Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Introduction

N6-methyladenosine (m6A) modifications of RNAs are associated with many cancer types. Nevertheless, the function of the m6A reader IGF2BP2 in oral squamous cell carcinoma (OSCC) has yet to be ascertained.

Aims

The objective of this investigation was to elucidate the role of IGF2BP2 in OSCC and delineate the associated mechanisms.

Methods

Elevated expression of IGF2BP2 was observed in OSCC, and this overexpression significantly correlated with adverse prognostic outcomes in patients with OSCC. analyses demonstrated that silencing of IGF2BP2 attenuated the proliferation, migration, and invasion capabilities of oral cancer cells while concurrently promoting apoptosis.

Results

experiments demonstrated that IGF2BP2 promoted OSCC growth. RNA-seq and m6A-seq were utilized to elucidate the downstream targets of IGF2BP2. Through bioinformatic analysis, we identified the long noncoding RNA (lncRNA) UCA1 as a target. IGF2BP2 was found to maintain the stability of UCA1 in an m6A-dependent manner by binding to m6A-modified UCA1 and plays an oncogenic role in OSCC through UCA1.

Conclusion

In conclusion, we identified IGF2BP2 as a prognostic biomarker of OSCC, and the IGF2BP2-UCA1 axis was found to promote OSCC progression and may perform as a novel therapeutic target.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928293003240817180839
2024-08-26
2025-12-05
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. PfisterD.G. SpencerS. AdelsteinD. AdkinsD. AnzaiY. BrizelD.M. BruceJ.Y. BusseP.M. CaudellJ.J. CmelakA.J. ColevasA.D. EiseleD.W. FentonM. FooteR.L. GallowayT. GillisonM.L. HaddadR.I. HicksW.L. HitchcockY.J. JimenoA. LeizmanD. MaghamiE. MellL.K. MittalB.B. PintoH.A. RidgeJ.A. RoccoJ.W. RodriguezC.P. ShahJ.P. WeberR.S. WeinsteinG. WitekM. WordenF. YomS.S. ZhenW. BurnsJ.L. DarlowS.D. Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202018787389810.6004/jnccn.2020.003132634781
    [Google Scholar]
  3. ZanoniD.K. MonteroP.H. MigliacciJ.C. ShahJ.P. WongR.J. GanlyI. PatelS.G. Survival outcomes after treatment of cancer of the oral cavity (1985–2015).Oral Oncol.20199011512110.1016/j.oraloncology.2019.02.00130846169
    [Google Scholar]
  4. MeyerK.D. JaffreyS.R. Rethinking m 6 A readers, writers, and erasers.Annu. Rev. Cell Dev. Biol.201733131934210.1146/annurev‑cellbio‑100616‑06075828759256
    [Google Scholar]
  5. DornL.E. LasmanL. ChenJ. XuX. HundT.J. MedvedovicM. HannaJ.H. van BerloJ.H. AccorneroF. The N 6 -methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy.Circulation2019139453354510.1161/CIRCULATIONAHA.118.03614630586742
    [Google Scholar]
  6. WangY. LiY. YueM. WangJ. KumarS. Wechsler-ReyaR.J. ZhangZ. OgawaY. KellisM. DuesterG. ZhaoJ.C. N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications.Nat. Neurosci.201821219520610.1038/s41593‑017‑0057‑129335608
    [Google Scholar]
  7. LiuJ. GaoM. HeJ. WuK. LinS. JinL. ChenY. LiuH. ShiJ. WangX. ChangL. LinY. ZhaoY.L. ZhangX. ZhangM. LuoG.Z. WuG. PeiD. WangJ. BaoX. ChenJ. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity.Nature2021591784932232610.1038/s41586‑021‑03313‑933658714
    [Google Scholar]
  8. HuangH. WengH. ChenJ. m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer.Cancer Cell202037327028810.1016/j.ccell.2020.02.00432183948
    [Google Scholar]
  9. WangT. KongS. TaoM. JuS. The potential role of RNA N6-methyladenosine in Cancer progression.Mol. Cancer20201918810.1186/s12943‑020‑01204‑732398132
    [Google Scholar]
  10. XuC. WangX. LiuK. RoundtreeI.A. TempelW. LiY. LuZ. HeC. MinJ. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain.Nat. Chem. Biol.2014101192792910.1038/nchembio.165425242552
    [Google Scholar]
  11. WangX. LuZ. GomezA. HonG.C. YueY. HanD. FuY. ParisienM. DaiQ. JiaG. RenB. PanT. HeC. N6-methyladenosine-dependent regulation of messenger RNA stability.Nature2014505748111712010.1038/nature1273024284625
