Skip to content
2000
image of Morusin Suppresses Pancreatic Cancer Cell Proliferation and Migration by Targeting SLC6A12 to Inhibit NF-κB and β-catenin Signaling 
Pathways

Abstract

Introduction

Pancreatic cancer is characterized by a poor prognosis and low survival rate, underscoring the urgent need for the development and optimization of novel therapeutic interventions. Morusin has been reported to have anticancer activity in a variety of cancers. Therefore, the present study aimed to elucidate the anticancer effects and potential mechanisms of Morusin in pancreatic cancer.

Methods

We evaluated the anticancer effect of Morusin in pancreatic cancer cells, including its impact on pancreatic cancer cell proliferation, colony formation potential, migration, invasion, cell cycle and apoptosis. RNA sequencing (RNA-seq) analysis was employed to identify potential genes involved in the anticancer activity of Morusin. Furthermore, RT-qPCR and Western blot analysis were utilized to verify the findings.

Results

Our results demonstrated that Morusin administration significantly impaired cell proliferation, migration and invasive activity of pancreatic cancer cells. Additionally, Morusin induced apoptosis and disrupted cell cycle progression. Importantly, Morusin was found to co-regulate and in both cell lines by RNA-seq analysis, with the most significant decrease in mRNA levels of following administration. Mechanistically, Morusin was found to regulate the expression of and inhibit NF-κB and β-catenin signaling pathways, which may represent the underlying mechanisms of its antitumor activity.

Conclusion

Our findings suggest that Morusin holds potential as an anti-pancreatic cancer agent by targeting and modulating its associated signaling pathways.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928376279250613051117
2025-06-23
2025-09-28
Loading full text...

Full text loading...

