Skip to content
2000
image of Oral Metronomic Chemotherapy in Nasopharyngeal Carcinoma with Radiotherapy Interruptions: A Lesson Learned from the Lockdown Due to COVID-19

Abstract

Purpose

Metronomic chemotherapy (MC) represents a therapeutic approach characterized by the long-term administration of chemotherapeutic agents at relatively low doses, with minimal or no drug-free intervals (US20150283237, CN111110681A). This study aimed to evaluate the treatment characteristics, prognosis, and efficacy of S-1 MC as a compensatory strategy for nasopharyngeal carcinoma (NPC) patients who experienced radiotherapy interruption (RI) during the COVID-19 pandemic.

Methods

This study included NPC patients who experienced RI due to the COVID-19 pandemic. Patient characteristics, details of treatment after RI, compensatory treatment, and survival outcomes were analyzed.

Results

A total of 8 patients were identified, with a median RI duration of 19 days. All patients received an additional fraction of radiotherapy due to the interruption. Following RI, all patients completed the recommended radiotherapy regimen and underwent comprehensive locoregional and systemic assessment three months post-treatment. Complete remission of the nasopharyngeal tumor and cervical lymph nodes was achieved in 7 (87.5%) patients. These patients were administered oral tegafur, gimeracil, and oteracil potassium (S-1) MC. All patients completed one year of MC without experiencing grade 3-4 adverse reactions. With a median follow-up of 34.4 months, no instances of disease recurrence were observed. The 2-year disease-free survival and overall survival were both 100%.

Conclusion

MC may serve as an effective compensatory treatment strategy for NPC patients experiencing RI. These findings offer valuable insights for future clinical trials involving NPC patients with RI due to various reasons.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928378983250604171225
2025-06-13
2025-08-19
The full text of this item is not currently available.