    [Google Scholar]
  12. LiuT. WeiQ. JinJ. LuoQ. LiuY. YangY. ChengC. LiL. PiJ. SiY. XiaoH. LiL. RaoS. WangF. YuJ. YuJ. ZouD. YiP. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation.Nucleic Acids Res.20204873816383110.1093/nar/gkaa04831996915
    [Google Scholar]
  13. HuangH. WengH. SunW. QinX. ShiH. WuH. ZhaoB.S. MesquitaA. LiuC. YuanC.L. HuY.C. HüttelmaierS. SkibbeJ.R. SuR. DengX. DongL. SunM. LiC. NachtergaeleS. WangY. HuC. FerchenK. GreisK.D. JiangX. WeiM. QuL. GuanJ.L. HeC. YangJ. ChenJ. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation.Nat. Cell Biol.201820328529510.1038/s41556‑018‑0045‑z29476152
    [Google Scholar]
  14. MüllerS. GlaßM. SinghA.K. HaaseJ. BleyN. FuchsT. LedererM. DahlA. HuangH. ChenJ. PosernG. HüttelmaierS. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner.Nucleic Acids Res.201947137539010.1093/nar/gky101230371874
    [Google Scholar]
  15. HuX. PengW.X. ZhouH. JiangJ. ZhouX. HuangD. MoY.Y. YangL. IGF2BP2 regulates DANCR by serving as an N6-methyladenosine reader.Cell Death Differ.20202761782179410.1038/s41418‑019‑0461‑z31804607
    [Google Scholar]
  16. WangQ. ChenC. DingQ. ZhaoY. WangZ. ChenJ. JiangZ. ZhangY. XuG. ZhangJ. ZhouJ. SunB. ZouX. WangS. METTL3-mediated m 6 A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance.Gut20206971193120510.1136/gutjnl‑2019‑31963931582403
    [Google Scholar]
  17. WangY. LuJ.H. WuQ.N. JinY. WangD.S. ChenY.X. LiuJ. LuoX.J. MengQ. PuH.Y. WangY.N. HuP.S. LiuZ.X. ZengZ.L. ZhaoQ. DengR. ZhuX.F. JuH.Q. XuR.H. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer.Mol. Cancer201918117410.1186/s12943‑019‑1105‑031791342
    [Google Scholar]
  18. HannifordD. Ulloa-MoralesA. KarzA. Berzoti-CoelhoM.G. MoubarakR.S. Sánchez-SendraB. KloetgenA. DavalosV. ImigJ. WuP. VasudevarajaV. ArgibayD. LiljaK. TabaglioT. MonteagudoC. GuccioneE. TsirigosA. OsmanI. AifantisI. HernandoE. Epigenetic silencing of CDR1as drives IGF2BP3-mediated melanoma invasion and metastasis.Cancer Cell20203715570.e1510.1016/j.ccell.2019.12.00731935372
    [Google Scholar]
  19. LimL.J. WongS.Y.S. HuangF. LimS. ChongS.S. OoiL.L. KonO.L. LeeC.G. Roles and regulation of long noncoding RNAs in hepatocellular carcinoma.Cancer Res.201979205131513910.1158/0008‑5472.CAN‑19‑025531337653
    [Google Scholar]
  20. JiangX. LiuB. NieZ. DuanL. XiongQ. JinZ. YangC. ChenY. The role of m6A modification in the biological functions and diseases.Signal Transduct. Target. Ther.2021617410.1038/s41392‑020‑00450‑x33611339
    [Google Scholar]
  21. NielsenJ. ChristiansenJ. Lykke-AndersenJ. JohnsenA.H. WewerU.M. NielsenF.C. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development.Mol. Cell. Biol.19991921262127010.1128/MCB.19.2.12629891060
    [Google Scholar]
  22. LundeB.M. MooreC. VaraniG. RNA-binding proteins: modular design for efficient function.Nat. Rev. Mol. Cell Biol.20078647949010.1038/nrm217817473849
    [Google Scholar]
  23. BellJ.L. TurlapatiR. LiuT. SchulteJ.H. HüttelmaierS. IGF2BP1 harbors prognostic significance by gene gain and diverse expression in neuroblastoma.J. Clin. Oncol.201533111285129310.1200/JCO.2014.55.988025753434
    [Google Scholar]
  24. HsuK-F. ShenM-R. HuangY-F. ChengY-M. LinS-H. ChowN-H. ChengS-W. ChouC-Y. HoC-L. Overexpression of the RNA-binding proteins Lin28B and IGF2BP3 (IMP3) is associated with chemoresistance and poor disease outcome in ovarian cancer.Br. J. Cancer2015113341442410.1038/bjc.2015.25426158423
    [Google Scholar]
  25. DaiN. The diverse functions of IMP2/IGF2BP2 in metabolism.Trends Endocrinol. Metab.202031967067910.1016/j.tem.2020.05.00732586768
    [Google Scholar]
  26. LiB. ZhuL. LuC. WangC. WangH. JinH. MaX. ChengZ. YuC. WangS. ZuoQ. ZhouY. WangJ. YangC. LvY. JiangL. QinW. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity.Nat. Commun.202112129510.1038/s41467‑020‑20527‑z33436560
    [Google Scholar]
