Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Natural compounds such as Berberine (Ber) have been considered due to favorable anticancer properties, low side effects, and availability along with chemotherapy treatments.

Objectives

This study aimed to investigate the radiosensitizing and radioprotective properties of Ber.

Methods

In this systematic review that was performed according to PRISMA 2020 guidelines, we searched the publications before 25 Sep 2023 in Web of Science, PubMed, Scopus, Embase, and Cochrane Library databases. After determining inclusion and exclusion criteria, data were extracted and imported into an Excel form, and the results of the studies were reviewed.

Results

Ber by reducing the levels of reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta 1 (TGF-β1), and increasing interleukin 10 (IL-10) levels, showed its antioxidant and anti-inflammatory properties against ionizing radiation. Reducing cell cytotoxicity and apoptosis were other radioprotective properties of Ber. Conversely, in cancer cells, Ber, inducing oxidative stress and accumulation ROS in tumor tissues, inducing DNA damage, mitochondrial dysfunction and hyperpolarization, inducing apoptosis, and cell cycle arrest, inhibits the up-regulation of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) revealed radiosensitizing properties.

Conclusion

Ber, various mechanisms, showed favorable radioprotective and radiosensitizing properties in clinical and experimental studies. However, more clinical studies are needed in this field.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928315442240624120104
2024-07-09
2025-12-05
Loading full text...

Full text loading...

References

  1. MattiuzziC. LippiG. Current Cancer Epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.00131854162
    [Google Scholar]
  2. LiaoY. MengQ. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials.Environ. Res.2023238Pt 211689610.1016/j.envres.2023.11689637586453
    [Google Scholar]
  3. LiuL. LiangZ. MaS. LiL. LiuX. Radioprotective countermeasures for radiation injury (Review).Mol. Med. Rep.20232736610.3892/mmr.2023.1295336799170
    [Google Scholar]
  4. GongL. ZhangY. LiuC. ZhangM. HanS. Application of radiosensitizers in cancer radiotherapy.Int. J. Nanomedicine2021161083110210.2147/IJN.S29043833603370
    [Google Scholar]
  5. HallS. RudrawarS. ZunkM. BernaitisN. AroraD. McDermottC. Anoopkumar-DukieS. Protection against radiotherapy-induced toxicity.Antioxidants2016532210.3390/antiox503002227399787
    [Google Scholar]
  6. NambiarD. RajamaniP. SinghR.P. Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy.Mutat. Res. Rev. Mutat. Res.2011728313915710.1016/j.mrrev.2011.07.00522030216
    [Google Scholar]
  7. SinghV.K. SeedT.M. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems.Expert Opin. Pharmacother.202021331733710.1080/14656566.2019.170296831928256
    [Google Scholar]
  8. RoyA. BeraS. SasoL. DwarakanathB.S. Role of autophagy in tumor response to radiation: Implications for improving radiotherapy.Front. Oncol.20221295737310.3389/fonc.2022.95737336172166
    [Google Scholar]
  9. AllegraA.G. ManninoF. InnaoV. MusolinoC. AllegraA. Radioprotective agents and enhancers factors. preventive and therapeutic strategies for oxidative induced radiotherapy damages in hematological malignancies.Antioxidants2020911111610.3390/antiox911111633198328
    [Google Scholar]
  10. Tajner-CzopekA. GertchenM. RytelE. KitaA. KucharskaA.Z. Sokół-ŁętowskaA. Study of antioxidant activity of some medicinal plants having high content of caffeic acid derivatives.Antioxidants20209541210.3390/antiox905041232408518
