Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-6499
  • E-ISSN: 2666-6502

Abstract

Objectives

The objective of the present study was to select potent probiotics by evaluating the survival and colonization properties of some probiotic bacterial strains in fish intestinal milieu and fish growth promotion.

Methods

The fish culture experiment was conducted in aquariums (60 l) introducing twenty fingerlings per aquarium ( 10 fingerlings and 10 fingerlings) and feeding through different supplementary feed fortified (inoculated) by eleven different probiotic strains of (As11, Cd16, Cd28, Pb8 and Pb9) and (Butch14, Butch21, Chlop24, Chlop13, Stpt9 and Stpt41). The survival of probiotic bacterial and fish growth was recorded at regular intervals.

Results

The higher population (1 – 61 cfu x 104/g) and colonization efficiency (CE; 1266 to 2000%) of different probiotic strains were observed in the intestinal milieu of fish treated with probiotics. Although all probiotic-treated fish showed a higher absolute growth rate (AGR; 0.02 – 0.049 g/day and , 0.2 – 0.5 g/day) compared to the control, the Butch14, As11, and Stpt41 strains exhibited an excellent AGR than the other strains. The negative correlation between CE and AGR (r2 = -0.577 for and r2 = -0.379 for ) signified that probiotic bacterial CE is not the primary fish growth-promoting factor.

Conclusion

It can be concluded that the employed As11 as well as Butch14 and Stpt41 could be considered excellent probiotic candidates, and probiotic-mediated fish growth is largely dependent upon the type of probiotic strains rather than the CE of probiotics.

Loading

Article metrics loading...

/content/journals/probiot/10.2174/0126666499321747241108045608
2024-12-10
2025-11-07
Loading full text...

Full text loading...

