Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Tumor cells have distorted enzymatic houses, which change the metabolic state from oxidative phosphorylation to glycolysis with high lactate levels in a hypoxic environment. Redrafting the metabolic profile is an emerging hallmark of cancer. Glycolytic enzyme amplification occurs in about 70% of all malignancies. Current studies have found that PFK-1 overexpression is linked to cell migration, proliferation, and Overall Survival (OS) rate in various human cancer cell lines. This review intended to uncover the bona fide therapeutic target for cancer therapy and elucidate the role of PFK-1 in cancer. Furthermore, this review has outlined the listed pharmacological and genetic inhibitors of PFK-1. Following this review, future studies on PFK-1 should emphasize the molecular pathways implicated in PFK-1 overexpression in cancer development. The terms “PFK-1”, “PFKP-1”, “PFKL-1”, “PFKM-1”, “PFKM-1 and cancer”, “PFKP-1 and cancer”, “PFKL-1 and cancer”, and “inhibitors of PFK-1” were used to retrieve the information from a variety of databases, including PubMed, Scopus, Google Scholar, and ScienceDirect. In a variety of malignancies, inhibiting the expression of PFK-1 isoforms has been reported to be the most effective therapeutic method. Overexpression of PFK-1 isoforms induces the Warburg effect, cell proliferation, and carcinogenesis by downregulating apoptotic proteins, such as active caspase-3, caspase-9, and caspase-8. YY1, synoviolin, Sh-RNA-507, SNAI, miR-520a/b/e, miR-128, and β-miR-6517 are some of the putative genetic inhibitors against PFK-1 that have been used to manage the development of malignancies. Pharmacological inhibitors, such as penfluridol, synoviolin/HRD1, quercetin, ginsenoside 20(S)-Rg3, triptolide, worenine, acetylsalicylic acid, and salicylic acid, can regulate the advancement of malignancies by inhibiting PFK-1. Thus, PFK-1 is a promising molecular biomarker for cancer treatment. A prospective investigation can validate the unbiased approaches for discovering brand-new PFK-1 inhibitors for cancer treatment.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928321372240813080131
2024-08-21
2025-12-05
Loading full text...

Full text loading...

References

  1. NoorF. NoorA. IshaqA.R. Recent advances in diagnostic and therapeutic approaches for breast cancer: A comprehensive review.Curr. Pharm. Des.202127202344236510.2174/18734286MTE06NzEAx33655849
    [Google Scholar]
  2. KushlinskiĭN.E. NemtsovaM.V. [Molecular biological characteristics of cancer] Vestn. Ross. Akad. Med. Nauk2014691-251510.15690/vramn.v69i1‑2.93425055553
    [Google Scholar]
  3. LincetH. IcardP. How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions?Oncogene201534293751375910.1038/onc.2014.32025263450
    [Google Scholar]
  4. WangJ.J. LeiK.F. HanF. Tumor microenvironment: Recent advances in various cancer treatments.Eur. Rev. Med. Pharmacol. Sci.201822123855386429949179
    [Google Scholar]
  5. LiuC. JinY. FanZ. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer.Front. Oncol.20211169802310.3389/fonc.2021.69802334540667
    [Google Scholar]
  6. VaupelP. SchmidbergerH. MayerA. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression.Int. J. Radiat. Biol.201995791291910.1080/09553002.2019.158965330822194
    [Google Scholar]
  7. YuanY. Guo-QingP. YanT. Hong-LinY. Gong-HuaH. Cai-GaoZ. A study of PKM2, PFK-1, and ANT1 expressions in cervical biopsy tissues in China.Med. Oncol.20122942904291010.1007/s12032‑011‑0154‑z22227854
    [Google Scholar]