References

  1. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  2. Potjer T.P. Pancreatic cancer surveillance and its ongoing challenges: Is it time to refine our eligibility criteria? Gut 2022 71 6 1047 1049 10.1136/gutjnl‑2021‑324739 34145046
    [Google Scholar]
  3. Mattiolo P. Kryklyva V. Brosens L.A. Mafficini A. Lawlor R.T. Milella M. Scarpa A. Corbo V. Luchini C. Refining targeted therapeutic approaches in pancreatic cancer: From histology and molecular pathology to the clinic. Expert Opin. Ther. Targets 2022 26 1 1 4 10.1080/14728222.2022.2021397 34936525
    [Google Scholar]
  4. Pergolizzi R.G. Brower S.T. Molecular targets for the diagnosis and treatment of pancreatic cancer. Int. J. Mol. Sci. 2024 25 19 10843 10.3390/ijms251910843 39409171
    [Google Scholar]
  5. Tonini V. Zanni M. Early diagnosis of pancreatic cancer: What strategies to avoid a foretold catastrophe. World J. Gastroenterol. 2022 28 31 4235 4248 10.3748/wjg.v28.i31.4235 36159004
    [Google Scholar]
  6. van Dam J L Janssen Q P Besselink M G Neoadjuvant therapy or upfront surgery for resectable and borderline resectable pancreatic cancer: A meta-analysis of randomised controlled trials. Eur. J. Cancer 2022 160 140 149 10.1016/j.ejca.2021.10.023 34838371
    [Google Scholar]
  7. Stoop T.F. Theijse R.T. Seelen L.W.F. Groot Koerkamp B. van Eijck C.H.J. Wolfgang C.L. van Tienhoven G. van Santvoort H.C. Molenaar I.Q. Wilmink J.W. Del Chiaro M. Katz M.H.G. Hackert T. Besselink M.G. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2024 21 2 101 124 10.1038/s41575‑023‑00856‑2 38036745
    [Google Scholar]
  8. Karamitopoulou E. Emerging prognostic and predictive factors in pancreatic cancer. Mod. Pathol. 2023 36 11 10.1016/j.modpat.2023.100328 37714333
    [Google Scholar]
  9. Hu Z.I. O’Reilly E.M. Therapeutic developments in pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2024 21 1 7 24 10.1038/s41575‑023‑00840‑w 37798442
    [Google Scholar]
  10. Brozos-Vazquez E Toledano-Fonseca M Costa-Fraga N Pancreatic cancer biomarkers: A pathway to advance in personalized treatment selection. Cancer Treat. Rev. 2024 125 10.1016/j.ctrv.2024.102719 38490088
    [Google Scholar]
  11. Jiang Z Zhang W Zhang Z Intratumoral microbiota: A new force in diagnosing and treating pancreatic cancer. Cancer Lett. 2023 554 10.1016/j.canlet.2022.216031 36481214
    [Google Scholar]
  12. Stoffel E.M. Brand R.E. Goggins M. Pancreatic cancer: Changing epidemiology and new approaches to risk assessment, early detection, and prevention. Gastroenterology 2023 164 5 752 765 10.1053/j.gastro.2023.02.012 36804602
    [Google Scholar]
  13. Tang R. Xu J. Wang W. Meng Q. Shao C. Zhang Y. Lei Y. Zhang Z. Liu Y. Du Q. Sun X. Wu D. Liang C. Hua J. Zhang B. Yu X. Shi S. Targeting neoadjuvant chemotherapy-induced metabolic reprogramming in pancreatic cancer promotes anti-tumor immunity and chemo-response. Cell Rep. Med. 2023 4 10 10.1016/j.xcrm.2023.101234 37852179
    [Google Scholar]
  14. Choudhury A Singh P A Bajwa N Dash S Bisht P Pharmacovigilance of herbal medicines: Concerns and future prospects. J. Ethnopharmacol. 2023 309 10.1016/j.jep.2023.116383 36918049
    [Google Scholar]
  15. Hegde M. Girisa S. Naliyadhara N. Kumar A. Alqahtani M.S. Abbas M. Mohan C.D. Warrier S. Hui K.M. Rangappa K.S. Sethi G. Kunnumakkara A.B. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev. 2023 42 3 765 822 10.1007/s10555‑022‑10068‑w 36482154
    [Google Scholar]
  16. Wang J. Li D. Zhao B. Kim J. Sui G. Shi J. Small molecule compounds of natural origin target cellular receptors to inhibit cancer development and progression. Int. J. Mol. Sci. 2022 23 5 2672 10.3390/ijms23052672 35269825
    [Google Scholar]
  17. Choi D.W. Cho S.W. Lee S.G. Choi C.Y. The beneficial effects of morusin, an isoprene flavonoid isolated from the root bark of Morus. Int. J. Mol. Sci. 2020 21 18 6541 10.3390/ijms21186541 32906784