References

  1. Available from: http://www.fao.org/news/story/en/item/421871/icode/, 2016 2016
  2. FAO Fisheries Circular No. 886 FIRI/C886(Rev.1).1997Available from: https://www.fao.org/4/W7499E/w7499e00.htm
  3. Food matters: A comparative analysis of fish, income and food supply.2018Available from: https://www.globalseafood.org/advocate/food-matters-comparative-analysis-fish-income-food-supply/
  4. The state of world fisheries and aquaculture.2000Available from: https://www.fao.org/4/X8002E/X8002E00.htm
  5. GarciaS. NewtonC. Current situation, trends and prospects in world capture fisheries.Global Trends in Fisheries Management PikitchE. HubertD. Sissenwine Current situation, trends and prospects in world capture fisheries.1997352
    [Google Scholar]
  6. TidwellJ.H. AllanG.L. AllanL. Fish as food: aquaculture’s contribution.EMBO Rep.200121195896310.1093/embo‑reports/kve23611713181
    [Google Scholar]
  7. BhatnagarA. DeviP. Water quality guidelines for the management of pond fish culture.Int. J. Environ. Sci.20133619802009
    [Google Scholar]
  8. ShamsuzzamanM.M. AkterM.S. HossainM.Y. Health Management of Indian Major Carps: A Review.Su Ürün. Derg.2020152129144
    [Google Scholar]
  9. BanerjeeS. GhoshK. ChakrabortyS.B. Water Quality Management in Aquaculture Ponds: A Review.J. Aquac. Res. Dev.2020115110
    [Google Scholar]
  10. LuC-L. ChenS-N. HungS-W. Application of Novel Technology in Aquaculture.Emerging Technologies, Environment and Research for Sustainable AquacultureIntech Open202010.5772/intechopen.90142
    [Google Scholar]
  11. FøreM. AlverM.O. FrankK. AlfredsenJ.A. Advanced Technology in Aquaculture – Smart Feeding in Marine Fish Farms.Smart Livestock Nutrition202322726810.1007/978‑3‑031‑22584‑0_9.
    [Google Scholar]
  12. HeX. AbakariG. TanH. LiuW. LuoG. Effects of different probiotics (Bacillus subtilis) addition strategies on a culture of Litopenaeus vannamei in biofloc technology (BFT) aquaculture system.Aquaculture202356673921610.1016/j.aquaculture.2022.739216
    [Google Scholar]
  13. YeohS.J. TaipF.S. EndanJ. TalibR.A. MazlinaM.K.S. Development of automatic feeding machine for aquaculture industry.Pertanika J. Sci. Technol.2010181105110
    [Google Scholar]
  14. VecchioY. MasiM. Del GiudiceT. De RosaM. AdinolfiF. Technological innovation in fisheries and aquaculture: What are the “discourses” of the Italian policy network?Mar. Policy202415910594710.1016/j.marpol.2023.105947
    [Google Scholar]
  15. LatiefT. BhatF.A. ShahT.H. AbubakrA. BhatB.A. KumarA. Innovative Technologies in Fisheries Sector.Chron Aquat Sci.202411010211410.61851/coas.v1i10.10
    [Google Scholar]
  16. SaxenaG. SharanA. BanerjeeS. Nutritional Requirements and Feed Formulation for Indian Major Carps: A Review.Rev. Fish. Sci. Aquacult.2019272189206
    [Google Scholar]
  17. RagasaC. Osei-MensahY.O. AmewuS. Impact of fish feed formulation training on feed use and farmers’ income: Evidence from Ghana.Aquaculture202255873837810.1016/j.aquaculture.2022.738378
    [Google Scholar]
  18. GomesL.C. BrinnR.P. MarconJ.L. DantasL.A. BrandãoF.R. de AbreuJ.S. LemosP.E.M. McCombD.M. BaldisserottoB. Benefits of using the probiotic Efinol ® L during transportation of cardinal tetra, Paracheirodon axelrodi (Schultz), in the Amazon.Aquacult. Res.200940215716510.1111/j.1365‑2109.2008.02077.x
    [Google Scholar]
  19. Martínez CruzP. IbáñezAL. Monroy HermosilloOA. Use of probiotics in aquaculture.ISRN Microbiol2012201291684510.5402/2012/916845.
    [Google Scholar]
  20. Al-ShawiS.G. DangD.S. YousifA.Y. Al-YounisZ.K. NajmT.A. MatarnehS.K. The potential use of probiotics to improve animal health, efficiency, and meat quality.Rev. Agric. (Piracicaba)20201010452
    [Google Scholar]
  21. El-SaadonyM.T. AlagawanyM. PatraA.K. KarI. TiwariR. DawoodM.A.O. DhamaK. Abdel-LatifH.M.R. The functionality of probiotics in aquaculture: An overview.Fish Shellfish Immunol.2021117365210.1016/j.fsi.2021.07.00734274422
    [Google Scholar]
  22. IslamS.M.M. RohaniM.F. ShahjahanM. Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine.Aquacult. Rep.20212110080010.1016/j.aqrep.2021.100800
    [Google Scholar]