    [Google Scholar]
  11. Shahbazi-GahroueiD. RaeisiE. RaeisiF. HeidarianE. Evaluation of the radiosensitizing potency of bromelain for radiation therapy of 4T1 breast cancer cells.J. Med. Signals Sens.201991687410.4103/jmss.JMSS_25_1830967992
    [Google Scholar]
  12. BehlT. SinghS. SharmaN. ZahoorI. AlbarratiA. AlbrattyM. MerayaA.M. NajmiA. BungauS. Expatiating the pharmacological and nanotechnological aspects of the alkaloidal drug berberine: current and future trends.Molecules20222712370510.3390/molecules2712370535744831
    [Google Scholar]
  13. OchA. PodgórskiR. NowakR. Biological activity of berberine : A summary update.Toxins2020121171310.3390/toxins1211071333198257
    [Google Scholar]
  14. MohammadzadehN. MehriS. HosseinzadehH. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities.Iran. J. Basic Med. Sci.201720553855128656089
    [Google Scholar]
  15. AkterR. NajdaA. RahmanM. ShahM. WesołowskaS. HassanS. MubinS. BibiP. SaeedaS. RETRACTED: Potential role of natural products to combat radiotherapy and their future perspectives.Molecules20212619599710.3390/molecules2619599734641542
    [Google Scholar]
  16. AsemiZ. BehnamM. PourattarM.A. MirzaeiH. RazaviZ.S. TamtajiO.R. Therapeutic potential of berberine in the treatment of glioma: Insights into its regulatory mechanisms.Cell. Mol. Neurobiol.20214161195120110.1007/s10571‑020‑00903‑532557203
    [Google Scholar]
  17. DevarajanN. JayaramanS. MahendraJ. VenkatratnamP. RajagopalP. PalaniappanH. GanesanS.K. Berberine : A potent chemosensitizer and chemoprotector to conventional cancer therapies.Phytother. Res.20213563059307710.1002/ptr.703233559280
    [Google Scholar]
  18. ZhangS. LongF. LinH. WangX. JiangG. WangT. Regulatory roles of phytochemicals on circular RNAs in cancer and other chronic diseases.Pharmacol. Res.202117410593610.1016/j.phrs.2021.10593634653635
    [Google Scholar]
  19. TianY. WenshanLiu. ZhouFenbi. ZengXianqun. Sensitizing effect of berberine on radiation-induced cytotoxicity in human liver cancer cells.Radiation Therapy and Oncology20121916372
    [Google Scholar]
  20. LiuM. FanR. Effect of berberine on radiosensitivity of cervical cancer cells.Chin.J. Radiolog. Med.Protec.201712581586
    [Google Scholar]
  21. ZhaoC. XuJ. JiaoY. HuX. CheJ. FanS. mpacts of berberine on the growth, migration and radiosensitivity of breast cancer cells.Chin. J. Radiolog. Med. Prot.20122530
    [Google Scholar]
  22. YountG. QianY. MooreD. BasilaD. WestJ. AldapeK. ArvoldN. ShalevN. Haas-KoganD. Berberine sensitizes human glioma cells, but not normal glial cells, to ionizing radiation in vitro.J. Exp. Ther. Oncol.20044213714315500008
    [Google Scholar]
  23. ZhuY. MaN. LiH.X. TianL. BaY.F. HaoB. Berberine induces apoptosis and DNA damage in MG-63 human osteosarcoma cells.Mol. Med. Rep.20141041734173810.3892/mmr.2014.240525050485
    [Google Scholar]
  24. PanY. ZhangF. ZhaoY. ShaoD. ZhengX. ChenY. HeK. LiJ. ChenL. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer.J. Cancer2017891679168910.7150/jca.1910628775788
    [Google Scholar]
  25. LiuY. YuH. ZhangC. ChengY. HuL. MengX. ZhaoY. Protective effects of berberine on radiation-induced lung injury via intercellular adhesion molecular-1 and transforming growth factor-beta-1 in patients with lung cancer.Eur. J. Cancer200844162425243210.1016/j.ejca.2008.07.04018789680
    [Google Scholar]
  26. LiG. WangD. HuY. PuP. LiD. WangW. ZhuB. HaoP. WangJ. XuX. WanJ. ZhouY. ChenZ. Berberine inhibits acute radiation intestinal syndrome in human with abdomen radiotherapy.Med. Oncol.201027391992510.1007/s12032‑009‑9307‑819757213
