Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-6499
  • E-ISSN: 2666-6502

Abstract

Type 2 Diabetes Mellitus (T2DM) has emerged as a rapidly escalating global health crisis with significant implications for individual well-being and societal development. While advancements have been made in understanding the genetic and environmental factors contributing to T2DM, the role of social determinants, psychological stress, poor dietary habits, inadequate sleep, and sedentary lifestyles demand further exploration. Oxidative stress, which is central to the pathogenesis of diabetes, is driven by several metabolic pathways such as the AGE, polyol, hexosamine, protein kinase C, and glycolytic pathways. Emerging evidence suggests that an imbalance in gut microbiota may play a pivotal role in developing obesity, metabolic syndrome, and T2DM. Promising therapies, including probiotics such as and show the potential to restore microbial balance, alleviate disease severity, and prevent diabetes-associated complications like retinopathy, neuropathy, nephropathy, and cardiomyopathy. Addressing this growing epidemic requires an innovative, comprehensive approach that combines lifestyle modifications, environmental interventions, and microbiota-targeted strategies for effective T2DM prevention and management.

Loading

Article metrics loading...

/content/journals/probiot/10.2174/0126666499351864250404171440
2025-04-18
2025-10-31
Loading full text...

Full text loading...

References

  1. DeshmukhC.D. JainA. NahataB. Diabetes mellitus: A review.Int J Pure Appl Biosci201533224230
    [Google Scholar]
  2. SkylerJ.S. BakrisG.L. BonifacioE. Differentiation of diabetes by pathophysiology, natural history, and prognosis.Diabetes201766224125510.2337/db16‑080627980006
    [Google Scholar]
  3. EizirikD.L. PasqualiL. CnopM. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure.Nat. Rev. Endocrinol.202016734936210.1038/s41574‑020‑0355‑732398822
    [Google Scholar]
  4. MaglianoD.J. Global picture.In:IDF Diabetes Atlas Scientific Committee.10th edBrusselsInternational Diabetes Federation202119
    [Google Scholar]
  5. FelberJ-P. GolayA. Pathways from obesity to diabetes.Int. J. Obes.200226S2Suppl. 2S39S4510.1038/sj.ijo.080212612174327
    [Google Scholar]
  6. CadeW.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting.Phys. Ther.200888111322133510.2522/ptj.2008000818801863
    [Google Scholar]
  7. AliJ. HaiderS.M.S. AliS.M. HaiderT. AnwarA. HashmiA.A. Overall clinical features of type 2 diabetes mellitus with respect to gender.Cureus2023153e3577110.7759/cureus.3577137020489
    [Google Scholar]
  8. KaplowitzP.B. KumarA.R. Patient age, race and the type of diabetes have an impact on the presenting symptoms, latency before diagnosis and laboratory abnormalities at time of diagnosis of diabetes mellitus in children.J. Clin. Res. Pediatr. Endocrinol.20091522723210.4274/jcrpe.v1i5.22721274299
    [Google Scholar]
  9. GregoryJ. MooreD. SimmonsJ. Type 1 diabetes mellitus pediatrics in review / american.Acad. Pediatr.201334203215
    [Google Scholar]
  10. WuY. DingY. TanakaY. ZhangW. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention.Int. J. Med. Sci.201411111185120010.7150/ijms.1000125249787
    [Google Scholar]
  11. KimJ. WeiY. SowersJ.R. Role of mitochondrial dysfunction in insulin resistance.Circ. Res.2008102440141410.1161/CIRCRESAHA.107.16547218309108
    [Google Scholar]
  12. TrioloT.M. FoutsA. PyleL. YuL. GottliebP.A. SteckA.K. Identical and nonidentical twins: Risk and factors involved in development of islet autoimmunity and type 1 diabetes.Diabetes Care201942219219910.2337/dc18‑028830061316
    [Google Scholar]
  13. SangheraD.K. BlackettP.R. Type 2 diabetes genetics: Beyond gwas.J. Diabetes Metab.201231986948[PMID: 23243555