  23. Santhanaraju VairappanC. Probiotic fortified seaweed silage as feed supplement in marine hatcheries.Advances in ProbioticsAcademic Press202124725810.1016/B978‑0‑12‑822909‑5.00016‑2
    [Google Scholar]
  24. RajamR. SubramanianP. Encapsulation of probiotics: past, present and future.Beni. Suef Univ. J. Basic Appl. Sci.20221114610.1186/s43088‑022‑00228‑w
    [Google Scholar]
  25. VivekK. MishraS. PradhanR.C. NagarajanM. KumarP.K. SinghS.S. ManviD. GowdaN.N. A comprehensive review on microencapsulation of probiotics: Technology, carriers and current trends.Appl Food Res20233110024810.1016/j.afres.2022.100248.
    [Google Scholar]
  26. YaslikanN.M. YaminudinJ. RasdiN.W. KarimM. Microfeed incorporated with probiotic for aquaculture: A review.World Vet. J.202313459560510.54203/scil.2023.wvj64
    [Google Scholar]
  27. PanigrahiA. KironV. PuangkaewJ. KobayashiT. SatohS. SugitaH. The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture20052431-424125410.1016/j.aquaculture.2004.09.032
    [Google Scholar]
  28. BhaktaJ.N. BhattacharyaS. LahiriS. PanigrahiA.K. Probiotic Characterization of Arsenic‑resistant Lactic Acid Bacteria for Possible Application as Arsenic Bioremediation Tool in Fish for Safe Fish Food Production.Probiotics Antimicrob. Proteins202210.1007/s12602‑022‑09921‑935119613
    [Google Scholar]
  29. BhaktaJ.N. MunekageY. OhnishiK. JanaB.B. Isolation and identification of cadmium- and lead-resistant lactic acid bacteria for application as metal removing probiotic.Int. J. Environ. Sci. Technol.20129343344010.1007/s13762‑012‑0049‑3
    [Google Scholar]
  30. BhaktaJ.N. OhnishiK. MunekageY. IwasakiK. WeiM.Q. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents.J. Appl. Microbiol.201211261193120610.1111/j.1365‑2672.2012.05284.x22404232
    [Google Scholar]
  31. BhaktaJ.N. OhnishiK. TsunemitsuY. UenoD. MannaK. Assessment of arsenic sorption properties of lactic acid bacteria isolated from fecal samples for application as bioremediation tool.Appl. Water Sci.202212611610.1007/s13201‑022‑01634‑2
    [Google Scholar]
  32. MaceyB.M. CoyneV.E. Improved growth rate and disease resistance in farmed Haliotis midae through probiotic treatment.Aquaculture20052451-424926110.1016/j.aquaculture.2004.11.031
    [Google Scholar]
  33. MohideenM.M.A.K. SelvaT.M. MohamedS.P. HussainM.I.Z. Effect of probiotic bacteria on the growth rate of freshwater fish. Catla catla. Int J. Biol Technol20101113117
    [Google Scholar]
  34. SugitaH. IshigakiT. IwaiD. SuzukiY. OkanoR. MatsuuraS. AsfieM. AonoE. DeguchiY. Antibacterial abilities of intestinal bacteria from three coastal fishes.Suisan Zoshoku199846563568
    [Google Scholar]
  35. HaiN.V. The use of probiotics in aquaculture.J. Appl. Microbiol.2015119491793510.1111/jam.1288626119489
    [Google Scholar]
  36. FengJ. ChangX. ZhangY. YanX. ZhangJ. NieG. Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila.Fish Shellfish Immunol.201993738110.1016/j.fsi.2019.07.02831302283
    [Google Scholar]
  37. HasanK.N. BanerjeeG. Recent studies on probiotics as beneficial mediator in aquaculture: a review.J. Basic Appl. Zool.20208115310.1186/s41936‑020‑00190‑y
    [Google Scholar]
  38. de MoraesA.V. OwatariM.S. da SilvaE. de Oliveira PereiraM. PiolaM. RamosC. FariasD.R. SchlederD.D. JesusG.F.A. JatobáA. Effects of microencapsulated probiotics-supplemented diet on growth, non-specific immunity, intestinal health and resistance of juvenile Nile tilapia challenged with Aeromonas hydrophila. Anim. Feed Sci. Technol.202228711528610.1016/j.anifeedsci.2022.115286
    [Google Scholar]
  39. BahramiZ. RoomianiL. JavadzadehN. SaryA.A. BaboliM.J. Microencapsulation of Lactobacillus plantarum in the alginate/chitosan improves immunity, disease resistance, and growth of Nile tilapia (Oreochromis niloticus ).Fish Physiol. Biochem.202349581582810.1007/s10695‑023‑01224‑237500968
    [Google Scholar]
  40. BandyopadhyayP. MishraS. SarkarB. SwainS.K. PalA. TripathyP.P. OjhaS.K. Dietary Saccharomyces cerevisiae boosts growth and immunity of IMC Labeo rohita (Ham.) juveniles.Indian J. Microbiol.2015551818710.1007/s12088‑014‑0500‑x
    [Google Scholar]
  41. WuZ.Q. JiangC. LingF. WangG.X. Effects of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp (Ctenopharyngodon idellus).Aquaculture201543810511410.1016/j.aquaculture.2014.12.041
