. LiJ. LiuY. ZhangH. ZhangB. DingL. RoblesA.I. RodriguezH. GaoD. JiH. ZhouH. ZhangP. Proteogenomic characterization of small cell lung cancer identifies biological insights and subtype-specific therapeutic strategies.Cell20241871184203.e2810.1016/j.cell.2023.12.00438181741
    [Google Scholar]
  41. ClarkD.J. DhanasekaranS.M. PetraliaF. PanJ. SongX. HuY. LeprevostD.V.F. RevaB. LihT.S.M. ChangH.Y. MaW. HuangC. RickettsC.J. ChenL. KrekA. LiY. RykunovD. LiQ.K. ChenL.S. OzbekU. VasaikarS. WuY. YooS. ChowdhuryS. WyczalkowskiM.A. JiJ. SchnaubeltM. KongA. SethuramanS. AvtonomovD.M. AoM. ColapricoA. CaoS. ChoK.C. KalayciS. MaS. LiuW. RugglesK. CalinawanA. GümüşZ.H. GeiszlerD. KawalerE. TeoG.C. WenB. ZhangY. KeeganS. LiK. ChenF. EdwardsN. PierorazioP.M. ChenX.S. PavlovichC.P. HakimiA.A. BrominskiG. HsiehJ.J. AntczakA. OmelchenkoT. LubinskiJ. WiznerowiczM. LinehanW.M. KinsingerC.R. ThiagarajanM. BojaE.S. MesriM. HiltkeT. RoblesA.I. RodriguezH. QianJ. FenyöD. ZhangB. DingL. SchadtE. ChinnaiyanA.M. ZhangZ. OmennG.S. CieslikM. ChanD.W. NesvizhskiiA.I. WangP. ZhangH. HashimiA.S. PicoA.R. KarpovaA. CharamutA. PaulovichA.G. PerouA.M. MalovannayaA. OliverasM.A. AgarwalA. HindenachB. PruetzB. KimB-J. DrukerB.J. NewtonC.J. BirgerC. JonesC.D. TognonC. ManiD.R. ValleyD.R. RohrerD.C. ZhouD.C. TansilD. CheslaD. HeimanD. WheelerD. TanD. ChanD. DemirE. MalcE. ModugnoF. GetzG. HostetterG. WilsonG.D. HartG.W. ZhuH. LiuH. CulpepperH. SunH. ZhouH. DayJ. SuhJ. HuangJ. McDermottJ. WhiteakerJ.R. TynerJ.W. EschbacherJ. ChenJ. McGeeJ. ZhuJ. KetchumK.A. RodlandK.D. ClauserK. RobinsonK. KrugK. HoadleyK.A. UmK.S. ElburnK. HollowayK. WangL-B. BlumenbergL. HannickL. QiL. SokollL.J. CornwellM.I. LoriauxM. DomagalskiM.J. GritsenkoM.A. AndersonM. MonroeM.E. EllisM.J. DyerM. AnuragM. BurkeM.C. BoruckiM. GilletteM.A. BirrerM.J. LewisM. IttmannM.M. SmithM. VernonM. ChaikinM. ChhedaM.G. KhanM. RocheN. EdwardsN.J. VatanianN. TignorN. BeckmannN. GradyP. CastroP. PiehowskiP. McGarveyP.B. MieczkowskiP. HariharanP. GaoQ. DhirR. KothadiaR.B. ThanguduR.R. MontgomeryR. JayasingheR.G. SmithR.D. EdwardsR. ZeltR. BremnerR. LiuR. HongR. MareeduS. PayneS.H. CottinghamS. MarkeyS.P. JewellS.D. PatelS. SatpathyS. RicheyS. DaviesS.R. CaiS. BocaS.M. PatilS. SenguptaS. CarterS. GabrielS. ThomasS.N. De YoungS. SteinS.E. CarrS.A. FoltzS.M. HilsenbeckS. KrubitT. LiuT. SkellyT. WestbrookT. BorateU. VelvulouU. PetyukV.A. BocikW.E. ChenX. ShiY. GeffenY. LuY. WangY. MaruvkaY. LiZ. ShiZ. TuZ. Integrated proteogenomic characterization of clear cell renal cell carcinoma.Cell2020180120710.1016/j.cell.2019.12.02631923397
    [Google Scholar]
  42. JieZ. XiaH. ZhongS.L. FengQ. LiS. LiangS. ZhongH. LiuZ. GaoY. ZhaoH. ZhangD. SuZ. FangZ. LanZ. LiJ. XiaoL. LiJ. LiR. LiX. LiF. RenH. HuangY. PengY. LiG. WenB. DongB. ChenJ.Y. GengQ.S. ZhangZ.W. YangH. WangJ. WangJ. ZhangX. MadsenL. BrixS. NingG. XuX. LiuX. HouY. JiaH. HeK. KristiansenK. The gut microbiome in atherosclerotic cardiovascular disease.Nat. Commun.20178184510.1038/s41467‑017‑00900‑129018189
    [Google Scholar]
  43. ChenP.C. HsuH.Y. LiaoY.C. LeeC.C. HsiehM.H. KuoW.S. WuL.S. WangJ.Y. Oral administration of Lactobacillus delbrueckii subsp. lactis LDL557 attenuates airway inflammation and changes the gut microbiota in a Der p-sensitized mouse model of allergic asthma.Asian Pac. J. Allergy Immunol.2024LDL55711010.12932/AP‑200823‑167238710644
    [Google Scholar]
  44. GrawS. ChappellK. WashamC.L. GiesA. BirdJ. RobesonM.S.II ByrumS.D. Multi-omics data integration considerations and study design for biological systems and disease.Mol. Omics202117217018510.1039/D0MO00041H33347526