    [Google Scholar]
  18. Hafeez A Khan Z Armaghan M Exploring the therapeutic and anti-tumor properties of morusin: A review of recent advances. Front. Mol. Biosci. 2023 10 10.3389/fmolb.2023.1168298 37228582
    [Google Scholar]
  19. Panek-Krzyśko A. Stompor-Gorący M. The pro-health benefits of morusin administration—An update review. Nutrients 2021 13 9 3043 10.3390/nu13093043 34578920
    [Google Scholar]
  20. Hsu J.H. Yang C.S. Chen J.J. Antioxidant, anti-α-glucosidase, antityrosinase, and anti-inflammatory activities of bioactive components from Morus alba. Antioxidants 2022 11 11 2222 10.3390/antiox11112222 36421408
    [Google Scholar]
  21. Yang C. Deng X. Wu L. Jiang T. Fu Z. Li J. Morusin protected ruminal epithelial cells against lipopolysaccharide-induced inflammation through Inhibiting EGFR-AKT/NF-κB signaling and improving barrier functions. Int. J. Mol. Sci. 2022 23 22 14428 10.3390/ijms232214428 36430903
    [Google Scholar]
  22. Cho A.R. Park W.Y. Lee H.J. Sim D.Y. Im E. Park J.E. Ahn C.H. Shim B.S. Kim S.H. Antitumor effect of morusin via G1 arrest and antiglycolysis by AMPK Activation in hepatocellular cancer. Int. J. Mol. Sci. 2021 22 19 10619 10.3390/ijms221910619 34638959
    [Google Scholar]
  23. Koo J.I. Sim D.Y. Lee H.J. Ahn C.H. Park J. Park S.Y. Lee D. Shim B.S. Kim B. Kim S.H. Apoptotic and anti‐ Warburg effect of Morusin via ROS mediated inhibition of FOXM1 / c‐Myc signaling in prostate cancer cells. Phytother. Res. 2023 37 10 4473 4487 10.1002/ptr.7913 37288731
    [Google Scholar]
  24. Liu W. Ji Y. Wang F. Li C. Shi S. Liu R. Li Q. Guo L. Liu Y. Cui H. Morusin shows potent antitumor activity for melanoma through apoptosis induction and proliferation inhibition. BMC Cancer 2023 23 1 602 10.1186/s12885‑023‑11080‑1 37386395
    [Google Scholar]
  25. Zhou Y. Li X. Ye M. Morusin inhibits the growth of human colorectal cancer HCT116‑derived sphere‑forming cells via the inactivation of Akt pathway. Int. J. Mol. Med. 2021 47 4 51 10.3892/ijmm.2021.4884 33576447
    [Google Scholar]
  26. Chen G. Lyu J. Yang L. Anti-lymphoma application of morusin. Patent CN118976022 2024
  27. Wu H.E. Su C.C. Wang S.C. Liu P.L. Cheng W.C. Yeh H.C. Chuu C.P. Chen J.K. Bao B.Y. Lee C.H. Ke C.C. Chen Y.R. Yu Y.H. Huang S.P. Li C.Y. Anticancer effects of morusin in prostate cancer via inhibition of Akt/mTOR signaling pathway. Am. J. Chin. Med. 2023 51 4 1019 1039 10.1142/S0192415X23500477 37120705
    [Google Scholar]
  28. Fadil S A Albadawi D A I Alshali K Z Abdallah H M Saber M M Modulation of inflammatory mediators underlies the antitumor effect of the combination of morusin and docetaxel on prostate cancer cells. Biomed. Pharmacother. 2024 180 10.1016/j.biopha.2024.117572 39426284
    [Google Scholar]
  29. Zou T. Huang Y. Hu Y. Wu M. Zhao Y. Du F. Li M. Wu X. Ji H. Kaboli P.J. Wang S. Xiao Z. Wu Z. The anti-tumor mechanism and target of triptolide based on network pharmacology and molecular docking. Recent Patents Anticancer Drug Discov. 2021 16 3 426 435 10.2174/1574892816666210211143059 33573560
    [Google Scholar]
  30. Amin A. Hamza A.A. Daoud S. Khazanehdari K. Hrout A.A. Baig B. Chaiboonchoe A. Adrian T.E. Zaki N. Salehi-Ashtiani K. Saffron-based crocin prevents early lesions of liver cancer: In vivo, in vitro and network analyses. Recent Patents Anticancer Drug Discov. 2016 11 1 121 133 10.2174/1574892810666151102110248 26522014
    [Google Scholar]
  31. Kim C. Kim J.H. Oh E.Y. Nam D. Lee S.G. Lee J. Kim S.H. Shim B.S. Ahn K.S. Blockage of STAT3 signaling pathway by morusin induces apoptosis and inhibits invasion in human pancreatic tumor cells. Pancreas 2016 45 3 409 419 10.1097/MPA.0000000000000496 26646273
    [Google Scholar]
  32. Ma F Li Y Cai M ML162 derivatives incorporating a naphthoquinone unit as ferroptosis/apoptosis inducers: Design, synthesis, anti-cancer activity, and drug-resistance reversal evaluation. Eur. J. Med. Chem. 2024 270 10.1016/j.ejmech.2024.116387 38593589