  8. KanaiS. ShimadaT. NaritaT. OkabayashiK. Phosphofructokinase-1 and fructose bisphosphatase-1 in canine liver and kidney.J. Vet. Med. Sci.201981101515152110.1292/jvms.19‑036131474665
    [Google Scholar]
  9. HofmannE KopperschlägerG. Phosphofructokinase from yeast.Meth Enzymol198290Pt E4960
    [Google Scholar]
  10. RabenN. ExelbertR. SpiegelR. Functional expression of human mutant phosphofructokinase in yeast: Genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency.Am. J. Hum. Genet.19955611311417825568
    [Google Scholar]
  11. PapagianniM. AvramidisN. Engineering the central pathways in Lactococcus lactis: Functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions.Enzyme Microb. Technol.201251312513010.1016/j.enzmictec.2012.04.00722759530
    [Google Scholar]
  12. WalkerL.R. SimcockD.C. PedleyK.C. SimpsonH.V. BrownS. The kinetics and regulation of phosphofructokinase from Teladorsagia circumcincta.Exp. Parasitol.2012130434835310.1016/j.exppara.2012.02.01122402411
    [Google Scholar]
  13. PapagianniM. AvramidisN. Lactococcus lactis as a cell factory: A twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation.Enzyme Microb. Technol.201149219720210.1016/j.enzmictec.2011.05.00222112409
    [Google Scholar]
  14. ElsonA. LevanonD. BrandeisM. The structure of the human liver-type phosphofructokinase gene.Genomics199071475610.1016/0888‑7543(90)90517‑X2139864
    [Google Scholar]
  15. WebbB.A. ForouharF. SzuF.E. SeetharamanJ. TongL. BarberD.L. Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations.Nature2015523755811111410.1038/nature1440525985179
    [Google Scholar]
  16. DavidsonM. MirandaA.F. BenderA.N. DiMauroS. VoraS. Muscle phosphofructokinase deficiency. Biochemical and immunological studies of phosphofructokinase isozymes in muscle culture.J. Clin. Invest.198372254555010.1172/JCI1110026223943
    [Google Scholar]
  17. WegenerG. KrauseU. Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle.Biochem. Soc. Trans.200230226427010.1042/bst030026412023862
    [Google Scholar]
  18. EchigoyaY. OkabeH. ItouT. EndoH. SakaiT. Molecular characterization of glycogen synthase 1 and its tissue expression profile with type II hexokinase and muscle-type phosphofructokinase in horses.Mol. Biol. Rep.201138146146910.1007/s11033‑010‑0129‑820383748
    [Google Scholar]
  19. HellingaH.W. EvansP.R. Mutations in the active site of Escherichia coli phosphofructokinase.Nature1987327612143743910.1038/327437a02953977
    [Google Scholar]
  20. ShirakiharaY. EvansP.R. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products.J. Mol. Biol.1988204497399410.1016/0022‑2836(88)90056‑32975709
    [Google Scholar]
  21. Sola-PennaM. Da SilvaD. CoelhoW.S. Marinho-CarvalhoM.M. ZancanP. Regulation of mammalian muscle type 6‐phosphofructo‐1‐kinase and its implication for the control of the metabolism.IUBMB Life2010621179179610.1002/iub.39321117169
    [Google Scholar]
  22. Moreno-SánchezR. Marín-HernándezA. Gallardo-PérezJ.C. Phosphofructokinase type 1 kinetics, isoform expression, and gene polymorphisms in cancer cells.J. Cell. Biochem.201211351692170310.1002/jcb.2403922213537
    [Google Scholar]
  23. LeeJ.H. LiuR. LiJ. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis.Nat. Commun.20178194910.1038/s41467‑017‑00906‑929038421
    [Google Scholar]
  24. JenkinsC.M. YangJ. SimsH.F. GrossR.W. Reversible high affinity inhibition of phosphofructokinase-1 by acyl-CoA: A mechanism integrating glycolytic flux with lipid metabolism.J. Biol. Chem.201128614119371195010.1074/jbc.M110.20366121258134
    [Google Scholar]