    [Google Scholar]
  45. BochenekK.K. GrzesiowskiP. BanaszkiewiczA. GawronskaA. KotowskaM. DziekiewiczM. AlbrechtP. RadzikowskiA. PrzeorekL.I. A two-week fecal microbiota transplantation course in pediatric patients with inflammatory bowel disease.Adv. Exp. Med. Biol.20171047818710.1007/5584_2017_12329151253
    [Google Scholar]
  46. ReddA.D. PeetlukL. JarrettB. Curating and translating the evidence about sars-cov-2 and covid-19 for frontline public health and clinical care: The novel coronavirus research compendium (NCRC).Public Health Rep.2022137219720210.1101/2021.04.26.21255437
    [Google Scholar]
  47. MunnZ. AromatarisE. TufanaruC. SternC. PorrittK. FarrowJ. LockwoodC. StephensonM. MoolaS. LizarondoL. McArthurA. PetersM. PearsonA. JordanZ. The development of software to support multiple systematic review types.Int. J. Evid.-Based Healthc.2019171364310.1097/XEB.000000000000015230239357
    [Google Scholar]
  48. AromatarisE. PearsonA. The systematic review: An overview.Am. J. Nurs.20141143535810.1097/01.NAJ.0000444496.24228.2c24572533
    [Google Scholar]
  49. WoolfS. SchünemannH.J. EcclesM.P. GrimshawJ.M. ShekelleP. Developing clinical practice guidelines: Types of evidence and outcomes; values and economics, synthesis, grading, and presentation and deriving recommendations.Implement. Sci.2012716110.1186/1748‑5908‑7‑6122762158
    [Google Scholar]
  50. PearsonA. Balancing the evidence: Incorporating the synthesis of qualitative data into systematic reviews.JBI Rep.200422456410.1111/j.1479‑6988.2004.00008.x
    [Google Scholar]
  51. MunnZ. SternC. AromatarisE. LockwoodC. JordanZ. What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences.BMC Med. Res. Methodol.2018181510.1186/s12874‑017‑0468‑429316881
    [Google Scholar]
  52. LockwoodC. MunnZ. PorrittK. Qualitative research synthesis.Int. J. Evid. Based Healthc.201513317918710.1097/XEB.000000000000006226262565
    [Google Scholar]
  53. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. WilsonM.E. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ202137271n7110.1136/bmj.n7133782057
    [Google Scholar]
  54. PageM.J. MoherD. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. WilsonM.E. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. McKenzieJ.E. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews.BMJ2021372160n16010.1136/bmj.n16033781993
    [Google Scholar]
  55. DeVriesA. McCauleyK. FadroshD. FujimuraK.E. SternD.A. LynchS.V. VercelliD. Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development.Allergy202277123617362810.1111/all.1544235841380
    [Google Scholar]
  56. SommarivaM. Le NociV. BianchiF. CamellitiS. BalsariA. TagliabueE. SfondriniL. The lung microbiota: Role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy.Cell. Mol. Life Sci.202077142739274910.1007/s00018‑020‑03452‑831974656
    [Google Scholar]
  57. KaradutaO GlazkoG DvanajscakZ Resistant starch slows the progression of CKD in the 5/6 nephrectomy mouse model.Physiol Rep.2020819e1461010.14814/phy2.14610
    [Google Scholar]
  58. KwonH.K. LeeC.G. SoJ.S. ChaeC.S. HwangJ.S. SahooA. NamJ.H. RheeJ.H. HwangK.C. ImS.H. Generation of regulatory dendritic cells and CD4 + Foxp3 + T cells by probiotics administration suppresses immune disorders.Proc. Natl. Acad. Sci.201010752159216410.1073/pnas.090405510720080669
    [Google Scholar]
  59. AndersH.J. AndersenK. StecherB. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease.Kidney Int.20138361010101610.1038/ki.2012.44023325079
    [Google Scholar]
  60. BalakrishnanM. FlochM.H. Prebiotics, probiotics and digestive health.Curr. Opin. Clin. Nutr. Metab. Care201215658058510.1097/MCO.0b013e328359684f23037903