    [Google Scholar]
  14. JosephA. ThirupathammaM. MathewsE. AlaguM. Genetics of type 2 diabetes mellitus in indian and global population: A review.Egypt. J. Med. Hum. Genet.202223113510.1186/s43042‑022‑00346‑137192883
    [Google Scholar]
  15. FlanaganS.E. EdghillE.L. GloynA.L. EllardS. HattersleyA.T. Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype.Diabetologia20064961190119710.1007/s00125‑006‑0246‑z16609879
    [Google Scholar]
  16. JainandunsingS. KooleH.R. van MiertJ.N.I. Transcription factor 7-like 2 gene links increased in vivo insulin synthesis to type 2 diabetes.EBioMedicine20183029530210.1016/j.ebiom.2018.03.02629631902
    [Google Scholar]
  17. ChaudharyP.P. KaurM. MylesI.A. Does “all disease begin in the gut”? The gut-organ cross talk in the microbiome.Appl. Microbiol. Biotechnol.2024108133910.1007/s00253‑024‑13180‑938771520
    [Google Scholar]
  18. NogalA. ValdesA.M. MenniC. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health.Gut Microbes2021131189721210.1080/19490976.2021.189721233764858
    [Google Scholar]
  19. PatraD. BanerjeeD. RamprasadP. RoyS. PalD. DasguptaS. Recent insights of obesity-induced gut and adipose tissue dysbiosis in type 2 diabetes.Front. Mol. Biosci.202310122498210.3389/fmolb.2023.122498237842639
    [Google Scholar]
  20. IkedaT. NishidaA. YamanoM. KimuraI. Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases.Pharmacol. Ther.202223910827310.1016/j.pharmthera.2022.10827336057320
    [Google Scholar]
  21. AbdualkaderA.M. KarwiQ.G. LopaschukG.D. Al BatranR. The role of branched-chain amino acids and their downstream metabolites in mediating insulin resistance.J. Pharm. Pharm. Sci.2024271304010.3389/jpps.2024.1304039007094
    [Google Scholar]
  22. ReutrakulS. MokhlesiB. Obstructive sleep apnea and diabetes: A state of the art review.Chest201715251070108610.1016/j.chest.2017.05.00928527878
    [Google Scholar]
  23. ZhangX. ZhangH. LiS. FangF. YinY. WangQ. Recent progresses in gut microbiome mediates obstructive sleep apnea induced cardiovascular diseases.FASEB Bioadv.20246411813010.1096/fba.2023‑0015338585431
    [Google Scholar]
  24. Contreras-BolívarV. García-FontanaB. García-FontanaC. Muñoz-TorresM. Mechanisms involved in the relationship between vitamin d and insulin resistance: Impact on clinical practice.Nutrients20211310349110.3390/nu1310349134684492
    [Google Scholar]
  25. WuJ. AtkinsA. DownesM. WeiZ. Vitamin D in diabetes: Uncovering the sunshine hormone’s role in glucose metabolism and beyond.Nutrients2023158199710.3390/nu1508199737111216
    [Google Scholar]
  26. SuksomboonN. PoolsupN. Darli Ko KoH. Effect of vitamin K supplementation on insulin sensitivity: A meta-analysis.Diabetes Metab. Syndr. Obes.20171016917710.2147/DMSO.S13757128496349
    [Google Scholar]
  27. PhamV.T. DoldS. RehmanA. BirdJ.K. SteinertR.E. Vitamins, the gut microbiome and gastrointestinal health in humans.Nutr. Res.202195355310.1016/j.nutres.2021.09.00134798467
    [Google Scholar]
  28. ShuklaV. SinghS. VermaS. VermaS. RizviA.A. AbbasM. Targeting the microbiome to improve human health with the approach of personalized medicine: Latest aspects and current updates.Clin. Nutr. ESPEN20246381382010.1016/j.clnesp.2024.08.00539178987
    [Google Scholar]
  29. PaulS. AliA. KatareR. Molecular complexities underlying the vascular complications of diabetes mellitus – A comprehensive review.J. Diabetes Complications202034810761310.1016/j.jdiacomp.2020.10761332505477
    [Google Scholar]
  30. DunlopM. Aldose reductase and the role of the polyol pathway in diabetic nephropathy.Kidney Int.200058S3S1210.1046/j.1523‑1755.2000.07702.x10997684
    [Google Scholar]
  31. SinghB. Diabetes: A glucose metabolism problem.J. Endocr. Soc.202481A510A51110.1210/jendso/bvae163