    [Google Scholar]
  27. LiG.H. ZhangY.P. TangJ. ChenZ.T. HuY.D. WeiH. LiD.Z. HaoP. WangD.L. Effects of berberine against radiation-induced intestinal injury in mice.Int. J. Radiat. Oncol. Biol. Phys.20107751536154410.1016/j.ijrobp.2010.02.06220637981
    [Google Scholar]
  28. LiX.D. WangZ. WangX.R. ShaoD. ZhangX. LiL. GeM.F. ChangZ.M. DongW.F. Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition.Int. J. Nanomedicine2019143967398210.2147/IJN.S20604431239666
    [Google Scholar]
  29. LinY. CaoX. LinY. Berberine enhances the radiosensitivity of hepatoma cells by Nrf2 pathway.Front. Biosci.20192471190120210.2741/477531136975
    [Google Scholar]
  30. QinK. ChengY. YuanX. ZhangJ. HuangL. Efficacy and safety of berberine in the prophylactic treatment of acute radiation proctitis in postoperative patients with cervical cancer: A randomized controlled study*.Oncol. Translat. Med.2021711610.1007/s10330‑020‑0455‑5
    [Google Scholar]
  31. PengP. KuoW.H. TsengH.C. ChouF.P. Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: The contribution of autophagic cell death.Int. J. Radiat. Oncol. Biol. Phys.200870252954210.1016/j.ijrobp.2007.08.03418207031
    [Google Scholar]
  32. HurJ.M. HyunM.S. LimS.Y. LeeW.Y. KimD. The combination of berberine and irradiation enhances anti‐cancer effects via activation of p38 MAPK pathway and ROS generation in human hepatoma cells.J. Cell. Biochem.2009107595596410.1002/jcb.2219819492307
    [Google Scholar]
  33. HurJ.M. KimD.H. Berberine inhibited radioresistant effects and enhanced anti-tumor effects in the irradiated-human prostate cancer cells.Toxicol. Res.201026210911510.5487/TR.2010.26.2.10924278513
    [Google Scholar]
  34. LiuB. WangQ. YuanD.D. HongX.T. TaoL. Berberine potentizes apoptosis induced by X-rays irradiation probably through modulation of gap junctions.Chin. Med. J.201112481221122821543001
    [Google Scholar]
  35. LiuQ. JiangH. LiuZ. WangY. ZhaoM. HaoC. FengS. GuoH. XuB. YangQ. GongY. ShaoC. Berberine radiosensitizes human esophageal cancer cells by downregulating homologous recombination repair protein RAD51.PLoS One201168e2342710.1371/journal.pone.002342721858113
    [Google Scholar]
  36. WangJ. LiuQ. YangQ. Radiosensitization effects of berberine on human breast cancer cells.Int. J. Mol. Med.20123051166117210.3892/ijmm.2012.109522895634
    [Google Scholar]
  37. YangX. YangB. CaiJ. ZhangC. ZhangQ. XuL. QinQ. ZhuH. MaJ. TaoG. ChengH. SunX. Berberine enhances radiosensitivity of esophageal squamous cancer by targeting HIF-1α in vitro and in vivo.Cancer Biol. Ther.201314111068107310.4161/cbt.2642624025355
    [Google Scholar]
  38. ZhangC. YangX. ZhangQ. YangB. XuL. QinQ. ZhuH. LiuJ. CaiJ. TaoG. MaJ. GeX. ZhangS. ChengH. SunX. Berberine radiosensitizes human nasopharyngeal carcinoma by suppressing hypoxia-inducible factor-1α expression.Acta Otolaryngol.2014134218519210.3109/00016489.2013.85017624325635
    [Google Scholar]
  39. ZhangQ. ZhangC. YangX. YangB. WangJ. KangY. WangZ. LiD. HuangG. MaZ. SunX. CaiJ. TaoG. DaiS. MaoW. MaJ. Berberine inhibits the expression of hypoxia induction factor-1alpha and increases the radiosensitivity of prostate cancer.Diagn. Pathol.2014919810.1186/1746‑1596‑9‑9824886405
    [Google Scholar]
  40. WangJ. KangM. WenQ. QinY.T. WeiZ.X. XiaoJ.J. WangR.S. Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT.Oncol. Rep.20173742425243210.3892/or.2017.549928350122
    [Google Scholar]