References

  1. Zhang Y. Gu S. Deng H. Shen Z. Global epidemiological profile in nasopharyngeal carcinoma: A prediction study. BMJ Open 2024 14 12 e091087 10.1136/bmjopen‑2024‑091087 39658299
    [Google Scholar]
  2. Su Z.Y. Siak P.Y. Lwin Y.Y. Cheah S.C. Epidemiology of nasopharyngeal carcinoma: Current insights and future outlook. Cancer Metastasis Rev. 2024 43 3 919 939 10.1007/s10555‑024‑10176‑9 38430391
    [Google Scholar]
  3. Cantù G. Nasopharyngeal carcinoma. A “different” head and neck tumour. Part A: From histology to staging. Acta Otorhinolaryngol. Ital. 2023 43 2 85 98 10.14639/0392‑100X‑N2222 37099432
    [Google Scholar]
  4. Pan J.J. Mai H.Q. Ng W.T. Ninth version of the AJCC and UICC nasopharyngeal cancer TNM staging classification. JAMA Oncol. 2024 10 12 1627 1635 10.1001/jamaoncol.2024.4354 39388190
    [Google Scholar]
  5. Du X.J. Wang G.Y. Zhu X.D. Refining the 8th edition TNM classification for EBV related nasopharyngeal carcinoma. Cancer Cell 2024 42 3 46 10.1016/j.ccell.2023.12.020
    [Google Scholar]
  6. Xu C. Yang K.B. Feng R.J. Radiotherapy interruption due to holidays adversely affects the survival of patients with nasopharyngeal carcinoma: A joint analysis based on large-scale retrospective data and clinical trials. Radiat. Oncol. 2022 17 1 36 10.1186/s13014‑022‑02006‑5 35183221
    [Google Scholar]
  7. Yao J.J. Jin Y.N. Wang S.Y. The detrimental effects of radiotherapy interruption on local control after concurrent chemoradiotherapy for advanced T-stage nasopharyngeal carcinoma: An observational, prospective analysis. BMC Cancer 2018 18 1 740 10.1186/s12885‑018‑4495‑2 30012115
    [Google Scholar]
  8. Yao J.J. Zhang F. Gao T.S. Survival impact of radiotherapy interruption in nasopharyngeal carcinoma in the intensity-modulated radiotherapy era: A big-data intelligence platform-based analysis. Radiother. Oncol. 2019 132 178 187 10.1016/j.radonc.2018.10.018 30448002
    [Google Scholar]
  9. Onyeaka H. Anumudu C.K. Al-Sharify Z.T. Egele-Godswill E. Mbaegbu P. COVID-19 pandemic: A review of the global lockdown and its far-reaching effects. Sci. Prog. 2021 104 2 00368504211019854 10.1177/00368504211019854 34061685
    [Google Scholar]
  10. Cheng Z.J. Zhan Z. Xue M. Public health measures and the control of COVID-19 in China. Clin. Rev. Allergy Immunol. 2021 64 1 1 16 10.1007/s12016‑021‑08900‑2 34536214
    [Google Scholar]
  11. O’Reilly S. Kathryn Carroll H. Murray D. Impact of the COVID-19 pandemic on cancer care in Ireland: Perspectives from a COVID-19 and Cancer Working Group. J. Cancer Policy 2023 36 100414 10.1016/j.jcpo.2023.100414 36841473
    [Google Scholar]
  12. Mariniello D.F. Aronne L. Vitale M. Schiattarella A. Pagliaro R. Komici K. Current challenges and perspectives in lung cancer care during COVID-19 waves. Curr. Opin. Pulm. Med. 2023 29 4 239 247 10.1097/MCP.0000000000000967 37132294
    [Google Scholar]
  13. Tamari K. Nagata Y. Mizowaki T. The impact of the COVID-19 pandemic on radiotherapy in Japan: Nationwide surveys from May 2020 through June 2021. J. Radiat. Res. (Tokyo) 2023 64 1 126 132 10.1093/jrr/rrac055 36109327
    [Google Scholar]
  14. Maringe C. Spicer J. Morris M. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: A national, population-based, modelling study. Lancet Oncol. 2020 21 8 1023 1034 10.1016/S1470‑2045(20)30388‑0 32702310
    [Google Scholar]
  15. Ying X. Bi J. Ding Y. Management and outcomes of patients with radiotherapy interruption during the COVID-19 pandemic. Front. Oncol. 2021 11 754838 10.3389/fonc.2021.754838 34868962
    [Google Scholar]