    [Google Scholar]
  32. ChawlaD. Kumar TripathiA. Role of advanced glycation end products (AGEs) and its receptor (RAGE)-mediated diabetic vascular complications.Integr. Food. Nutr. Metab.2019651610.15761/IFNM.1000267
    [Google Scholar]
  33. Phuong-NguyenK. McNeillB.A. Aston-MourneyK. RiveraL.R. Advanced glycation end-products and their effects on gut health.Nutrients202315240510.3390/nu1502040536678276
    [Google Scholar]
  34. PricciF. LetoG. AmadioL. Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C.Free Radic. Biol. Med.200335668369410.1016/S0891‑5849(03)00401‑512957660
    [Google Scholar]
  35. WuR.Y. AbdullahM. MäättänenP. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function.Sci. Rep.2017714082010.1038/srep4082028098206
    [Google Scholar]
  36. HuangP. JiangZ. TengS. Synergism between phospholipase D2 and sorbitol accumulation in diabetic cataract formation through modulation of Na,K-ATPase activity and osmotic stress.Exp. Eye Res.200683493994810.1016/j.exer.2006.05.00116797533
    [Google Scholar]
  37. MolehinO.R. FakayodeA.E. OlaoyeA.B. TeiboJ.O. AdeolaO.A. Biochemical pathways involved in diabetes mellitus.In:Biochemical Immunology of Diabetes and Associated Complications.Cambridge, USAcademic Press20247510010.1016/B978‑0‑443‑13195‑0.00005‑3
    [Google Scholar]
  38. Lara-LemusR. Castillejos-LópezM. Aquino-GálvezA. The possible roles of glucosamine-6-phosphate deaminases in ammonium metabolism in cancer.Int. J. Mol. Sci.202425221205410.3390/ijms25221205439596123
    [Google Scholar]
  39. LiY. XieM. MenL. DuJ. O-GlcNAcylation in immunity and inflammation: An intricate system.Int. J. Mol. Med.201944236337410.3892/ijmm.2019.423831198979
    [Google Scholar]
  40. HeX. GaoJ. PengL. Bacterial O-GlcNAcase genes abundance decreases in ulcerative colitis patients and its administration ameliorates colitis in mice.Gut202170101872188310.1136/gutjnl‑2020‑32246833310751
    [Google Scholar]
  41. AdesharaK.A. DiwanA.G. TupeR.S. Diabetes and complications: Cellular signaling pathways, current understanding and targeted therapies.Curr. Drug Targets201617111309132810.2174/138945011766615120912400726648059
    [Google Scholar]
  42. AkashM.S.H. RehmanK. ChenS. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus.J. Cell. Biochem.2013114352553110.1002/jcb.2440222991242
    [Google Scholar]
  43. TokarekJ. BudnyE. SaarM. Molecular processes involved in the shared pathways between cardiovascular diseases and diabetes.Biomedicines20231110261110.3390/biomedicines1110261137892985
    [Google Scholar]
  44. S346;widerska E, Strycharz J, Wróblewski A, Szemraj J, Drzewoski J, Ś liwińska A. Role of PI3K/AKT Pathway in Insulin-Mediated Glucose Uptake.In:Blood Glucose Levels.London, UKIntechOpen20188040210.5772/intechopen.80402
    [Google Scholar]
  45. KishidaK. FunahashiT. ShimomuraI. Molecular mechanisms of diabetes and atherosclerosis: Role of adiponectin.Endocr. Metab. Immune Disord. Drug Targets201212211813110.2174/18715301280049346822236026
    [Google Scholar]
  46. LiH. WuG. FangQ. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat.Nat. Commun.20189127210.1038/s41467‑017‑02677‑929348470
    [Google Scholar]
  47. Di VincenzoF. Del GaudioA. PetitoV. LopetusoL.R. ScaldaferriF. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review.Intern. Emerg. Med.202419227529310.1007/s11739‑023‑03374‑w37505311
    [Google Scholar]
  48. PageM.J. KellD.B. PretoriusE. The role of lipopolysaccharide-induced cell signalling in chronic inflammation.Chronic Stress (Thousand Oaks)202262470547022107639010.1177/2470547022107639035155966
    [Google Scholar]
  49. XuN. WanJ. WangC. LiuJ. QianC. TanH. Increased serum trimethylamine n-oxide level in type 2 diabetic patients with mild cognitive impairment.Diabetes Metab. Syndr. Obes.2022152197220510.2147/DMSO.S37020635923251
