Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Cancer stem cells (CSCs) are a sub-population of cancer cells present in many kinds of malignant tumors that have the potential for self-proliferation and differentiation. These cells have been demonstrated as the main cause of tumor recurrence and metastasis. Strong evidence indicates that CSCs prefer reprogrammed fatty acid β-oxidation over oxidative phosphorylation for sustaining energy supply. Although mitochondrial dynamics participate in the regulation of cancer stemness, the correlation between the inhibition of mitochondrial fission and the regulation of lipid metabolism in CSCs remains poorly understood.

Methods

The human tongue squamous cell carcinoma (TSCC) cell lines CAL27 and SAS were used to obtain the CSCs by 3D Spheroid Culture. Then, western blot methods, RT-PCR and flow cytometry analysis were used to identify the TSCC CSCs. Next, Immunofluorescence method, transmission electron microscopy detection and western blot methods were used to evaluate the mitochondrial morphology and the quantity of lipid droplets (LDs). Lastly, lipidomic analysis was applied to explored the lipidomic alterations of TSCC CSCs with different mitochondrial morphology.

Results

Here, we show that the quantity of lipid droplets containing intracellular triglyceride (TG) can be decreased by regulating mitochondrial morphology. Lipidomic analysis using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) also compared alterations in lipid metabolites in tongue squamous cell carcinoma (TSCC) CSCs, TSCC cells (non-CSCs), and CSCs with different mitochondrial morphology. Discriminant lipids of statistical significance were successfully annotated, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), sphingomyelins (SMs), triacylglycerols (TGs), phosphatidylglycerols (PGs), phosphatidylserines (PSs), lysophosphatidylcholines (LPCs), and lysophosphatidylethanolamines (LPEs).

Conclusion

This study provides a deeper insight into the alterations of lipid metabolism associated with TSCC CSCs, non-CSCs and CSCs regulated by mitochondrial dynamics and thus serves as a guide toward novel targeted therapies.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928275772231226063458
2024-01-16
2025-09-21
Loading full text...

Full text loading...