  25. LimY.C. JensenK.E. Aguilar-MoranteD. Non-metabolic functions of phosphofructokinase-1 orchestrate tumor cellular invasion and genome maintenance under bevacizumab therapy.Neuro-oncol.202325224826010.1093/neuonc/noac13535608632
    [Google Scholar]
  26. GarciaJ. HurwitzH.I. SandlerA.B. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook.Cancer Treat. Rev.20208610201710.1016/j.ctrv.2020.10201732335505
    [Google Scholar]
  27. WangG. XuZ. WangC. Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues.Oncol. Lett.2013661701170610.3892/ol.2013.159924260065
    [Google Scholar]
  28. IshfaqM. BashirN. RiazS.K. Expression of HK2, PKM2, and PFKM Is Associated with Metastasis and Late Disease Onset in Breast Cancer Patients.Genes (Basel)202213354910.3390/genes1303054935328104
    [Google Scholar]
  29. ZhouY. LinF. WanT. ZEB1 enhances Warburg effect to facilitate tumorigenesis and metastasis of HCC by transcriptionally activating PFKM.Theranostics202111125926593810.7150/thno.5649033897890
    [Google Scholar]
  30. PanX. YangJ. XieP. Enhancement of activity and thermostability of keratinase from Pseudomonas aeruginosa CCTCC AB2013184 by directed evolution with noncanonical amino acids.Front. Bioeng. Biotechnol.2021977090710.3389/fbioe.2021.77090734733836
    [Google Scholar]
  31. LiS. HongH. DuZ. LiuF. YangQ. GaoC. Expression profiling of 21 biomolecules in locally advanced nasopharyngeal carcinomas of Caucasian patients.Lin chuang er bi yan hou tou jing wai ke za zhi.J Clin Otorhinolaryngol, Head, Neck Surg2015291614551457
    [Google Scholar]
  32. ShenJ. JinZ. LvH. PFKP is highly expressed in lung cancer and regulates glucose metabolism.Cell Oncol. (Dordr.)202043461762910.1007/s13402‑020‑00508‑632219704
    [Google Scholar]
  33. ZhangL. KeJ. MinS. Hyperbaric oxygen therapy represses the warburg effect and epithelial–mesenchymal transition in Hypoxic NSCLC Cells via the HIF-1α/PFKP Axis.Front. Oncol.20211169176210.3389/fonc.2021.69176234367973
    [Google Scholar]
  34. WangF. LiL. ZhangZ. Platelet isoform of phosphofructokinase promotes aerobic glycolysis and the progression of non small cell lung cancer.Mol. Med. Rep.20202317410.3892/mmr.2020.1171233236133
    [Google Scholar]
  35. ZhouK. YaoY.L. HeZ.C. VDAC2 interacts with PFKP to regulate glucose metabolism and phenotypic reprogramming of glioma stem cells.Cell Death Dis.201891098810.1038/s41419‑018‑1015‑x30250190
    [Google Scholar]
  36. GaoW. HuangM. ChenX. The role of S-nitrosylation of PFKM in regulation of glycolysis in ovarian cancer cells.Cell Death Dis.202112440810.1038/s41419‑021‑03681‑033859186
    [Google Scholar]
  37. JiL. ShenW. ZhangF. Worenine reverses the Warburg effect and inhibits colon cancer cell growth by negatively regulating HIF-1α.Cell. Mol. Biol. Lett.20212611910.1186/s11658‑021‑00263‑y34006215
    [Google Scholar]
  38. (a ZhangY. LiY. XiaoF. CcpA mutants influence selective carbon source utilization by changing interactions with target genes in Bacillus licheniformis.Syst. Microbiol. Biomanufac20222119320710.1007/s43393‑021‑00055‑7
    [Google Scholar]
  39. (b ZhengC. YuX. LiangY, Zhu Y, He Y, Liao L, Wang D, Yang Y, Yin X, Li A, He Q, Li B. Targeting PFKL with penfluridol inhibits glycolysis and suppresses esophageal cancer tumorigenesis in an AMPK/FOXO3a/BIM-dependent manner.Acta Pharm. Sin. B.2022 Mar1231271128710.1016/j.apsb.2021.09.00735530161
    [Google Scholar]
  40. FurtadoC.M. MarcondesM.C. Sola-PennaM. de SouzaM.L.S. ZancanP. Clotrimazole preferentially inhibits human breast cancer cell proliferation, viability and glycolysis.PLoS One201272e3046210.1371/journal.pone.003046222347377
    [Google Scholar]