  16. Barik S.K. Singh A.K. Mishra M. Effect of treatment interruptions and outcomes in cancer patients undergoing radiotherapy during the first wave of COVID-19 pandemic in a tertiary care institute. J. Egypt. Natl. Canc. Inst. 2022 34 1 28 10.1186/s43046‑022‑00129‑0 35781139
    [Google Scholar]
  17. Huang C.L. Fang X.L. Mao Y.P. Association of delayed chemoradiotherapy with elevated Epstein-Barr virus DNA load and adverse clinical outcome in nasopharyngeal carcinoma treatment during the COVID-19 pandemic: A retrospective study. Cancer Cell Int. 2022 22 1 331 10.1186/s12935‑022‑02748‑y 36316696
    [Google Scholar]
  18. Felder M.S. Giulio Francia G. Robert Arthur Kirken R.A. CTLA-4 blockade with metronomic chemotherapy for the treatment of cancer. U.S. Patent 20150283237 2015
  19. Wang SC Peng ZG Zeng ZM Use of quinoline derivatives in combination with capecitabine for treating liver cancer. C.N. Patent 111110681A, 2020
  20. Kina S. Miyamoto S. Kawabata-Iwakawa R. Kina-Tanada M. Ogawa M. Yokoo S. Higher overall survival rates of oral squamous cell carcinoma treated with metronomic neoadjuvant chemotherapy. Am. J. Cancer Res. 2024 14 3 1033 1051 10.62347/EYNT8387 38590400
    [Google Scholar]
  21. Basar O.Y. Mohammed S. Qoronfleh M.W. Acar A. Optimizing cancer therapy: A review of the multifaceted effects of metronomic chemotherapy. Front. Cell Dev. Biol. 2024 12 1369597 10.3389/fcell.2024.1369597 38813084
    [Google Scholar]
  22. Guarini C. Santoro A.N. Melaccio A. Metronomic chemotherapy and breast cancer: A critical evaluation of its role in the new landscape of therapeutics. Expert Opin. Drug Saf. 2025 24 1 9 16 10.1080/14740338.2024.2419547 39422380
    [Google Scholar]
  23. Suzuki H. Iwamoto H. Nakano M. Efficacy and tolerability of Sorafenib plus metronomic chemotherapy S-1 for advanced hepatocellular carcinoma in preclinical and clinical assessments. Transl. Oncol. 2021 14 11 101201 10.1016/j.tranon.2021.101201 34388691
    [Google Scholar]
  24. Dong S. Bei W. Lin L. Short-term versus long-term metronomic adjuvant chemotherapy in locally advanced nasopharyngeal carcinoma: A propensity score-matched real-world study. Oral Oncol. 2024 156 106908 10.1016/j.oraloncology.2024.106908 38936007
    [Google Scholar]
  25. Yu Y.F. Wu P. Zhuo R. Wu S.G. Metronomic S-1 adjuvant chemotherapy improves survival in patients with locoregionally advanced nasopharyngeal carcinoma. Cancer Res. Treat. 2024 56 4 1058 1067 10.4143/crt.2023.1343 38374697
    [Google Scholar]
  26. Duncan W. MacDougall R.H. Kerr G.R. Downing D. Adverse effect of treatment gaps in the outcome of radiotherapy for laryngeal cancer. Radiother. Oncol. 1996 41 3 203 207 10.1016/S0167‑8140(96)01838‑5 9027934
    [Google Scholar]
  27. Hendry J.H. Bentzen S.M. Dale R.G. A modelled comparison of the effects of using different ways to compensate for missed treatment days in radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 1996 8 5 297 307 10.1016/S0936‑6555(05)80715‑0 8934049
    [Google Scholar]
  28. Yang Y. Shen C. Hu C. Effect of COVID-19 epidemic on delay of diagnosis and treatment path for patients with nasopharyngeal carcinoma. Cancer Manag. Res. 2020 12 3859 3864 10.2147/CMAR.S254093 32547222
    [Google Scholar]
  29. Zheng H. Zhou P. Wang J. Prognostic effect of residual plasma Epstein–Barr viral DNA after induction chemotherapy for locoregionally advanced nasopharyngeal carcinoma. Cancer Med. 2023 12 14 14979 14987 10.1002/cam4.6132 37212447
    [Google Scholar]
  30. Chen S. Yang D. Liao X. Failure patterns of recurrence and metastasis after intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma: Results of a multicentric clinical study. Front. Oncol. 2022 11 693199 10.3389/fonc.2021.693199 35223448