References

  1. XiaC. DongX. LiH. Cancer statistics in china and united states, 2022: Profiles, trends, and determinants.Chin. Med. J.2022135558459010.1097/CM9.0000000000002108 35143424
    [Google Scholar]
  2. CaoM. ShiE. WangH. Personalized targeted therapeutic strategies against oral squamous cell carcinoma. An evidence-based review of literature.Int. J. Nanomedicine2022174293430610.2147/IJN.S377816 36134201
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  4. BeraR.N. TandonS. SinghA.K. Management and outcome of locally advanced oral squamous cell carcinoma.Natl. J. Maxillofac. Surg.202314218518910.4103/njms.njms_125_22 37661995
    [Google Scholar]
  5. AlmangushA. MäkitieA.A. TriantafyllouA. Staging and grading of oral squamous cell carcinoma: An update.Oral Oncol.202010710479910.1016/j.oraloncology.2020.104799 32446214
    [Google Scholar]
  6. BugshanA. FarooqI. Oral squamous cell carcinoma: Metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis.F1000 Res.2020922910.12688/f1000research.22941.1 32399208
    [Google Scholar]
  7. GibsonM.K. LiY. MurphyB. Randomized phase III evaluation of cisplatin plus fluorouracil versus cisplatin plus paclitaxel in advanced head and neck cancer (E1395): an intergroup trial of the Eastern Cooperative Oncology Group.J. Clin. Oncol.200523153562356710.1200/JCO.2005.01.057 15908667
    [Google Scholar]
  8. GuptaA.K. McKennaW.G. WeberC.N. Local recurrence in head and neck cancer: Relationship to radiation resistance and signal transduction.Clin. Cancer Res.200283885892 11895923
    [Google Scholar]
  9. OvergaardJ. Hypoxic radiosensitization: Adored and ignored.J. Clin. Oncol.200725264066407410.1200/JCO.2007.12.7878 17827455
    [Google Scholar]
  10. GovindasamyR. VenkidasamyB. ThiruvengadamM. Current strategies for overcoming smoking addiction: A major cause of oral cancer.Recent Pat Anticancer Drug Discov2023
    [Google Scholar]
  11. WangC. LiY. JiaL. CD276 expression enables squamous cell carcinoma stem cells to evade immune surveillance.Cell Stem Cell202128915971613.e710.1016/j.stem.2021.04.011 33945793
    [Google Scholar]
  12. NowellP.C. The clonal evolution of tumor cell populations.Science19761944260232810.1126/science.959840 959840
    [Google Scholar]
  13. ShenoudaS. KulkarniK. AbuetabhY. SergiC. Cancer stem cells and their management in cancer therapy.Recent Patents Anticancer Drug Discov.202015321222710.2174/1574892815666200713145931 32660407
    [Google Scholar]
  14. HittelmanW.N. LiaoY. WangL. MilasL. Are cancer stem cells radioresistant?Future Oncol.20106101563157610.2217/fon.10.121 21062156
    [Google Scholar]
  15. DasM. LawS. Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence.Int. J. Biochem. Cell Biol.201810311512410.1016/j.biocel.2018.08.011 30153480
    [Google Scholar]
  16. LiH. FengZ. HeM.L. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells.Theranostics202010167053706910.7150/thno.41388 32641978
    [Google Scholar]
  17. LiJ. CondelloS. Thomes-PepinJ. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells.Cell Stem Cell2017203303314.e510.1016/j.stem.2016.11.004 28041894
    [Google Scholar]
  18. ChenC.L. Uthaya KumarD.B. PunjV. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism.Cell Metab.201623120621910.1016/j.cmet.2015.12.004 26724859
    [Google Scholar]
  19. YiM. LiJ. ChenS. Emerging role of lipid metabolism alterations in Cancer stem cells.J. Exp. Clin. Cancer Res.201837111810.1186/s13046‑018‑0784‑5 29907133
    [Google Scholar]
  20. Corominas-FajaB. CuyàsE. GumuzioJ. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells.Oncotarget20145188306831610.18632/oncotarget.2059 25246709
    [Google Scholar]
  21. GiampietriC. PetrungaroS. CordellaM. Lipid storage and autophagy in melanoma cancer cells.Int. J. Mol. Sci.2017186127110.3390/ijms18061271 28617309
    [Google Scholar]
  22. PascualG. AvgustinovaA. MejettaS. Targeting metastasis-initiating cells through the fatty acid receptor CD36.Nature20175417635414510.1038/nature20791 27974793
    [Google Scholar]
  23. RakS. De ZanT. StefuljJ. KosovićM. GamulinO. OsmakM. FTIR spectroscopy reveals lipid droplets in drug resistant laryngeal carcinoma cells through detection of increased ester vibrational bands intensity.Analyst2014139133407341510.1039/C4AN00412D 24834449
    [Google Scholar]
  24. MitraR. ChaoO. UrasakiY. GoodmanO.B. LeT.T. Detection of lipid-rich prostate circulating tumour cells with coherent anti-stokes raman scattering microscopy.BMC Cancer2012121540010.1186/1471‑2407‑12‑540 23171028
    [Google Scholar]
  25. YueS. LiJ. LeeS.Y. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness.Cell Metab.201419339340610.1016/j.cmet.2014.01.019 24606897
    [Google Scholar]
  26. TirinatoL. LiberaleC. Di FrancoS. Lipid droplets: A new player in colorectal cancer stem cells unveiled by spectroscopic imaging.Stem Cells2015331354410.1002/stem.1837 25186497
    [Google Scholar]
  27. ArcherS.L. LongoD.L. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases.N. Engl. J. Med.2013369232236225110.1056/NEJMra1215233 24304053
    [Google Scholar]
  28. XieQ. WuQ. HorbinskiC.M. Mitochondrial control by DRP1 in brain tumor initiating cells.Nat. Neurosci.201518450151010.1038/nn.3960 25730670
    [Google Scholar]
  29. BahatA. GoldmanA. ZaltsmanY. MTCH2-mediated mitochondrial fusion drives exit from naïve pluripotency in embryonic stem cells.Nat. Commun.201891513210.1038/s41467‑018‑07519‑w 30510213
    [Google Scholar]
  30. ZhouT.J. ZhangS.L. HeC.Y. Downregulation of mitochondrial cyclooxygenase-2 inhibits the stemness of nasopharyngeal carcinoma by decreasing the activity of dynamin-related-protein 1.Theranostics2017751389140610.7150/thno.17647 28435473
    [Google Scholar]
