Skip to content
2000
image of L-Selenomethylselenocysteine Exerts Inhibitory Effects on the Progression of Esophageal Cancer by Targeting the PI3K/AKT Signaling Pathway

Abstract

Background

Esophageal cancer is a common malignant tumor, making the search for effective treatments a critical research focus. L-methylselenocysteine (L-SeMC) has been reported to exert anticancer effects in various cancers; however, its role and underlying mechanisms in esophageal cancer remain unclear. This study aimed to investigate the anticancer effects of L-SeMC on esophageal cancer both and , and to explore its potential mechanisms of action.

Methods

For cellular studies, flow cytometry, colony formation assay, MTT assay, wound healing assay, and ROS measurement were employed. Western blotting was used to assess the expression levels of apoptotic proteins. A subcutaneous tumor xenograft model was established. The analysis included the evaluation of proteins related to the PI3K/AKT signaling pathway, TUNEL, and Ki-67 staining, as well as HE staining.

Results

L-SeMC caused cell death and, in a concentration-dependent manner, reduced the migration, invasion, and proliferation of esophageal cancer cells. Western blot analysis showed that L-SeMC was associated with a decrease in the anti-apoptotic protein Bcl-2 and an increase in the pro-apoptotic protein Bax. It also triggered the mitochondrial apoptosis pathway, promoting the activation of caspase-3 and subsequent cancer cell death induced by L-SeMC. In a dose-dependent manner, L-SeMC decreased the phosphorylation of phosphatidylinositol 3-kinase (PI3K) downstream effector molecules. This suggests that L-SeMC inhibits the PI3K/AKT signaling pathway in esophageal cancer cells, contributing to its anticancer effects.

Conclusion

L-SeMC has a strong anticancer effect on human esophageal cancer cells and promotes apoptosis by inhibiting the PI3K/AKT signaling pathway, suggesting that L-SeMC may represent a novel strategy for the treatment of esophageal cancer.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928355152250527060605
2025-06-18
2025-09-28
Loading full text...

Full text loading...