  41. JinH. KoY.S. ParkS.W. ChangK.C. KimH.J. 13-ethylberberine induces apoptosis through the mitochondria-related apoptotic pathway in radiotherapy-resistant breast cancer cells.Molecules20192413244810.3390/molecules2413244831277363
    [Google Scholar]
  42. El-BenhawyS.A. El-SheredyH.G. GhanemH.B. Abo El-SoudA.A. Berberine can amplify cytotoxic effect of radiotherapy by targeting cancer stem cells.Breast Cancer Manag.202092BMT4110.2217/bmt‑2020‑0007
    [Google Scholar]
  43. RameshG. DasS. Bola SadashivaS.R. Berberine, a natural alkaloid sensitizes human hepatocarcinoma to ionizing radiation by blocking autophagy and cell cycle arrest resulting in senescence.J. Pharm. Pharmacol.202072121893190810.1111/jphp.1335432815562
    [Google Scholar]
  44. WangD. ZhangK.F. DuG. WangJ. ZhaoJ. Berberine enhances the radiosensitivity of osteosarcoma by targeting Rad51 and epithelial–mesenchymal transition.J. Cancer Res. Ther.202016221522110.4103/jcrt.JCRT_293_1932474504
    [Google Scholar]
  45. ZengX. WanL. WangY. XueJ. YangH. ZhuY. Effect of low dose of berberine on the radioresistance of cervical cancer cells via a PI3K/HIF-1 pathway under nutrient-deprived conditions.Int. J. Radiat. Biol.20209681060106710.1080/09553002.2020.177035832412317
    [Google Scholar]
  46. Węgierek-CiukA. ArabskiM. CiepluchK. BrzóskaK. LisowskaH. CzerwińskaM. StępkowskiT. LisK. LankoffA. Coralyne radiosensitizes A549 cells by upregulation of CDKN1A expression to attenuate radiation induced G2/M block of the cell cycle.Int. J. Mol. Sci.20212211579110.3390/ijms2211579134071406
    [Google Scholar]
  47. AleissaM.S. AL-ZharaniM. AlnegheryL.M. AleissaA.M. Berberine enhances the sensitivity of radiotherapy in ovarian cancer cell line (SKOV-3).Saudi Pharm. J.202331111011810.1016/j.jsps.2022.11.00936685297
    [Google Scholar]
  48. MarquesC. FernandesM.H. LimaS.A.C. Elucidating berberine’s therapeutic and photosensitizer potential through nanomedicine tools.Pharmaceutics2023159228210.3390/pharmaceutics1509228237765251
    [Google Scholar]
  49. BabalghithA.O. Al-kuraishyH.M. Al-GareebA.I. De WaardM. Al-HamashS.M. Jean-MarcS. NegmW.A. BatihaG.E.S. The role of berberine in Covid-19: Potential adjunct therapy.Inflammopharmacology20223062003201610.1007/s10787‑022‑01080‑136183284
    [Google Scholar]
  50. RaveraS. GhiottoF. TencaC. GugiattiE. SantamariaS. LeddaB. IbaticiA. CutronaG. MazzarelloA.N. BagnaraD. CardilloM. ZarconeD. DarzynkiewiczZ. CicconeE. FaisF. BrunoS. Berberine affects mitochondrial activity and cell growth of leukemic cells from chronic lymphocytic leukemia patients.Sci. Rep.20201011651910.1038/s41598‑020‑73594‑z33020573
    [Google Scholar]
  51. AlmatroodiS.A. AlsahliM.A. RahmaniA.H. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways.Molecules20222718588910.3390/molecules2718588936144625
    [Google Scholar]
  52. MuraliC. MudgilP. GanC.Y. TaraziH. El-AwadyR. AbdallaY. AminA. MaqsoodS. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma.Sci. Rep.2021111706210.1038/s41598‑021‑86391‑z33782460
    [Google Scholar]
  53. AbdallaY. AbdallaA. HamzaA.A. AminA. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation.Front. Pharmacol.20221277750010.3389/fphar.2021.77750035177980
    [Google Scholar]
  54. MathewB.T. TorkyY. AminA. MouradA.H.I. AyyashM.M. El-KeblawyA. Hilal-AlnaqbiA. AbuQamarS.F. El-TarabilyK.A. Halotolerant marine rhizosphere-competent actinobacteria promote Salicornia bigelovii growth and seed production using seawater irrigation.Front. Microbiol.20201155210.3389/fmicb.2020.0055232308651
    [Google Scholar]
  55. XieY. MuC. KazybayB. SunQ. KutzhanovaA. NazarbekG. XuN. NurtayL. WangQ. AminA. LiX. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery.Drug Deliv.20212812187219710.1080/10717544.2021.197742234662244