  41. UmarS.M. KashyapA. KaholS. Prognostic and therapeutic relevance of phosphofructokinase platelet-type (PFKP) in breast cancer.Exp. Cell Res.2020396111228210.1016/j.yexcr.2020.11228232919954
    [Google Scholar]
  42. XuC. TsaiY.H. GalboP.M.Jr Cistrome analysis of YY1 uncovers a regulatory axis of YY1:BRD2/4-PFKP during tumorigenesis of advanced prostate cancer.Nucleic Acids Res.20214994971498810.1093/nar/gkab25233849067
    [Google Scholar]
  43. TianR.F. LiX.F. XuC. SiRNA targeting PFK1 inhibits proliferation and migration and enhances radiosensitivity by suppressing glycolysis in colorectal cancer.Am. J. Transl. Res.20201294923494033042398
    [Google Scholar]
  44. LiL. LiL. LiW. TAp73-induced phosphofructokinase-1 transcription promotes the Warburg effect and enhances cell proliferation.Nat. Commun.201891468310.1038/s41467‑018‑07127‑830409970
    [Google Scholar]
  45. EnzoE. SantinonG. PocaterraA. Aerobic glycolysis tunes YAP/TAZ transcriptional activity.EMBO J.201534101349137010.15252/embj.20149037925796446
    [Google Scholar]
  46. Holgado-MadrugaM. EmletD.R. MoscatelloD.K. GodwinA.K. WongA.J.A. Grb2-associated docking protein in EGF- and insulin-receptor signalling.Nature1996379656556056410.1038/379560a08596638
    [Google Scholar]
  47. LeeJ.H. LiuR. LiJ. EGFR-phosphorylated platelet isoform of phosphofructokinase 1 promotes PI3K activation.Mol. Cell2018702197210.e710.1016/j.molcel.2018.03.01829677490
    [Google Scholar]
  48. LeeJ.H. ShaoF. LingJ. Phosphofructokinase 1 platelet isoform promotes β-catenin transactivation for tumor development.Front. Oncol.20201021110.3389/fonc.2020.0021132195176
    [Google Scholar]
  49. KaelinW.G.Jr ThompsonC.B. Clues from cell metabolism.Nature2010465729856256410.1038/465562a20520704
    [Google Scholar]
  50. GolinskaM. TroyH. ChungY.L. Adaptation to HIF-1 deficiency by upregulation of the AMP/ATP ratio and phosphofructokinase activation in hepatomas.BMC Cancer201111119810.1186/1471‑2407‑11‑19821612605
    [Google Scholar]
  51. WenY. LuX. RenJ. KLF4 in macrophages attenuates TNFα-mediated kidney injury and fibrosis.J. Am. Soc. Nephrol.201930101925193810.1681/ASN.201902011131337692
    [Google Scholar]
  52. MoonJ.S. KimH.E. KohE. Krüppel-like factor 4 (KLF4) activates the transcription of the gene for the platelet isoform of phosphofructokinase (PFKP) in breast cancer.J. Biol. Chem.201128627238082381610.1074/jbc.M111.23673721586797
    [Google Scholar]
  53. ParkY.Y. KimS.B. HanH.D. Tat-activating regulatory DNA-binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520.Hepatology201358118219110.1002/hep.2631023389994
    [Google Scholar]
  54. FunatoY. HayashiT. IrinoY. TakenawaT. MikiH. Nucleoredoxin regulates glucose metabolism via phosphofructokinase 1.Biochem. Biophys. Res. Commun.2013440473774210.1016/j.bbrc.2013.09.13824120946
    [Google Scholar]
  55. InaishiT. ShibataM. IchikawaT. Platelet isoform of phosphofructokinase accelerates malignant features in breast cancer.Oncol. Rep.2021471910.3892/or.2021.822034751415
    [Google Scholar]
  56. ChoiS.H. JinC.C. DoS.K. Polymorphisms in glycolysis-related genes are associated with clinical outcomes of paclitaxel-cisplatin chemotherapy in non-small cell lung cancer.Oncology202098746847710.1159/00050417532252059
    [Google Scholar]
  57. QingY. DongL. GaoL. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis.Mol. Cell2021815922939.e910.1016/j.molcel.2020.12.02633434505
    [Google Scholar]
  58. FanY. WangJ. XuY. Anti-Warburg effect by targeting HRD1-PFKP pathway may inhibit breast cancer progression.Cell Commun. Signal.20211911810.1186/s12964‑020‑00679‑733588886