    [Google Scholar]
  50. RehmanK. AkashM.S.H. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked?J. Biomed. Sci.20162318710.1186/s12929‑016‑0303‑y27912756
    [Google Scholar]
  51. SenS. ChakrabortyR. DeB. Complications of diabetes mellitus.Springer20166910.1007/978‑981‑10‑1542‑7_8
    [Google Scholar]
  52. TanaseD.M. GosavE.M. NeculaeE. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM).Nutrients20201212371910.3390/nu1212371933276482
    [Google Scholar]
  53. GrossJ.L. de AzevedoM.J. SilveiroS.P. CananiL.H. CaramoriM.L. ZelmanovitzT. Diabetic nephropathy: Diagnosis, prevention, and treatment.Diabetes Care200528116417610.2337/diacare.28.1.16415616252
    [Google Scholar]
  54. RossingP. Frimodt-MøllerM. Clinical features and natural course of diabetic nephropathy.ChamSpringer2019213210.1007/978‑3‑319‑93521‑8_2
    [Google Scholar]
  55. FinneP. ReunanenA. StenmanS. GroopP.H. Grönhagen-RiskaC. Incidence of end-stage renal disease in patients with type 1 diabetes.JAMA2005294141782178710.1001/jama.294.14.178216219881
    [Google Scholar]
  56. NohH. KingG.L. The role of protein kinase C activation in diabetic nephropathy.Kidney Int.200772106S49S5310.1038/sj.ki.500238617653211
    [Google Scholar]
  57. RyszJ FranczykB ŁawińskiJ OlszewskiR Ciałkowska-RyszA Gluba-Brzózka A. The impact of CKD on uremic toxins and gut microbiota.Toxins (Basel)202113425210.3390/toxins1304025233807343
    [Google Scholar]
  58. ZubairM. MalikA. AhmadJ. Diabetic foot ulcer: A review.Amer J Int Med201532284910.11648/j.ajim.20150302.11
    [Google Scholar]
  59. StinoA.M. SmithA.G. Peripheral neuropathy in prediabetes and the metabolic syndrome.J. Diabetes Investig.20178564665510.1111/jdi.1265028267267
    [Google Scholar]
  60. HicksC.W. SelvinE. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes.Curr. Diab. Rep.201919108610.1007/s11892‑019‑1212‑831456118
    [Google Scholar]
  61. GwathmeyK.G. PearsonK.T. Diagnosis and management of sensory polyneuropathy.BMJ2019365l110810.1136/bmj.l110831068323
    [Google Scholar]
  62. GiriB. DeyS. DasT. SarkarM. BanerjeeJ. DashS.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity.Biomed. Pharmacother.201810730632810.1016/j.biopha.2018.07.15730098549
    [Google Scholar]
  63. FongD.S. AielloL.P. FerrisF.L.III KleinR. Diabetic retinopathy.Diabetes Care200427102540255310.2337/diacare.27.10.254015451934
    [Google Scholar]
  64. BosmaE.K. van NoordenC.J.F. KlaassenI. SchlingemannR.O. Microvascular complications in the eye: Diabetic retinopathy.ChamSpringer International Publishing201930532110.1007/978‑3‑319‑93521‑8_19
    [Google Scholar]
  65. Al-KharashiA.S. Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy.Saudi J. Ophthalmol.201832431832310.1016/j.sjopt.2018.05.00230581303
    [Google Scholar]
  66. GaleR. ScanlonP.H. EvansM. Action on diabetic macular oedema: Achieving optimal patient management in treating visual impairment due to diabetic eye disease.Eye (Lond.)201731S1S1S2010.1038/eye.2017.5328490797
    [Google Scholar]
  67. CampagnoliL.I.M. VaresiA. BarbieriA. MarchesiN. PascaleA. Targeting the gut–eye axis: An emerging strategy to face ocular diseases.Int. J. Mol. Sci.202324171333810.3390/ijms24171333837686143
    [Google Scholar]
  68. MatheusA.S.M. TannusL.R.M. CobasR.A. PalmaC.C.S. NegratoC.A. GomesM.B. Impact of diabetes on cardiovascular disease: An update.Int. J. Hypertens.2013201311510.1155/2013/65378923533715
    [Google Scholar]
  69. HapK. BiernatK. KoniecznyG. Patients with diabetes complicated by peripheral artery disease: The current state of knowledge on physiotherapy interventions.J. Diabetes Res.20212021111210.1155/2021/512249434056006