References

  1. Azad T.D. Chaudhuri A.A. Fang P. Circulating tumor DNA analysis for detection of minimal residual disease after chemoradiotherapy for localized esophageal cancer. Gastroenterology 2020 158 3 494 505.e6 10.1053/j.gastro.2019.10.039 31711920
    [Google Scholar]
  2. Glaviano A. Foo A.S.C. Lam H.Y. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023 22 1 138 10.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  3. Wang Z. Liu H. Hu Q. Cardamonin inhibits the progression of oesophageal cancer by inhibiting the PI3K/AKT signalling pathway. J. Cancer 2021 12 12 3597 3610 10.7150/jca.55519 33995637
    [Google Scholar]
  4. Henry K. Andrew P.M. Stenosis in esophageal cancer: A poor prognostic indicator. Ann. Surg. Oncol. 2023 31 2 716 717 10.1245/s10434‑023‑14626‑6
    [Google Scholar]
  5. Kumagai S. Koyama S. Shitara K. Precise patient stratification in esophageal cancer: Biomarkers for immunochemotherapy. Cancer Cell 2023 41 7 1199 1201 10.1016/j.ccell.2023.06.004 37433280
    [Google Scholar]
  6. van der Zijden C.J. Lagarde S.M. Hermus M. A prospective cohort study on active surveillance after neoadjuvant chemoradiotherapy for esophageal cancer: Protocol of surgery as needed for oesophageal cancer-2. BMC Cancer 2023 23 1 327 10.1186/s12885‑023‑10747‑z 37038138
    [Google Scholar]
  7. Nickel Felix Felinska E.A. Billeter A.T. Comment on: Esophageal cancer after sleeve gastrectomy: A population-based comparative cohort study. Surg. Obes. Relat. Dis. 2021 17 5 887 888 10.1016/j.soard.2021.01.028
    [Google Scholar]
  8. Zheng Y.H. Zhao E.H. Recent advances in multidisciplinary therapy for adenocarcinoma of the esophagus and esophagogastric junction. World J. Gastroenterol. 2022 28 31 4299 4309 10.3748/wjg.v28.i31.4299 36159003
    [Google Scholar]
  9. Lv J. Guo L. Liu J.J. Zhao H.P. Zhang J. Wang J.H. Alteration of the esophageal microbiota in Barrett’s esophagus and esophageal adenocarcinoma. World J. Gastroenterol. 2019 25 18 2149 2161 10.3748/wjg.v25.i18.2149 31143067
    [Google Scholar]
  10. Murakami Naoya Mori T. Kubo Y. Yoshimoto S. Prognostic impact of immunohistopathologic features in definitive radiation therapy for nasopharyngeal cancer patients. J. Radiat. Res. 2020 61 1 161 168 10.1093/jrr/rrz071
    [Google Scholar]
  11. Wang Y. Xue L. Decoding the role of FOXP3 in esophageal cancer: Underlying mechanisms and therapeutic implications. Biochim. Biophys. Acta Rev. Cancer 2024 1879 6 189211 10.1016/j.bbcan.2024.189211 39532205
    [Google Scholar]
  12. Sihag S. Advances in the surgical management of esophageal cancer. Hematol. Oncol. Clin. North Am. 2024 38 3 559 568 10.1016/j.hoc.2024.03.001 38582720
    [Google Scholar]
  13. Andalib A. Bouchard P. Demyttenaere S. Ferri L.E. Court O. Esophageal cancer after sleeve gastrectomy: A population-based comparative cohort study. Surg. Obes. Relat. Dis. 2021 17 5 879 887 10.1016/j.soard.2020.12.011 33547014
    [Google Scholar]
  14. Lin Z. Cai W. Hou W. CT-guided survival prediction of esophageal cancer. IEEE J. Biomed. Health Inform. 2022 26 6 2660 2669 10.1109/JBHI.2021.3132173 34855605
    [Google Scholar]
  15. Moradinazar M. Najafi F. Rajati F. Sarokhani D. Bavandpour M. The relationship between metformin consumption and cancer risk: An updated umbrella review of systematic reviews and meta-analyses. Int. J. Prev. Med. 2023 14 1 90 10.4103/ijpvm.ijpvm_62_21 37854987
    [Google Scholar]
  16. Santiago RDEnrique, Tilburg VLaurelle, Deprez PH, Pioche M, Pouw RE. Western outcomes of circumferential endoscopic submucosal dissection for early esophageal squamous cell carcinoma. Gastrointest. Endosc. 2023 99 4 511 524.e6 37879543
    [Google Scholar]
  17. Gokulanathan Narendhar, Jagadesan PRC, Nadeem NY, Sree SA. A diagnostic quandary: Carboplatin-paclitaxel-induced stevens-johnson syndrome in a rare case of carcinosarcoma of the esophagus and review of the literature. Cureus 2023 15 10 e47457 10.7759/cureus.47457
    [Google Scholar]
  18. Salahudeen A.A. Seoane J.A. Yuki K. Functional screening of amplification outlier oncogenes in organoid models of early tumorigenesis. Cell Rep. 2023 42 11 113355 10.1016/j.celrep.2023.113355 37922313
    [Google Scholar]
  19. Han L. Jiang Y. Shi M. LIPH contributes to glycolytic phenotype in pancreatic ductal adenocarcinoma by activating LPA/LPAR axis and maintaining ALDOA stability. J. Transl. Med. 2023 21 1 838 10.1186/s12967‑023‑04702‑6 37990271
    [Google Scholar]
  20. Zhang Y.H. Guo L.J. Yuan X.L. Hu B. Artificial intelligence-assisted esophageal cancer management: Now and future. World J. Gastroenterol. 2020 26 35 5256 5271 10.3748/wjg.v26.i35.5256 32994686
    [Google Scholar]
  21. Qiu Y. You J. Wang K. Effect of whole-course nutrition management on patients with esophageal cancer undergoing concurrent chemoradiotherapy: A randomized control trial. Nutrition 2019 69 110558 10.1016/j.nut.2019.110558
    [Google Scholar]