    [Google Scholar]
  61. GalloA. PassaroG. GasbarriniA. LandolfiR. MontaltoM. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate.World J. Gastroenterol.201622327186720210.3748/wjg.v22.i32.718627621567
    [Google Scholar]
  62. GierseL. MeeneA. SchultzD. SchwaigerT. KarteC. SchröderC. WangH. WünscheC. MethlingK. KreikemeyerB. FuchsS. BernhardtJ. BecherD. LalkM. UrichT. RiedelK. A multi-omics protocol for swine feces to elucidate longitudinal dynamics in microbiome structure and function.Microorganisms2020812188710.3390/microorganisms812188733260576
    [Google Scholar]
  63. HeoJ.M. AgyekumA.K. YinY.L. RideoutT.C. NyachotiC.M. Feeding a diet containing resistant potato starch influences gastrointestinal tract traits and growth performance of weaned pigs1.J. Anim. Sci.20149293906391310.2527/jas.2013‑728925057032
    [Google Scholar]
  64. IgarashiH. MaedaS. OhnoK. HorigomeA. OdamakiT. TsujimotoH. Effect of oral administration of metronidazole or prednisolone on fecal microbiota in dogs.PLoS One201499e10790910.1371/journal.pone.010790925229475
    [Google Scholar]
  65. SonnenburgJ.L. BäckhedF. Diet-microbiota interactions as moderators of human metabolism.Nature20165357610566410.1038/nature18846
    [Google Scholar]
  66. MengelkochS. RoseM.S.F.S. LautmanZ. AlleyJ.C. RoosL.G. EhlertB. MoriarityD.P. LancasterS. SnyderM.P. SlavichG.M. Multi-omics approaches in psychoneuroimmunology and health research: Conceptual considerations and methodological recommendations.Brain Behav. Immun.202311447548710.1016/j.bbi.2023.07.02237543247
    [Google Scholar]
  67. ChiuC.J. HuangM.T. Asthma in the precision medicine Era: Biologics and probiotics.Int. J. Mol. Sci.2021229452810.3390/ijms2209452833926084
    [Google Scholar]
  68. ConsortiumH.M.P. A framework for human microbiome research.Nature2012486740221522110.1038/nature1120922699610
    [Google Scholar]
  69. ConsortiumH.M.P. Structure, function and diversity of the healthy human microbiome.Nature2012486740220721410.1038/nature1123422699609
    [Google Scholar]
  70. ConsortiumI. The integrative human microbiome project.Nature2019569775864164810.1038/s41586‑019‑1238‑831142853
    [Google Scholar]
  71. SuchodolskiJ.S. DowdS.E. WestermarckE. SteinerJ.M. WolcottR.D. SpillmannT. HarmoinenJ.A. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing.BMC Microbiol.20099121010.1186/1471‑2180‑9‑21019799792
    [Google Scholar]
  72. OtteJ.M. PodolskyD.K. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms.Am. J. Physiol. Gastrointest. Liver Physiol.20042864G613G62610.1152/ajpgi.00341.200315010363
    [Google Scholar]
  73. RauchM. LynchS. Probiotic manipulation of the gastrointestinal microbiota.Gut Microbes20101533533810.4161/gmic.1.5.1316921327043
    [Google Scholar]
  74. ConteL. ToraldoD.M. Targeting the gut–lung microbiota axis by means of a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection.Ther. Adv. Respir. Dis.202014175346662093717010.1177/175346662093717032600125
    [Google Scholar]
  75. YukselN. GelmezB. PekozY.A. Lung microbiota: Its relationship to respiratory system diseases and approaches for lung-targeted probiotic bacteria delivery.Mol. Pharm.20232073320333710.1021/acs.molpharmaceut.3c0032337340968
    [Google Scholar]
/content/journals/probiot/10.2174/0126666499325570241025074452
Loading
/content/journals/probiot/10.2174/0126666499325570241025074452
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Asthma; immune homeostasis; pathogenesis; probiotics; pulmonary microbiome; therapeutic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test