    [Google Scholar]
  70. ZemaitisM.R. BollJ.M. DreyerM.A. Peripheral arterial disease.In:StatPearls.Treasure Island, FLStatPearls Publishing202416[PMID: 28613496
    [Google Scholar]
  71. ZhangY. WangY. KeB. DuJ. TMAO: How gut microbiota contributes to heart failure.Transl. Res.202122810912510.1016/j.trsl.2020.08.00732841736
    [Google Scholar]
  72. HouK. WuZ.X. ChenX.Y. Microbiota in health and diseases.Signal Transduct. Target. Ther.20227113510.1038/s41392‑022‑00974‑435461318
    [Google Scholar]
  73. RowlandI. GibsonG. HeinkenA. Gut microbiota functions: Metabolism of nutrients and other food components.Eur. J. Nutr.201857112410.1007/s00394‑017‑1445‑828393285
    [Google Scholar]
  74. LaterzaL. RizzattiG. GaetaniE. ChiusoloP. GasbarriniA. The gut microbiota and immune system relationship in human graft-versus-host disease.Mediterr. J. Hematol. Infect. Dis.201681201602510.4084/mjhid.2016.02527158438
    [Google Scholar]
  75. Van HulM. CaniP.D. PetitfilsC. De VosW.M. TilgH. El-OmarE.M. What defines a healthy gut microbiome?Gut202473111893190810.1136/gutjnl‑2024‑33337839322314
    [Google Scholar]
  76. YangG. WeiJ. LiuP. Role of the gut microbiota in type 2 diabetes and related diseases.Metabolism202111715471210.1016/j.metabol.2021.15471233497712
    [Google Scholar]
  77. CavallariJ.F. SchertzerJ.D. Intestinal microbiota contributes to energy balance, metabolic inflammation, and insulin resistance in obesity.J. Obes. Metab. Syndr.201726316117110.7570/jomes.2017.26.3.16131089513
    [Google Scholar]
  78. ShapiroH. KolodziejczykA.A. HalstuchD. ElinavE. Bile acids in glucose metabolism in health and disease.J. Exp. Med.2018215238339610.1084/jem.2017196529339445
    [Google Scholar]
  79. KimY.A. KeoghJ.B. CliftonP.M. Probiotics, prebiotics, synbiotics and insulin sensitivity.Nutr. Res. Rev.2018311355110.1017/S095442241700018X29037268
    [Google Scholar]
  80. MaiaL.P. LeviY.L.A.S. do PradoR.L. SantinoniC.S. MarsicanoJ.A. Effects of probiotic therapy on serum inflammatory markers: A systematic review and meta-analysis.J. Funct. Foods20195446647810.1016/j.jff.2019.01.051
    [Google Scholar]
  81. CraciunC.I. NeagM.A. CatineanA. The relationships between gut microbiota and diabetes mellitus, and treatments for diabetes mellitus.Biomedicines202210230810.3390/biomedicines1002030835203519
    [Google Scholar]
  82. Cavalcanti NetoM.P. AquinoJ.S. Romão da SilvaL.F. Gut microbiota and probiotics intervention: A potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease?Pharmacol. Res.201813015216310.1016/j.phrs.2018.01.02029410236
    [Google Scholar]
  83. LopesR.C.S.O. BalbinoK.P. JorgeM.P. RibeiroA.Q. MartinoH.S.D. AlfenasR.C.G. Modulation of intestinal microbiota, control of nitrogen products and inflammation by pre/probiotics in chronic kidney disease: A systematic review.Nutr. Hosp.201835372273010.20960/nh.164229974784
    [Google Scholar]
  84. HuangY. WangZ. MaH. Dysbiosis and implication of the gut microbiota in diabetic retinopathy.Front. Cell. Infect. Microbiol.20211164634810.3389/fcimb.2021.64634833816351
    [Google Scholar]
  85. SarmadiR. LotfiH. HejaziM.A. GhiasiF. KeyhanmaneshR. The role of probiotics on microvascular complications of type-2 diabetes: Nephropathy and retinopathy.J. Cardiovasc. Thorac. Res.2024162657610.34172/jcvtr.3287739253347
    [Google Scholar]
  86. HommeR.P. GeorgeA.K. StanisicD.N. Effects of probiotic on the development of diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.202061749611
    [Google Scholar]
  87. WangY. YeX. DingD. LuY. Characteristics of the intestinal flora in patients with peripheral neuropathy associated with type 2 diabetes.J. Int. Med. Res.2020489030006052093680610.1177/030006052093680632938282
    [Google Scholar]