  22. Lin J.X. Xie X.S. Weng X.F. Qiu S.L. Correction: UFM1 suppresses invasive activities of gastric cancer cells by attenuating the expression of PDK1 through PI3K/AKT signaling. J. Exp. Clin. Cancer Res. 2023 42 1 307 10.1186/s13046‑023‑02896‑7
    [Google Scholar]
  23. Peippo M. Gardberg M. Kronqvist P. Carpén O. Heuser V.D. Characterization of expression and function of the formins fhod1, inf2, and daam1 in her2-positive breast cancer. J. Breast Cancer 2023 26 6 525 543 10.4048/jbc.2023.26.e47 37985384
    [Google Scholar]
  24. Jin Y. Shimizu S. Li Y. Proton therapy (PT) combined with concurrent chemotherapy for locally advanced non-small cell lung cancer with negative driver genes. Radiat. Oncol. 2023 18 1 189 10.1186/s13014‑023‑02372‑8
    [Google Scholar]
  25. Yusuke N. Yamamoto S. Kato K. Immune checkpoint inhibitors in esophageal cancer: Clinical development and perspectives. Hum. Vaccin. Immunother. 2022 18 6 2143177 10.1080/21645515.2022.2143177
    [Google Scholar]
  26. Susan J.F.T. Filippini T. Vinceti M. Selenium status and immunity. Proc. Nutr. Soc. 2022 82 1 32 38 10.1017/S0029665122002658
    [Google Scholar]
  27. Niu R. Yang Q. Dong Y. Hou Y. Liu G. Selenium metabolism and regulation of immune cells in immune‐associated diseases. J. Cell. Physiol. 2022 237 9 3449 3464 10.1002/jcp.30824 35788930
    [Google Scholar]
  28. Du W. Gao A. Herman J.G. Methylation of NRN1 is a novel synthetic lethal marker of PI3K‐Akt‐mTOR and ATR inhibitors in esophageal cancer. Cancer Sci. 2021 112 7 2870 2883 10.1111/cas.14917 33931924
    [Google Scholar]
  29. Arasi M.B. Luca D.G. Chronopoulou L. Pedini F. MiR126-targeted-nanoparticles combined with PI3K/AKT inhibitor as a new strategy to overcome melanoma resistance. Mol. Ther. 2023 32 1 152 167 10.1016/j.ymthe.2023.11.021
    [Google Scholar]
  30. Dou Q.P. Current status and future perspectives on old drug repurposing for cancer treatment. Rec Pat Anticancer Drug Discov 2021 16 2 120 121 10.2174/157489281602210806102833
    [Google Scholar]
  31. Yuan S. Mason A.M. Carter P. Selenium and cancer risk: Wide‐angled mendelian randomization analysis. Int. J. Cancer 2022 150 7 1134 1140 10.1002/ijc.33902 34910310
    [Google Scholar]
  32. Deboever N. Jones C.M. Yamashita K. Ajani J.A. Advances in diagnosis and management of cancer of the esophagus. BMJ 2024 385 e074962 10.1136/bmj‑2023‑074962
    [Google Scholar]
  33. Waters J.K. Reznik S.I. Update on management of squamous cell esophageal cancer. Curr. Oncol. Rep. 2022 24 3 375 385 10.1007/s11912‑021‑01153‑4 35142974
    [Google Scholar]
  34. Shi Y. Fang N. Li Y. Circular RNA LPAR3 sponges microRNA‐198 to facilitate esophageal cancer migration, invasion, and metastasis. Cancer Sci. 2020 111 8 2824 2836 10.1111/cas.14511 32495982
    [Google Scholar]
  35. Li Shao-Wei Zhang L.H. Cai Y. Zhou X.B. Deep learning assists detection of esophageal cancer and precursor lesions in a prospective, randomized controlled study. Sci. Transl. Med. 2024 16 743 eadk5395 10.1126/scitranslmed.adk5395
    [Google Scholar]
  36. Yuan Zuyang Wang X. Geng X. Li Y. Liquid biopsy for esophageal cancer: Is detection of circulating cell-free DNA as a biomarker feasible? Cancer Commun. 2020 41 1 3 15 10.1002/cac2.12118
    [Google Scholar]
  37. Obermannová R. Alsina M. Cervantes A. Oesophageal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022 33 10 992 1004 10.1016/j.annonc.2022.07.003
    [Google Scholar]
  38. Li M. Zhou J. Zhang T. Updated Progress on Mass Spectrometry Imaging and its Application in Cancer Treatment and Drug Discovery. Rec Pat Anticancer Drug Discov 2024 19 10.2174/0115748928269691231203164021 38275033
    [Google Scholar]
  39. Sheikh M.S. Ying H. Antibody-drug conjugates for breast cancer treatment. Rec Pat Anticancer Drug Discov 2022 2 108 113
    [Google Scholar]
  40. Chen C. Chen S. Cao H. Prognostic significance of autophagy-related genes within esophageal carcinoma. BMC Cancer 2020 20 1 797 10.1186/s12885‑020‑07303‑4 32831056
    [Google Scholar]
  41. McFadden M. Singh S.K. Kinnel B. Varambally S. Singh R. The effect of paclitaxel- and fisetin-loaded PBM nanoparticles on apoptosis and reversal of drug resistance gene ABCG2 in ovarian cancer. J. Ovarian Res. 2023 16 1 220 10.1186/s13048‑023‑01308‑w 37990267
    [Google Scholar]
  42. Shi Yinli Sheng P. Zhao Y. Wang X. Based on bioinformatics to explore the mechanism of “tangzhiqing” decoction alleviating type 2 diabetes-associated cognitive dysfunction in mice by regulating hippocampal neuron apoptosis and autophagy. Comb. Chem. High Throughput Screen. 2023 27 17 2565 2582 10.2174/0113862073255849231030114405
    [Google Scholar]
/content/journals/pra/10.2174/0115748928355152250527060605
Loading
/content/journals/pra/10.2174/0115748928355152250527060605
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: in vivo ; Anti-tumor ; antitumour ; in vitro ; growth ; squamous cell carcinoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test