    [Google Scholar]
  33. Guan X. Wang Y. Yu W. Wei Y. Lu Y. Dai E. Dong X. Zhao B. Hu C. Yuan L. Luan X. Miao K. Chen B. Cheng X.D. Zhang W. Qin J.J. Blocking ubiquitin‐specific protease 7 induces ferroptosis in gastric cancer via targeting Stearoyl‐CoA desaturase. Adv. Sci. 2024 11 18 10.1002/advs.202307899 38460164
    [Google Scholar]
  34. Yu D. Qi S. Guan X. Yu W. Yu X. Cai M. Li Q. Wang W. Zhang W. Qin J.J. Inhibition of STAT3 signaling pathway by terphenyllin suppresses growth and metastasis of gastric cancer. Front. Pharmacol. 2022 13 10.3389/fphar.2022.870367 35401187
    [Google Scholar]
  35. Qi S. Guan X. Zhang J. Yu D. Yu X. Li Q. Yin W. Cheng X.D. Zhang W. Qin J.J. Targeting E2 ubiquitin-conjugating enzyme UbcH5c by small molecule inhibitor suppresses pancreatic cancer growth and metastasis. Mol. Cancer 2022 21 1 70 10.1186/s12943‑022‑01538‑4 35272681
    [Google Scholar]
  36. Cao F. Li Y. Ma F. Wu Z. Li Z. Chen Z.S. Cheng X. Qin J.J. Dong J. Synthesis and evaluation of WK-X-34 derivatives as P-glycoprotein (P-gp/ABCB1) inhibitors for reversing multidrug resistance. RSC Med. Chem. 2024 15 2 506 518 10.1039/D3MD00612C 38389882
    [Google Scholar]
  37. Guan X Yang J Wang W Dual inhibition of MYC and SLC39A10 by a novel natural product STAT3 inhibitor derived from Chaetomium globosum suppresses tumor growth and metastasis in gastric cancer. Pharmacol. Res. 2023 189 10.1016/j.phrs.2023.106703 36804016
    [Google Scholar]
  38. Li H Wang L Cao F Design, synthesis, and biological characterization of a potent STAT3 degrader for the treatment of gastric cancer. Front. Pharmacol. 2022 13 10.3389/fphar.2022.944455 36034876
    [Google Scholar]
  39. Baxter J.S. Zatreanu D. Pettitt S.J. Lord C.J. Resistance to DNA repair inhibitors in cancer. Mol. Oncol. 2022 16 21 3811 3827 10.1002/1878‑0261.13224 35567571
    [Google Scholar]
  40. Hassin O. Oren M. Drugging p53 in cancer: One protein, many targets. Nat. Rev. Drug Discov. 2023 22 2 127 144 10.1038/s41573‑022‑00571‑8 36216888
    [Google Scholar]
  41. Hopkins J.L. Lan L. Zou L. DNA repair defects in cancer and therapeutic opportunities. Genes Dev. 2022 36 5-6 278 293 10.1101/gad.349431.122 35318271
    [Google Scholar]
  42. Infantino V. Santarsiero A. Convertini P. Todisco S. Iacobazzi V. Cancer cell metabolism in hypoxia: Role of HIF-1 as key regulator and therapeutic target. Int. J. Mol. Sci. 2021 22 11 5703 10.3390/ijms22115703 34071836
    [Google Scholar]
  43. Liu J. Peng Y. Wei W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol. 2022 32 1 30 44 10.1016/j.tcb.2021.07.001 34304958
    [Google Scholar]
  44. Liu Y. Su Z. Tavana O. Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024 42 6 946 967 10.1016/j.ccell.2024.04.009 38729160
    [Google Scholar]
  45. Matthews H.K. Bertoli C. de Bruin R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022 23 1 74 88 10.1038/s41580‑021‑00404‑3 34508254
    [Google Scholar]
  46. Peuget S. Zhou X. Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat. Rev. Cancer 2024 24 3 192 215 10.1038/s41568‑023‑00658‑3 38287107
    [Google Scholar]
  47. Qannita R.A. Alalami A.I. Harb A.A. Aleidi S.M. Taneera J. Abu-Gharbieh E. El-Huneidi W. Saleh M.A. Alzoubi K.H. Semreen M.H. Hudaib M. Bustanji Y. Targeting hypoxia-inducible factor-1 (HIF-1) in Cancer: Emerging therapeutic strategies and pathway regulation. Pharmaceuticals 2024 17 2 195 10.3390/ph17020195 38399410
    [Google Scholar]
  48. Wang H. Guo M. Wei H. Chen Y. Targeting p53 pathways: Mechanisms, structures and advances in therapy. Signal Transduct. Target. Ther. 2023 8 1 92 10.1038/s41392‑023‑01347‑1 36859359
    [Google Scholar]