    [Google Scholar]
  56. Amr Amin Michael Buratovich The anti-cancer charm of flavonoids: A cup-of-tea will do!Recent Patents Anticancer Drug Discov.20072210911710.2174/15748920778083241418221056
    [Google Scholar]
  57. KhosraviM.R. RaeisiE. Heidari-SoureshjaniS. SherwinC.M.T. The survey of antitumor effects of bromelain on neoplastic breast cells: A systematic review.J.Herbm. Pharmacol.2024131101810.34172/jhp.2024.48078
    [Google Scholar]
  58. Sahar Rostamian RaeisiE. Heidari-SoureshjaniS. SherwinC.M.T. Neuroprotective effects of bromelain on the common neurodegenerative diseases: A systematic review.Neurochem. J.202317471572610.1134/S1819712423040256
    [Google Scholar]
  59. NeagM.A. MocanA. EcheverríaJ. PopR.M. BocsanC.I. CrişanG. BuzoianuA.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders.Front. Pharmacol.2018955710.3389/fphar.2018.0055730186157
    [Google Scholar]
  60. PubChemBethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 2353, Berberine.2004Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Berberine [cited 2023 Oct. 2]
  61. OchA. OchM. NowakR. PodgórskaD. PodgórskiR. Berberine, a herbal metabolite in the metabolic syndrome: The risk factors, course, and consequences of the disease.Molecules2022274135110.3390/molecules2704135135209140
    [Google Scholar]
  62. XiongR.G. HuangS.Y. WuS.X. ZhouD.D. YangZ.J. SaimaitiA. ZhaoC.N. ShangA. ZhangY.J. GanR.Y. LiH.B. Anticancer effects and mechanisms of berberine from medicinal herbs: An update review.Molecules20222714452310.3390/molecules2714452335889396
    [Google Scholar]
  63. AiX. YuP. PengL. LuoL. LiuJ. LiS. LaiX. LuanF. MengX. Berberine: A review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases.Front. Pharmacol.20211276265410.3389/fphar.2021.76265435370628
    [Google Scholar]
  64. SmithT.A. KirkpatrickD.R. SmithS. SmithT.K. PearsonT. KailasamA. HerrmannK.Z. SchubertJ. AgrawalD.K. Radioprotective agents to prevent cellular damage due to ionizing radiation.J. Transl. Med.201715123210.1186/s12967‑017‑1338‑x29121966
    [Google Scholar]
  65. MatsumotoC. Sekine-SuzukiE. NyuiM. UenoM. NakanishiI. OmiyaY. FukutakeM. KaseY. MatsumotoK. Analysis of the antioxidative function of the radioprotective Japanese traditional (Kampo) medicine, hangeshashinto, in an aqueous phase.J. Radiat. Res.201556466967710.1093/jrr/rrv02325883171
    [Google Scholar]
  66. KassabR.B. VasicekO. CizM. LojekA. PereckoT. The effects of berberine on reactive oxygen species production in human neutrophils and in cell-free assays.Interdiscip. Toxicol.2017102616510.1515/intox‑2017‑001030123039
    [Google Scholar]
  67. DavalliP. MarvertiG. LauriolaA. D’ArcaD. Targeting oxidatively induced DNA damage response in cancer: Opportunities for novel cancer therapies.Oxid. Med. Cell. Longev.2018201812110.1155/2018/238952329770165
    [Google Scholar]
  68. CherianD. PeterT. NarayananA. MadhavanS. AchammadaS. VynatG. Malondialdehyde as a marker of oxidative stress in periodontitis patients.J. Pharm. Bioallied Sci.2019116Suppl. 229710.4103/JPBS.JPBS_17_1931198357
    [Google Scholar]
  69. AverbeckD. Rodriguez-LafrasseC. Role of mitochondria in radiation responses: Epigenetic, metabolic, and signaling impacts.Int. J. Mol. Sci.202122201104710.3390/ijms22201104734681703
    [Google Scholar]
  70. HuangM.L.H. ChiangS. KalinowskiD.S. BaeD.H. SahniS. RichardsonD.R. The role of the antioxidant response in mitochondrial dysfunction in degenerative diseases: Cross-talk between antioxidant defense, autophagy, and apoptosis.Oxid. Med. Cell. Longev.2019201912610.1155/2019/639276331057691