    [Google Scholar]
  42. JalaliM. AbediD. VarshosazJ. NajjarzadehM. MirlohiM. TavakoliN. Stability evaluation of freeze-dried Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. bulgaricus in oral capsules.Res. Pharm. Sci.201271313623181077
    [Google Scholar]
  43. MarzoukM.S. MoustafaM.M. MohamedN.M. MEvaluation of immunomodulatory effects of some probiotics on cultured Oreochromis niloticus.8th International Symposium on Tilapia in AquacultureCairo, Egypt200810431058
    [Google Scholar]
  44. LazadoC.C. CaipangC.M.A. Atlantic cod in the dynamic probiotics research in aquaculture.Aquaculture2014424-425536210.1016/j.aquaculture.2013.12.040
    [Google Scholar]
  45. KristensenM. KalkmanG. PrevaesS.M.P.J. Tramper-StrandersG.A. GrootK.M.W. JanssensH.M. TiddensH.A.W.M. WestreenenM. EntC.K. SandersE.A.M. AretsB. KeijserB. BogaertD. WS07.5 Gut microbiome in healthy children and children with cystic fibrosis during the first 18 months of life.J. Cyst. Fibros.201615S1210.1016/S1569‑1993(16)30100‑X
    [Google Scholar]
  46. TerpouA. PapadakiA. LappaI. KachrimanidouV. BosneaL. KopsahelisN. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value.Nutrients2019117159110.3390/nu1107159131337060
    [Google Scholar]
  47. ElshaghabeeF.M.F. RokanaN. GulhaneR.D. SharmaC. PanwarH. Bacillus as potential probiotics: status, concerns, and future perspectives.Front. Microbiol.20178149010.3389/fmicb.2017.0149028848511
    [Google Scholar]
  48. ManamD.V.K. QuraishiM.A. Comprehensive review on Indian major carps: An integrated approach to pond cultivation, nutrition, and health management for sustainable aquaculture.Int. J. Fish. Aquat. Stud.2024121011210.22271/fish.2024.v12.i1a.2884
    [Google Scholar]
  49. BhaktaJ.N. LahiriS. BhuiynaF.A. RokunuzzaamanM. OhonishiK. IwasakiK. JanaB.B. Profiling of heavy metal(loid)-resistant bacterial community structure by metagenomic-DNA fingerprinting using PCR–DGGE for monitoring and bioremediation of contaminated environment.Energ Ecol Environ20173102109
    [Google Scholar]
  50. WoottonR.J. Ecology of Teleost Fishes.LondonChapman & Hall199040310.1007/978‑94‑009‑0829‑1
    [Google Scholar]
  51. BhaktaJ.N. SarkarD. JanaS. JanaB.B. Optimizing fertilizer dose for rearing stage production of carps under polyculture.Aquaculture20042391-412513910.1016/j.aquaculture.2004.03.006
    [Google Scholar]
  52. AniJ.S. ManyalaJ.O. MaseseF.O. FitzsimmonsK. Effect of stocking density on growth performance of monosex Nile Tilapia (Oreochromis niloticus) in the aquaponic system integrated with lettuce (Lactuca sativa).Aquac. Fish.20227332833510.1016/j.aaf.2021.03.002
    [Google Scholar]
  53. BalcázarJ. BlasI. RuizzarzuelaI. CunninghamD. VendrellD. MúzquizJ. The role of probiotics in aquaculture.Vet. Microbiol.20061143-417318610.1016/j.vetmic.2006.01.00916490324
    [Google Scholar]
  54. Newaj-FyzulA. AdesiyunA.A. MutaniA. RamsubhagA. BruntJ. AustinB. Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum).J. Appl. Microbiol.200710351699170610.1111/j.1365‑2672.2007.03402.x17953580
    [Google Scholar]
  55. BarthS. DunckerS. HempeJ. BrevesG. BaljerG. BauerfeindR. Escherichia coli Nissle 1917 for probiotic use in piglets: evidence for intestinal colonization.J. Appl. Microbiol.200910751697171010.1111/j.1365‑2672.2009.04361.x19457029
    [Google Scholar]
  56. MerrifieldD.L. CarnevaliO. Probiotic modulation of the gut microbiota of fish.Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics. MerrifieldD.L. RingøE. Oxford, UKWiley-Blackwell Publishing201418522210.1002/9781118897263.ch8
    [Google Scholar]
  57. TaokaY. MaedaH. JoJ.Y. JeonM-J. BaiS.C. LeeW-J. YugeK. KoshioS. Growth, stress tolerance and non-specific immune response of Japanese flounder Paralichthys olivaceus to probiotics in a closed recirculating system.Fish. Sci.200672231032110.1111/j.1444‑2906.2006.01152.x
    [Google Scholar]
  58. CastexM. LemaireP. WabeteN. ChimL. Effect of dietary probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress status of shrimp Litopenaeus stylirostris. Aquaculture20092943-430631310.1016/j.aquaculture.2009.06.016
    [Google Scholar]
  59. Lara-FloresM. Olvera-NovoaM.A. Guzmán-MéndezB.E. López-MadridW. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus).Aquaculture20032161-419320110.1016/S0044‑8486(02)00277‑6