    [Google Scholar]
  31. Xiao X.T. Wu Y.S. Chen Y.P. Patterns and prognosis of regional recurrence in nasopharyngeal carcinoma after intensity‐modulated radiotherapy. Cancer Med. 2023 12 2 1399 1408 10.1002/cam4.5020 35822664
    [Google Scholar]
  32. Petrucci G.N. Magalhães T.R. Dias M. Queiroga F.L. Metronomic chemotherapy: Bridging theory to clinical application in canine and feline oncology. Front. Vet. Sci. 2024 11 1397376 10.3389/fvets.2024.1397376 38903691
    [Google Scholar]
  33. Wu H. Zhou H. Chen L. Wang S. Metronomic chemotherapy in cancer treatment: New wine in an old bottle. Theranostics 2024 14 9 3548 3564 10.7150/thno.95619 38948068
    [Google Scholar]
  34. Bandini A. Calabrò P.F. Banchi M. Orlandi P. Bocci G. Metronomic chemotherapy in elderly patients. Curr. Oncol. Rep. 2024 26 4 359 376 10.1007/s11912‑024‑01505‑w 38448722
    [Google Scholar]
  35. Patil V.M. Noronha V. Menon N. Low-dose immunotherapy in head and neck cancer: A randomized study. J. Clin. Oncol. 2023 41 2 222 232 10.1200/JCO.22.01015 36265101
    [Google Scholar]
  36. Chen S. He Z. Li M. Weng L. Lin J. Efficacy and safety of metronomic oral vinorelbine and its combination therapy as second- and later-line regimens for advanced non-small-cell lung cancer: A retrospective analysis. Clin. Transl. Oncol. 2024 26 12 3202 3210 10.1007/s12094‑024‑03543‑z 38851648
    [Google Scholar]
  37. Madabhavi I. Sarkar M. Kumar V. Sagar R. Combined Metronomic Chemo-immunotherapy (CMCI) in head and neck cancers: An experience from a developing country. Indian J. Surg. Oncol. 2024 15 2 321 331 10.1007/s13193‑024‑01900‑6 38741631
    [Google Scholar]
  38. Hong J.H. Woo I.S. Metronomic chemotherapy as a potential partner of immune checkpoint inhibitors for metastatic colorectal cancer treatment. Cancer Lett. 2023 565 216236 10.1016/j.canlet.2023.216236 37209943
    [Google Scholar]
  39. Battaiotto E. d’Ambrosio S. Trapani D. Curigliano G. Metronomic chemotherapy in breast cancer as a strategy to deliver more sustainable and less toxic treatments: Time to debunk the myth? Clin. Breast Cancer 2025 25 2 85 95.e18 10.1016/j.clbc.2024.11.003 39627044
    [Google Scholar]
  40. Mo H. Yu Y. Sun X. Metronomic chemotherapy plus anti-PD-1 in metastatic breast cancer: A Bayesian adaptive randomized phase 2 trial. Nat. Med. 2024 30 9 2528 2539 10.1038/s41591‑024‑03088‑2 38969879
    [Google Scholar]
  41. Xu G.Z. Li L. Zhu X.D. Effect of interrupted time during intensity modulated radiation therapy on survival outcomes in patients with nasopharyngeal cancer. Oncotarget 2017 8 23 37817 37825 10.18632/oncotarget.13713 27911864
    [Google Scholar]
  42. Cazzaniga M.E. Cordani N. Capici S. Cogliati V. Riva F. Cerrito M.G. Metronomic chemotherapy. cancers 2021 13 9 2236 10.3390/cancers13092236 34066606
    [Google Scholar]
  43. Banchi M. Fini E. Crucitta S. Bocci G. Metronomic chemotherapy in pediatric oncology: From preclinical evidence to clinical studies. J. Clin. Med. 2022 11 21 6254 10.3390/jcm11216254 36362482
    [Google Scholar]
  44. Wang X. Wang S.S. Huang H. Effect of capecitabine maintenance therapy using lower dosage and higher frequency vs observation on disease-free survival among patients with early-stage triple-negative breast cancer who had received standard treatment. JAMA 2021 325 1 50 58 10.1001/jama.2020.23370 33300950
    [Google Scholar]