  49. Ge W. Wang Y. Quan M. Mao T. Bischof E.Y. Xu H. Zhang X. Li S. Yue M. Ma J. Yang H. Wang L. Yu Z. Wang L. Cui J. Activation of the PI3K/AKT signaling pathway by ARNTL2 enhances cellular glycolysis and sensitizes pancreatic adenocarcinoma to erlotinib. Mol. Cancer 2024 23 1 48 10.1186/s12943‑024‑01965‑5 38459558
    [Google Scholar]
  50. Huang D. Wang Y. Thompson J.W. Yin T. Alexander P.B. Qin D. Mudgal P. Wu H. Liang Y. Tan L. Pan C. Yuan L. Wan Y. Li Q.J. Wang X.F. Cancer-cell-derived GABA promotes β-catenin-mediated tumour growth and immunosuppression. Nat. Cell Biol. 2022 24 2 230 241 10.1038/s41556‑021‑00820‑9 35145222
    [Google Scholar]
  51. Goodwin C.M. Waters A.M. Klomp J.E. Javaid S. Bryant K.L. Stalnecker C.A. Drizyte-Miller K. Papke B. Yang R. Amparo A.M. Ozkan-Dagliyan I. Baldelli E. Calvert V. Pierobon M. Sorrentino J.A. Beelen A.P. Bublitz N. Lüthen M. Wood K.C. Petricoin E.F. III Sers C. McRee A.J. Cox A.D. Der C.J. Combination therapies with CDK4/6 inhibitors to treat KRAS- mutant pancreatic cancer. Cancer Res. 2023 83 1 141 157 10.1158/0008‑5472.CAN‑22‑0391 36346366
    [Google Scholar]
  52. Zhang Z Chen W Q Zhang S Q Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy. Phytomedicine 2022 106 10.1016/j.phymed.2022.154406 36029643
    [Google Scholar]
  53. Bahar M.E. Kim H.J. Kim D.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies. Signal Transduct. Target. Ther. 2023 8 1 455 10.1038/s41392‑023‑01705‑z 38105263
    [Google Scholar]
  54. Glaviano A. Foo A.S.C. Lam H.Y. Yap K.C.H. Jacot W. Jones R.H. Eng H. Nair M.G. Makvandi P. Geoerger B. Kulke M.H. Baird R.D. Prabhu J.S. Carbone D. Pecoraro C. Teh D.B.L. Sethi G. Cavalieri V. Lin K.H. Javidi-Sharifi N.R. Toska E. Davids M.S. Brown J.R. Diana P. Stebbing J. Fruman D.A. Kumar A.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023 22 1 138 10.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  55. Mills K.H.G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol. 2023 23 1 38 54 10.1038/s41577‑022‑00746‑9 35790881
    [Google Scholar]
  56. van Loo G. Bertrand M.J.M. Death by TNF: A road to inflammation. Nat. Rev. Immunol. 2023 23 5 289 303 10.1038/s41577‑022‑00792‑3 36380021
    [Google Scholar]
  57. Zhao K Dai Q Wu J Morusin enhances the antitumor activity of MAPK pathway inhibitors in BRAF-mutant melanoma by inhibiting the feedback activation of STAT3. Eur. J. Cancer 2022 165 58 70 10.1016/j.ejca.2022.01.004 35219024
    [Google Scholar]
  58. Ning S. Kang Q. Fan D. Liu J. Xue C. Zhang X. Ding C. Zhang J. Peng Q. Ji Z. Protein 4.1R is involved in the transport of 5‐Aminolevulinic acid by interaction with GATs in MEF cells. Photochem. Photobiol. 2018 94 1 173 178 10.1111/php.12842 28881432
    [Google Scholar]
  59. Yang Y.L. Zhang Y. Li D.D. Zhang F.L. Liu H.Y. Liao X.H. Xie H.Y. Lu Q. Zhang L. Hong Q. Dong W.J. Li D.Q. Shao Z.M. RNF144A functions as a tumor suppressor in breast cancer through ubiquitin ligase activity-dependent regulation of stability and oncogenic functions of HSPA2. Cell Death Differ. 2020 27 3 1105 1118 10.1038/s41418‑019‑0400‑z 31406303
    [Google Scholar]
  60. Scieglinska D. Krawczyk Z. Sojka D.R. Gogler-Pigłowska A. Heat shock proteins in the physiology and pathophysiology of epidermal keratinocytes. Cell Stress Chaperones 2019 24 6 1027 1044 10.1007/s12192‑019‑01044‑5 31734893
    [Google Scholar]
  61. Scolaro T. Manco M. Pecqueux M. Amorim R. Trotta R. Van Acker H.H. Van Haele M. Shirgaonkar N. Naulaerts S. Daniluk J. Prenen F. Varamo C. Ponti D. Doglioni G. Ferreira Campos A.M. Fernandez Garcia J. Radenkovic S. Rouhi P. Beatovic A. Wang L. Wang Y. Tzoumpa A. Antoranz A. Sargsian A. Di Matteo M. Berardi E. Goveia J. Ghesquière B. Roskams T. Soenen S. Voets T. Manshian B. Fendt S.M. Carmeliet P. Garg A.D. DasGupta R. Topal B. Mazzone M. Nucleotide metabolism in cancer cells fuels a UDP-driven macrophage cross-talk, promoting immunosuppression and immunotherapy resistance. Nat. Cancer 2024 5 8 1206 1226 10.1038/s43018‑024‑00771‑8 38844817