  88. WangH. LuY. YanY. Promising treatment for type 2 diabetes: Fecal microbiota transplantation reverses insulin resistance and impaired islets.Front. Cell. Infect. Microbiol.2020945510.3389/fcimb.2019.0045532010641
    [Google Scholar]
  89. IatcuC.O. SteenA. CovasaM. Gut microbiota and complications of type-2 diabetes.Nutrients202114116610.3390/nu1401016635011044
    [Google Scholar]
  90. MaparuK. Modulation of microbiota and its impact on depression.Archi Pharm Pharma Sci202472
    [Google Scholar]
  91. OkoroC.A. DennyC.H. GreenlundK.J. Risk factors for heart disease and stroke among diabetic persons, by disability status.J Diab Complic200519420120610.1016/j.jdiacomp.2005.02.00315993353
    [Google Scholar]
  92. ZhuS. JiangY. XuK. The progress of gut microbiome research related to brain disorders.J. Neuroinflammation20201712510.1186/s12974‑020‑1705‑z31952509
    [Google Scholar]
  93. NamH.S. Gut microbiota and ischemic stroke: The role of trimethylamine N-oxide.J. Stroke201921215115910.5853/jos.2019.0047231161760
    [Google Scholar]
  94. OniszczukA. OniszczukT. GancarzM. Szymańska J. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases.Molecules2021264117210.3390/molecules2604117233671813
    [Google Scholar]
  95. DeliC.K. FatourosI.G. PouliosA. Gut microbiota in the progression of type 2 diabetes and the potential role of exercise: A critical review.Life (Basel)2024148101610.3390/life1408101639202758
    [Google Scholar]
  96. PortincasaP. KhalilM. GrazianiA. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations?Eur. J. Intern. Med.2024119133010.1016/j.ejim.2023.10.00237802720
    [Google Scholar]
  97. GravdalK. KirsteK.H. GrzelakK. Exploring the gut microbiota in patients with pre-diabetes and treatment naïve diabetes type 2 - a pilot study.BMC Endocr. Disord.202323117910.1186/s12902‑023‑01432‑037605183
    [Google Scholar]
  98. WuJ. YangK. FanH. WeiM. XiongQ. Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus.Front. Endocrinol. (Lausanne)202314111442410.3389/fendo.2023.111442437229456
    [Google Scholar]
  99. CaturanoA. D’AngeloM. MormoneA. Oxidative stress in type 2 diabetes: Impacts from pathogenesis to lifestyle modifications.Curr. Issues Mol. Biol.20234586651666610.3390/cimb4508042037623239
    [Google Scholar]
  100. CrudeleL. GadaletaR.M. CarielloM. MoschettaA. Gut microbiota in the pathogenesis and therapeutic approaches of diabetes.EBioMedicine20239710482110.1016/j.ebiom.2023.10482137804567
    [Google Scholar]
  101. HeL. ChenR. ZhangB. Fecal microbiota transplantation treatment of autoimmune-mediated type 1 diabetes mellitus.Front. Immunol.20221393087210.3389/fimmu.2022.93087236032108
    [Google Scholar]
  102. DasS. Devi RajeswariV. VenkatramanG. ElumalaiR. DhanasekaranS. RamanathanG. Current updates on metabolites and its interlinked pathways as biomarkers for diabetic kidney disease: A systematic review.Transl. Res.2024265718710.1016/j.trsl.2023.11.00237952771
    [Google Scholar]
  103. CunninghamA.L. StephensJ.W. HarrisD.A. Gut microbiota influence in type 2 diabetes mellitus (T2DM).Gut Pathog.20211315010.1186/s13099‑021‑00446‑034362432
    [Google Scholar]
  104. YangW. CongY. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases.Cell. Mol. Immunol.202118486687710.1038/s41423‑021‑00661‑433707689
    [Google Scholar]
  105. AyeshaI.E. MonsonN.R. KlairN. Probiotics and their role in the management of type 2 diabetes mellitus (short-term versus long-term effect): A systematic review and meta-analysis.Cureus20231510e4674110.7759/cureus.4674138022046
    [Google Scholar]
/content/journals/probiot/10.2174/0126666499351864250404171440
Loading
/content/journals/probiot/10.2174/0126666499351864250404171440
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test