  45. Patil V. Noronha V. Dhumal S.B. Low-cost oral metronomic chemotherapy versus intravenous cisplatin in patients with recurrent, metastatic, inoperable head and neck carcinoma: An open-label, parallel-group, non-inferiority, randomised, phase 3 trial. Lancet Glob. Health 2020 8 9 e1213 e1222 10.1016/S2214‑109X(20)30275‑8 32827483
    [Google Scholar]
  46. Twu C.W. Wang W.Y. Chen C.C. Metronomic adjuvant chemotherapy improves treatment outcome in nasopharyngeal carcinoma patients with postradiation persistently detectable plasma Epstein-Barr virus deoxyribonucleic acid. Int. J. Radiat. Oncol. Biol. Phys. 2014 89 1 21 29 10.1016/j.ijrobp.2014.01.052 24725686
    [Google Scholar]
  47. Chen Y.P. Liu X. Zhou Q. Metronomic capecitabine as adjuvant therapy in locoregionally advanced nasopharyngeal carcinoma: A multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial. Lancet 2021 398 10297 303 313 10.1016/S0140‑6736(21)01123‑5 34111416
    [Google Scholar]
  48. Chen J.H. Huang W.Y. Ho C.L. Chao T.Y. Lee J.C. Evaluation of oral tegafur‐uracil as metronomic therapy following concurrent chemoradiotherapy in patients with non‐distant metastatic TNM stage IV nasopharyngeal carcinoma. Head Neck 2019 41 11 3775 3782 10.1002/hed.25904 31435974
    [Google Scholar]
  49. Chen L. Hu C.S. Chen X.Z. Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: A phase 3 multicentre randomised controlled trial. Lancet Oncol. 2012 13 2 163 171 10.1016/S1470‑2045(11)70320‑5 22154591
    [Google Scholar]
  50. Chan A.T.C. Hui E.P. Ngan R.K.C. Analysis of plasma epstein-barr virus DNA in nasopharyngeal cancer after chemoradiation to identify high-risk patients for adjuvant chemotherapy: A randomized controlled trial. J. Clin. Oncol. 2018 36 31 3091 3100 10.1200/JCO.2018.77.7847 29989858
    [Google Scholar]
  51. de la Vega J.M. Ríos B. del Río J.T. Guerrero R. Castillo I. Guirado D. Management of interruptions to fractionated radiotherapy treatments: Four and a half years of experience. Phys. Med. 2016 32 12 1551 1558 10.1016/j.ejmp.2016.11.108 27890566
    [Google Scholar]
  52. Bakst R.L. Lee N. Pfister D.G. Hypofractionated dose-painting intensity modulated radiation therapy with chemotherapy for nasopharyngeal carcinoma: A prospective trial. Int. J. Radiat. Oncol. Biol. Phys. 2011 80 1 148 153 10.1016/j.ijrobp.2010.01.026 20605352
    [Google Scholar]
  53. Overgaard J. Mohanti B.K. Begum N. Five versus six fractions of radiotherapy per week for squamous-cell carcinoma of the head and neck (IAEA-ACC study): A randomised, multicentre trial. Lancet Oncol. 2010 11 6 553 560 10.1016/S1470‑2045(10)70072‑3 20382075
    [Google Scholar]
  54. Overgaard J. Hansen H.S. Specht L. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6&7 randomised controlled trial. Lancet 2003 362 9388 933 940 10.1016/S0140‑6736(03)14361‑9 14511925
    [Google Scholar]
  55. Sanguineti G. Richetti A. Bignardi M. Accelerated versus conventional fractionated postoperative radiotherapy for advanced head and neck cancer: Results of a multicenter Phase III study. Int. J. Radiat. Oncol. Biol. Phys. 2005 61 3 762 771 10.1016/j.ijrobp.2004.07.682 15708255
    [Google Scholar]
  56. Jackson S.M. Weir L.M. Hay J.H. Tsang V.H.Y. Durham J.S. A randomised trial of accelerated versus conventional radiotherapy in head and neck cancer. Radiother. Oncol. 1997 43 1 39 46 10.1016/S0167‑8140(97)01944‑0 9165135
    [Google Scholar]
  57. Prevention and treatment of cancer-related infections. 2022 Available from: https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf
/content/journals/pra/10.2174/0115748928378983250604171225
Loading
/content/journals/pra/10.2174/0115748928378983250604171225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test