    [Google Scholar]
  71. ZhuX. WeiY. YangB. YinX. GuoX. The mitohormetic response as part of the cytoprotection mechanism of berberine.Mol. Med.20202611010.1186/s10020‑020‑0136‑831973689
    [Google Scholar]
  72. LiZ. JiangT. LuQ. XuK. HeJ. XieL. ChenZ. ZhengZ. YeL. XuK. ZhangH. HuA. Berberine attenuated the cytotoxicity induced by t-BHP via inhibiting oxidative stress and mitochondria dysfunction in PC-12 cells.Cell. Mol. Neurobiol.202040458760210.1007/s10571‑019‑00756‑731828466
    [Google Scholar]
  73. YuanH. WangB. YeZ. LiS. Berberine alleviates the damage, oxidative stress and mitochondrial dysfunction of PC12 cells induced by high glucose by activating the KEAP1/Nrf2/ARE pathway.Mol. Biotechnol.202365101632164310.1007/s12033‑022‑00651‑536737555
    [Google Scholar]
  74. AnN. ZhangG. LiY. YuanC. YangF. ZhangL. GaoY. XingY. Promising antioxidative effect of berberine in cardiovascular diseases.Front. Pharmacol.20221386535310.3389/fphar.2022.86535335321323
    [Google Scholar]
  75. StoeckleinV.M. OsukaA. IshikawaS. LedererM.R. Wanke-JellinekL. LedererJ.A. Radiation exposure induces inflammasome pathway activation in immune cells.J. Immunol.201519431178118910.4049/jimmunol.130305125539818
    [Google Scholar]
  76. LiZ. GengY.N. JiangJ.D. KongW.J. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus.Evid. Based Complement. Alternat. Med.2014201411210.1155/2014/28926424669227
    [Google Scholar]
  77. LuY. ZhangX. HeJ. DaiZ. ShiP. LuY. ChangF. The effects of berberine on inflammatory markers in Chinese patients with metabolic syndrome and related disorders: A meta‑analysis of randomized controlled trials.Inflammopharmacology20223031063107710.1007/s10787‑022‑00976‑235352233
    [Google Scholar]
  78. WangX. FengS. DingN. HeY. LiC. LiM. DingX. DingH. LiJ. WuJ. LiY. Anti-inflammatory effects of berberine hydrochloride in an LPS-induced murine model of mastitis.Evid. Based Complement. Alternat. Med.201820181910.1155/2018/516431429849710
    [Google Scholar]
  79. MustafaA.I. EbrahimA.A. Abel HalimW.A.L. FawzyE. AbdouA.F. Serum soluble intercellular adhesion molecule-1 (sICAM-1): A novel potential biomarker in severe acne vulgaris.Indian J. Dermatol.202267551251736865840
    [Google Scholar]
  80. SanjabiS. ZenewiczL.A. KamanakaM. FlavellR.A. Anti-inflammatory and pro-inflammatory roles of TGF-β, IL-10, and IL-22 in immunity and autoimmunity.Curr. Opin. Pharmacol.20099444745310.1016/j.coph.2009.04.00819481975
    [Google Scholar]
  81. KimG.J. FiskumG.M. MorganW.F. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability.Cancer Res.20066621103771038310.1158/0008‑5472.CAN‑05‑303617079457
    [Google Scholar]
  82. XuZ. FengW. ShenQ. YuN. YuK. WangS. ChenZ. ShiodaS. GuoY. Rhizoma coptidis and berberine as a natural drug to combat aging and aging-related diseases via anti-oxidation and AMPK activation.Aging Dis.20178676077710.14336/AD.2016.062029344415
    [Google Scholar]
  83. AlhmoudJ.F. WoolleyJ.F. Al MoustafaA.E. MalkiM.I. DNA damage/repair management in cancers.Cancers2020124105010.3390/cancers1204105032340362
    [Google Scholar]
  84. WangZ. LiuY. XueY. HuH. YeJ. LiX. LuZ. MengF. LiangS. Berberine acts as a putative epigenetic modulator by affecting the histone code. Toxicol. in vitro.201636101710.1016/j.tiv.2016.06.00427311644
    [Google Scholar]
  85. AannizT. BouyahyaA. BalahbibA. El KadriK. KhalidA. MakeenH.A. AlhazmiH.A. El OmariN. ZaidY. WongR.S.Y. YeoC.I. GohB.H. BakrimS. Natural bioactive compounds targeting DNA methyltransferase enzymes in cancer: Mechanisms insights and efficiencies.Chem. Biol. Interact.202439211090710.1016/j.cbi.2024.11090738395253