    [Google Scholar]
  59. de QueirozR.M. MadanR. ChienJ. DiasW.B. SlawsonC. Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells.J. Biol. Chem.201629136188971891410.1074/jbc.M116.73453327402830
    [Google Scholar]
  60. YiW. ClarkP.M. MasonD.E. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism.Science2012337609797598010.1126/science.122227822923583
    [Google Scholar]
  61. KimN.H. ChaY.H. LeeJ. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress.Nat. Commun.2017811437410.1038/ncomms1437428176759
    [Google Scholar]
  62. ValastyanS. WeinbergR.A. Tumor metastasis: Molecular insights and evolving paradigms.Cell2011147227529210.1016/j.cell.2011.09.02422000009
    [Google Scholar]
  63. YangJ. LiJ. LeY. ZhouC. ZhangS. GongZ. PFKL/miR-128 axis regulates glycolysis by inhibiting AKT phosphorylation and predicts poor survival in lung cancer.Am. J. Cancer Res.20166247348527186417
    [Google Scholar]
  64. LiK. ZhuX. YuanC. Inhibition of miR-185-3p confers erlotinib resistance through upregulation of PFKL/MET in lung cancers.Front. Cell Dev. Biol.2021967786010.3389/fcell.2021.67786034368128
    [Google Scholar]
  65. YangM. GaoX. MaY. Bta‐miR‐6517 promotes proliferation and inhibits differentiation of pre‐adipocytes by targeting PFKL.J. Anim. Physiol. Anim. Nutr. (Berl.)202210661197120710.1111/jpn.1366234791721
    [Google Scholar]
  66. LuJ. ChenH. HeF. Ginsenoside 20(S)‐Rg3 upregulates HIF‐1α‐targeting miR‐519a‐5p to inhibit the Warburg effect in ovarian cancer cells.Clin. Exp. Pharmacol. Physiol.20204781455146310.1111/1440‑1681.1332132271958
    [Google Scholar]
  67. AmaraN. CooperM.P. VoronkovaM.A. Selective activation of PFKL suppresses the phagocytic oxidative burst.Cell20211841744804494.e1510.1016/j.cell.2021.07.00434320407
    [Google Scholar]
  68. ZhangY. TangY. LuoY. LuoL. ShenF. HuangZ. Triptolide impairs glycolysis by suppressing GATA4/Sp1/PFKP signaling axis in mouse Sertoli cells.Toxicol. Appl. Pharmacol.202142511560610.1016/j.taap.2021.11560634087332
    [Google Scholar]
  69. BanerjeeS. SangwanV. McGinnO. Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1.J. Biol. Chem.201328847339273393810.1074/jbc.M113.50098324129563
    [Google Scholar]
  70. MeiraD.D. Marinho-CarvalhoM.M. TeixeiraC.A. Clotrimazole decreases human breast cancer cells viability through alterations in cytoskeleton-associated glycolytic enzymes.Mol. Genet. Metab.200584435436210.1016/j.ymgme.2004.11.01215781197
    [Google Scholar]
  71. ZhengJ. LuoJ. ZengH. GuoL. ShaoG. 125I suppressed the Warburg effect viaregulating miR-338/PFKL axis in hepatocellular carcinoma.Biomed. Pharmacother.2019119109402
    [Google Scholar]
  72. VasconcelosO. SivakumarK. DalakasM.C. Nonsense mutation in the phosphofructokinase muscle subunit gene associated with retention of intron 10 in one of the isolated transcripts in Ashkenazi Jewish patients with Tarui disease.Proc. Natl. Acad. Sci. USA19959222103221032610.1073/pnas.92.22.103227479776
    [Google Scholar]
  73. KubczakM. SzustkaA. RogalińskaM. Molecular targets of natural compounds with anti-cancer properties.Int. J. Mol. Sci.202122241365910.3390/ijms22241365934948455
    [Google Scholar]
  74. SpitzG.A. FurtadoC.M. Sola-PennaM. ZancanP. Acetylsalicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure and activity.Biochem. Pharmacol.2009771465310.1016/j.bcp.2008.09.02018851958
    [Google Scholar]
/content/journals/pra/10.2174/0115748928321372240813080131
Loading
/content/journals/pra/10.2174/0115748928321372240813080131
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test