    [Google Scholar]
  62. Reynolds J O Quick A P Wang Q Junctophilin-2 gene therapy rescues heart failure by normalizing RyR2-mediated Ca2+ release. Int. J. Cardiol. 2016 225 371 380 10.1016/j.ijcard.2016.10.021 27760414
    [Google Scholar]
  63. Bhatt M Gauthier-Manuel L Lazzarin E A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain. Front. Physiol. 2023 14 1145973 10.3389/fphys.2023.1145973 37123280
    [Google Scholar]
  64. Koh W. Kwak H. Cheong E. Lee C.J. GABA tone regulation and its cognitive functions in the brain. Nat. Rev. Neurosci. 2023 24 9 523 539 10.1038/s41583‑023‑00724‑7 37495761
    [Google Scholar]
  65. Topchiy I Mohbat J Folorunso O O GABA system as the cause and effect in early development. Neurosci. Biobehav. Rev. 2024 161 10.1016/j.neubiorev.2024.105651 38579901
    [Google Scholar]
  66. Song P. Gao Z. Bao Y. Chen L. Huang Y. Liu Y. Dong Q. Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J. Hematol. Oncol. 2024 17 1 46 10.1186/s13045‑024‑01563‑4 38886806
    [Google Scholar]
  67. Zhang X. Zhang Z. Zhao Y. Jin L. Tai Y. Tang Y. Geng S. Zhang H. Zhai Y. Yang Y. Pan P. He P. Fang S. Sun C. Chen Y. Zhou M. Liu L. Wang H. Xu L. Zhang T. Hua J. Wang H. Zhang L. Sodium chloride promotes macrophage pyroptosis and aggravates rheumatoid arthritis by activating SGK1 through GABA receptors Slc6a12. Int. J. Biol. Sci. 2024 20 8 2922 2942 10.7150/ijbs.93242 38904021
    [Google Scholar]
  68. Zhu C. Guan X. Zhang X. Luan X. Song Z. Cheng X. Zhang W. Qin J.J. Targeting KRAS mutant cancers: From druggable therapy to drug resistance. Mol. Cancer 2022 21 1 159 10.1186/s12943‑022‑01629‑2 35922812
    [Google Scholar]
  69. Singhal A. Li B.T. O’Reilly E.M. Targeting KRAS in cancer. Nat. Med. 2024 30 4 969 983 10.1038/s41591‑024‑02903‑0 38637634
    [Google Scholar]
  70. Bannoura S.F. Uddin M.H. Nagasaka M. Fazili F. Al-Hallak M.N. Philip P.A. El-Rayes B. Azmi A.S. Targeting KRAS in pancreatic cancer: New drugs on the horizon. Cancer Metastasis Rev. 2021 40 3 819 835 10.1007/s10555‑021‑09990‑2 34499267
    [Google Scholar]
  71. Mahadevan K.K. McAndrews K.M. LeBleu V.S. Yang S. Lyu H. Li B. Sockwell A.M. Kirtley M.L. Morse S.J. Moreno Diaz B.A. Kim M.P. Feng N. Lopez A.M. Guerrero P.A. Paradiso F. Sugimoto H. Arian K.A. Ying H. Barekatain Y. Sthanam L.K. Kelly P.J. Maitra A. Heffernan T.P. Kalluri R. KRASG12D inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS-mediated killing by CD8+ T cells. Cancer Cell 2023 41 9 1606 1620.e8 10.1016/j.ccell.2023.07.002 37625401
    [Google Scholar]
  72. Li L. Kang Y. Cheng R. The de novo synthesis of GABA and its gene regulatory function control hepatocellular carcinoma metastasis. Dev. Cell 2024 60 7 1053 1069.e6 10.1016/j.devcel.2024.12.007 39740661
    [Google Scholar]
  73. Sherman M H Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu. Rev. Pathol. 2023 18 1 123 148 10.1146/annurev‑pathmechdis‑031621‑024600 36130070
    [Google Scholar]
  74. Collisson E.A. Bailey P. Chang D.K. Biankin A.V. Molecular subtypes of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2019 16 4 207 220 10.1038/s41575‑019‑0109‑y 30718832
    [Google Scholar]
  75. Werba G. Weissinger D. Kawaler E.A. Zhao E. Kalfakakou D. Dhara S. Wang L. Lim H.B. Oh G. Jing X. Beri N. Khanna L. Gonda T. Oberstein P. Hajdu C. Loomis C. Heguy A. Sherman M.H. Lund A.W. Welling T.H. Dolgalev I. Tsirigos A. Simeone D.M. Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment. Nat. Commun. 2023 14 1 797 10.1038/s41467‑023‑36296‑4 36781852
    [Google Scholar]
/content/journals/pra/10.2174/0115748928376279250613051117
Loading
/content/journals/pra/10.2174/0115748928376279250613051117
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: NF-κB ; Morusin ; proliferation ; SLC6A12 ; pancreatic cancer ; β-catenin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test