  27. PuJ. WangJ. QinZ. WangA. ZhangY. WuX. WuY. LiW. XuZ. LuY. TangQ. WeiH. IGF2BP2 promotes liver cancer growth through an m6A-FEN1-dependent mechanism.Front. Oncol.20201057881610.3389/fonc.2020.57881633224879
    [Google Scholar]
  28. WangX. XuH. ZhouZ. GuoS. ChenR. IGF2BP2 maybe a novel prognostic biomarker in oral squamous cell carcinoma.Biosci. Rep.2022422BSR2021211910.1042/BSR2021211935129592
    [Google Scholar]
  29. XuK. DaiX. WuJ. WenK. N6-methyladenosine (m6A) reader IGF2BP2 stabilizes HK2 stability to accelerate the Warburg effect of oral squamous cell carcinoma progression.J. Cancer Res. Clin. Oncol.2022148123375338410.1007/s00432‑022‑04093‑z35763110
    [Google Scholar]
  30. LinC.W. YangW.E. SuC.W. LuH.J. SuS.C. YangS.F. IGF2BP2 promotes cell invasion and epithelial-mesenchymal transition through Src-mediated upregulation of EREG in oral cancer.Int. J. Biol. Sci.202420381883010.7150/ijbs.9178638250159
    [Google Scholar]
  31. WangX.S. ZhangZ. WangH.C. CaiJ.L. XuQ.W. LiM.Q. ChenY.C. QianX.P. LuT.J. YuL.Z. ZhangY. XinD.Q. NaY.Q. ChenW.F. Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma.Clin. Cancer Res.200612164851485810.1158/1078‑0432.CCR‑06‑013416914571
    [Google Scholar]
  32. WangC.J. ZhuC.C. XuJ. WangM. ZhaoW.Y. LiuQ. ZhaoG. ZhangZ.Z. The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs.Mol. Cancer201918111510.1186/s12943‑019‑1032‑031272462
    [Google Scholar]
  33. WangW. HuW. WangY. AnY. SongL. ShangP. YueZ. Long non-coding RNA UCA1 promotes malignant phenotypes of renal cancer cells by modulating the miR-182-5p/DLL4 axis as a ceRNA.Mol. Cancer20201911810.1186/s12943‑020‑1132‑x31996265
    [Google Scholar]
  34. LuanY. LiX. LuanY. ZhaoR. LiY. LiuL. HaoY. Oleg VladimirB. JiaL. Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 axis.Mol. Ther. Nucleic Acids20201979080310.1016/j.omtn.2019.12.00931955010
    [Google Scholar]
  35. GuoZ. WangX. YangY. ChenW. ZhangK. TengB. HuangC. ZhaoQ. QiuZ. Hypoxic tumor-derived exosomal long noncoding RNA UCA1 promotes angiogenesis via miR-96-5p/AMOTL2 in pancreatic cancer.Mol. Ther. Nucleic Acids20202217919510.1016/j.omtn.2020.08.02132942233
    [Google Scholar]
  36. XiongQ. ZhangY. Small RNA modifications: regulatory molecules and potential applications.J. Hematol. Oncol.20231616410.1186/s13045‑023‑01466‑w37349851
    [Google Scholar]
  37. WangZ.Q. CaiQ. HuL. HeC.Y. LiJ.F. QuanZ.W. LiuB.Y. LiC. ZhuZ.G. Long noncoding RNA UCA1 induced by SP1 promotes cell proliferation via recruiting EZH2 and activating AKT pathway in gastric cancer.Cell Death Dis.201786e283910.1038/cddis.2017.14328569779
    [Google Scholar]
  38. ZhangM. ZhaoY. ZhangY. WangD. GuS. FengW. PengW. GongA. XuM. LncRNA UCA1 promotes migration and invasion in pancreatic cancer cells via the Hippo pathway.Biochim. Biophys. Acta Mol. Basis Dis.2018186455 Pt A1770178210.1016/j.bbadis.2018.03.00529510195
    [Google Scholar]
  39. YangX. ZhangS. HeC. XueP. ZhangL. HeZ. ZangL. FengB. SunJ. ZhengM. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST.Mol. Cancer20201914610.1186/s12943‑020‑1146‑432111213
    [Google Scholar]
  40. GuoX. LiK. JiangW. HuY. XiaoW. HuangY. FengY. PanQ. WanR. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner.Mol. Cancer20201919110.1186/s12943‑020‑01158‑w32429928
    [Google Scholar]
  41. LiT. HuP.S. ZuoZ. LinJ.F. LiX. WuQ.N. ChenZ.H. ZengZ.L. WangF. ZhengJ. ChenD. LiB. KangT.B. XieD. LinD. JuH.Q. XuR.H. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma.Mol. Cancer201918111210.1186/s12943‑019‑1038‑731230592
    [Google Scholar]
  42. YoonJ.H. KimJ. GorospeM. Long noncoding RNA turnover.Biochimie2015117152110.1016/j.biochi.2015.03.00125769416
    [Google Scholar]
/content/journals/pra/10.2174/0115748928293003240817180839
Loading
/content/journals/pra/10.2174/0115748928293003240817180839
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): IGF2BP2; m6A-modified; N6-methyladenosine; OSCC; RNA; UCA1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test