    [Google Scholar]
  86. GaoX. WangJ. LiM. WangJ. LvJ. ZhangL. SunC. JiJ. YangW. ZhaoZ. MaoW. Berberine attenuates XRCC1‐mediated base excision repair and sensitizes breast cancer cells to the chemotherapeutic drugs.J. Cell. Mol. Med.201923106797680410.1111/jcmm.1456031338966
    [Google Scholar]
  87. LiL. GuanY. ChenX. YangJ. ChengY. DNA repair pathways in cancer therapy and resistance.Front. Pharmacol.20211162926610.3389/fphar.2020.62926633628188
    [Google Scholar]
  88. LiW. HuaB. SaudS.M. LinH. HouW. MatterM.S. JiaL. ColburnN.H. YoungM.R. Berberine regulates AMP‐activated protein kinase signaling pathways and inhibits colon tumorigenesis in mice.Mol. Carcinog.201554101096110910.1002/mc.2217924838344
    [Google Scholar]
  89. LiZ. JiangJ.D. KongW.J. Berberine up-regulates hepatic low-density lipoprotein receptor through Ras-independent but AMP-activated protein kinase-dependent Raf-1 activation.Biol. Pharm. Bull.201437111766177510.1248/bpb.b14‑0041225196457
    [Google Scholar]
  90. ZhangM. LiuJ. YuC. TangS. JiangG. ZhangJ. ZhangH. XuJ. XuW. Berberine regulation of cellular oxidative stress, apoptosis and autophagy by modulation of m6A mRNA Methylation through targeting the Camk1db/ERK pathway in zebrafish-hepatocytes.Antioxidants20221112237010.3390/antiox1112237036552577
    [Google Scholar]
  91. TianE. SharmaG. DaiC. Neuroprotective properties of berberine: Molecular mechanisms and clinical implications.Antioxidants20231210188310.3390/antiox1210188337891961
    [Google Scholar]
  92. WangY. LiuY. DuX. MaH. YaoJ. The anti-cancer mechanisms of berberine: A review.Cancer Manag. Res.20201269570210.2147/CMAR.S24232932099466
    [Google Scholar]
  93. ParkS.H. SungJ.H. KimE.J. ChungN. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines.Braz. J. Med. Biol. Res.201548211111910.1590/1414‑431x2014429325517919
    [Google Scholar]
  94. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.363522408567
    [Google Scholar]
  95. LiuZ. LiuQ. XuB. WuJ. GuoC. ZhuF. YangQ. GaoG. GongY. ShaoC. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage.Mutat. Res.20096621-2758310.1016/j.mrfmmm.2008.12.00919159633
    [Google Scholar]
  96. ZhongX.D. ChenL.J. XuX.Y. LiuY.J. TaoF. ZhuM.H. LiC.Y. ZhaoD. YangG.J. ChenJ. Berberine as a potential agent for breast cancer therapy.Front. Oncol.20221299377510.3389/fonc.2022.99377536119505
    [Google Scholar]
  97. PfefferC. SinghA. Apoptosis: A target for anticancer therapy.Int. J. Mol. Sci.201819244810.3390/ijms1902044829393886
    [Google Scholar]
  98. ChunY. KimJ. Autophagy: An essential degradation program for cellular homeostasis and life.Cells201871227810.3390/cells712027830572663
    [Google Scholar]
  99. TangL. WeiF. WuY. HeY. ShiL. XiongF. GongZ. GuoC. LiX. DengH. CaoK. ZhouM. XiangB. LiX. LiY. LiG. XiongW. ZengZ. Role of metabolism in cancer cell radioresistance and radiosensitization methods.J. Exp. Clin. Cancer Res.20183718710.1186/s13046‑018‑0758‑729688867
    [Google Scholar]
  100. HughesV.S. WigginsJ.M. SiemannD.W. Tumor oxygenation and cancer therapy-then and now.Br. J. Radiol.20199210932017095529513032
    [Google Scholar]
/content/journals/pra/10.2174/0115748928315442240624120104
Loading
/content/journals/pra/10.2174/0115748928315442240624120104
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): Berberine; cancer; radiation therapy; radioprotective; radiosensitize; radiotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test