    [Google Scholar]
  60. HeoW.S. KimY.R. KimE.Y. BaiS.C. KongI.S. Effects of dietary probiotic, Lactococcus lactis subsp. lactis I2, supplementation on the growth and immune response of olive flounder (Paralichthys olivaceus).Aquaculture2013376-379202410.1016/j.aquaculture.2012.11.009
    [Google Scholar]
  61. MohammadiG. RafieeG. AbdelrahmanH.A. Effects of dietary Lactobacillus plantarum (KC426951) in biofloc and stagnant-renewal culture systems on growth performance, mucosal parameters, and serum innate responses of Nile tilapia Oreochromis niloticus. Fish Physiol. Biochem.20204631167118110.1007/s10695‑020‑00777‑w32133574
    [Google Scholar]
  62. Plaza-DiazJ. Ruiz-OjedaF.J. Gil-CamposM. GilA. Mechanisms of action of probiotics.Adv. Nutr.2019101S49S6610.1093/advances/nmy06330721959
    [Google Scholar]
  63. SherifA.H. GoudaM.Y. Al-SokaryE.T. ElseifyM.M. Lactobacillus plantarum enhances immunity of Nile tilapia Oreochromis niloticus challenged with Edwardsiella tarda.Aquacult. Res.20215231001101210.1111/are.14955
    [Google Scholar]
  64. KumarP. KaurV.I. TyagiA. NayyarS. Probiotic Potential of Putative Lactic Acid Bacteria Isolated from the Fish Gut: Immune Modulation in Labeo rohita (Ham.).J. Coast. Res.201986119127
    [Google Scholar]
  65. HenrikssonP.J.G. TroellM. BanksL.K. BeltonB. BeveridgeM.C.M. KlingerD.H. PelletierN. PhillipsM.J. TranN. Interventions for improving the productivity and environmental performance of global aquaculture for future food security.One Earth2021491220123210.1016/j.oneear.2021.08.009
    [Google Scholar]
  66. MrambaR.P. KahindiE.J. Pond water quality and its relation to fish yield and disease occurrence in small-scale aquaculture in arid areas.Heliyon202396e1675310.1016/j.heliyon.2023.e1675337274696
    [Google Scholar]
  67. Song-LinG. Jian-JunF. Qiu-HuaY. Rui-ZhangG. YuW. Pan-PanL. Immune effects of bathing European eels in live pathogenic bacteria, Aeromonas hydrophila.Aquacult. Res.201445591392110.1111/are.12035
    [Google Scholar]
  68. AmaraA.A. ShiblA. Role of Probiotics in health improvement, infection control and disease treatment and management.Saudi Pharm. J.201523210711410.1016/j.jsps.2013.07.00125972729
    [Google Scholar]
  69. IndiraM. VenkateswaruluT.C. Abraham PeeleK. Nazneen BobbyM. KrupanidhiS. Bioactive molecules of probiotic bacteria and their mechanism of action: A review.3 Biotech20199830610.1007/s13205‑019‑1841‑2.
    [Google Scholar]
  70. ChenR. TuH. ChenT. Potential application of living microorganisms in the detoxification of heavy metals.Foods20221113190510.3390/foods1113190535804721
    [Google Scholar]
  71. EissaE.S.H. BaghdadyE.S. GaafarA.Y. El-BadawiA.A. BazinaW.K. Abd Al-KareemO.M. Abd El-HamedN.N.B. Assessing the influence of dietary Pediococcus acidilactici probiotic supplementation in the feed of European sea bass (Dicentrarchus labrax L.)(Linnaeus, 1758) on farm water quality, growth, feed utilization, survival rate, body composition, blood biochemical parameters, and intestinal histology.Aquacult. Nutr.2022202211110.1155/2022/5841220
    [Google Scholar]
  72. BamigbadeG.B. SubhashA.J. Kamal-EldinA. NyströmL. AyyashM. An updated review on prebiotics: Insights on potentials of food seeds waste as source of potential prebiotics.Molecules20222718594710.3390/molecules2718594736144679
    [Google Scholar]
  73. KaprasobR. KerdchoechuenO. LaohakunjitN. SomboonpanyakulP. B vitamins and prebiotic fructooligosaccharides of cashew apple fermented with probiotic strains Lactobacillus spp., Leuconostoc mesenteroides and Bifidobacterium longum.Process Biochem.20187091910.1016/j.procbio.2018.04.009
    [Google Scholar]
  74. NayakS.K. Probiotics and immunity: A fish perspective.Fish Shellfish Immunol.201029121410.1016/j.fsi.2010.02.01720219683
    [Google Scholar]
  75. WangC. ChupromJ. WangY. FuL. Beneficial bacteria for aquaculture: nutrition, bacteriostasis and immunoregulation.J. Appl. Microbiol.20201281284010.1111/jam.1438331306569
    [Google Scholar]
/content/journals/probiot/10.2174/0126666499321747241108045608
Loading
/content/journals/probiot/10.2174/0126666499321747241108045608
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test