  31. SonM.Y. ChoiH. HanY.M. Sook ChoY. Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency.Stem Cells201331112374238710.1002/stem.1509 23939908
    [Google Scholar]
  32. Targeting mitochondrial fission through mdivi-1 derivatives. US20210137925A12021
    [Google Scholar]
  33. RamboldA.S. CohenS. Lippincott-SchwartzJ. Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics.Dev. Cell201532667869210.1016/j.devcel.2015.01.029 25752962
    [Google Scholar]
  34. KitaT. NishidaH. ShibataH. NiimiS. HigutiT. ArakakiN. Possible role of mitochondrial remodelling on cellular triacylglycerol accumulation.J. Biochem.2009146678779610.1093/jb/mvp124 19671539
    [Google Scholar]
  35. SuZ. LiuD. ChenL. CD44-targeted magnetic nanoparticles kill head and neck squamous cell carcinoma stem cells in an alternating magnetic field.Int. J. Nanomedicine2019147549756010.2147/IJN.S215087 31571863
    [Google Scholar]
  36. LimY.C. OhS.Y. ChaY.Y. KimS.H. JinX. KimH. Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas.Oral Oncol.2011472839110.1016/j.oraloncology.2010.11.011 21167769
    [Google Scholar]
  37. QiuX. WangZ. LiY. MiaoY. RenY. LuanY. Characterization of sphere-forming cells with stem-like properties from the small cell lung cancer cell line H446.Cancer Lett.2012323216117010.1016/j.canlet.2012.04.004 22521544
    [Google Scholar]
  38. GibbsC.P. KukekovV.G. ReithJ.D. Stem-like cells in bone sarcomas: Implications for tumorigenesis.Neoplasia200571196797610.1593/neo.05394 16331882
    [Google Scholar]
  39. WangL. MezencevR. BowenN.J. MatyuninaL.V. McDonaldJ.F. Isolation and characterization of stem-like cells from a human ovarian cancer cell line.Mol. Cell. Biochem.20123631-225726810.1007/s11010‑011‑1178‑6 22160925
    [Google Scholar]
  40. DattiloR. Pyrvinium pamoate induces death of triple-negative breast cancer stem-like cells and reduces metastases through effects on lipid anabolism.In: Cancer Research20191184
    [Google Scholar]
  41. CianciosiD. Forbes-HernándezT.Y. AnsaryJ. Phenolic compounds from Mediterranean foods as nutraceutical tools for the prevention of cancer: The effect of honey polyphenols on colorectal cancer stem-like cells from spheroids.Food Chem.202032512688110.1016/j.foodchem.2020.126881 32387951
    [Google Scholar]
  42. WangX. ZhouW. LiX. Graphene oxide suppresses the growth and malignancy of glioblastoma stem cell-like spheroids via epigenetic mechanisms.J. Transl. Med.202018120010.1186/s12967‑020‑02359‑z 32410622
    [Google Scholar]
  43. ZhaoX. MaL. DaiL. TNF α promotes the malignant transformation of intestinal stem cells through the NF κB and Wnt/β catenin signaling pathways.Oncol. Rep.202044257758810.3892/or.2020.7631 32627006
    [Google Scholar]
  44. LinJ. YoonC. LiP. CDK5RAP3 as tumour suppressor negatively regulates self-renewal and invasion and is regulated by ERK1/2 signalling in human gastric cancer.Br. J. Cancer202012371131114410.1038/s41416‑020‑0963‑y 32606358
    [Google Scholar]
  45. WangJ.X. JiaoJ.Q. LiQ. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1.Nat. Med.2011171717810.1038/nm.2282 21186368
    [Google Scholar]
  46. KerkS.A. FinkelK.A. PearsonA.T. 5T4-targeted therapy ablates cancer stem cells and prevents recurrence of head and neck squamous cell carcinoma.Clin. Cancer Res.201723102516252710.1158/1078‑0432.CCR‑16‑1834 27780858
    [Google Scholar]
  47. KrishnamurthyS. DongZ. VodopyanovD. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells.Cancer Res.201070239969997810.1158/0008‑5472.CAN‑10‑1712 21098716
    [Google Scholar]
  48. ClayM.R. TaborM. OwenJ.H. Single‐marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase.Head Neck20103291195120110.1002/hed.21315 20073073
    [Google Scholar]
  49. QiW. FitchevP.S. CornwellM.L. FOXO3 growth inhibition of colonic cells is dependent on intraepithelial lipid droplet density.J. Biol. Chem.201328823162741628110.1074/jbc.M113.470617 23603907
    [Google Scholar]
  50. CotteA.K. AiresV. FredonM. Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance.Nat. Commun.20189132210.1038/s41467‑017‑02732‑5 29358673
    [Google Scholar]
  51. BoschM. Sánchez-ÁlvarezM. FajardoA. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense.Science20203706514eaay808510.1126/science.aay8085 33060333
    [Google Scholar]
  52. IgalR.A. Stearoyl CoA desaturase-1: New insights into a central regulator of cancer metabolism.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20161861121865188010.1016/j.bbalip.2016.09.009 27639967
    [Google Scholar]
  53. PandeyP.R. XingF. SharmaS. Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer.Oncogene201332425111512210.1038/onc.2012.519 23208501
    [Google Scholar]
  54. BrandiJ. DandoI. PozzaE.D. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways.J. Proteomics201715031032210.1016/j.jprot.2016.10.002 27746256
    [Google Scholar]
  55. TanZ. XiaoL. TangM. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy.Theranostics2018892329234710.7150/thno.21451 29721083
    [Google Scholar]
  56. HaleJ.S. OtvosB. SinyukM. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression.Stem Cells20143271746175810.1002/stem.1716 24737733
    [Google Scholar]
  57. WangC.W. Lipid droplets, lipophagy, and beyond.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20161861879380510.1016/j.bbalip.2015.12.010 26713677
    [Google Scholar]
  58. HultschS. KankainenM. PaavolainenL. Association of tamoxifen resistance and lipid reprogramming in breast cancer.BMC Cancer201818185010.1186/s12885‑018‑4757‑z 30143015
    [Google Scholar]
  59. LeeH.J. LiJ. VickmanR.E. Cholesterol esterification inhibition suppresses prostate cancer metastasis by impairing the wnt/β-catenin pathway.Mol. Cancer Res.201816697498510.1158/1541‑7786.MCR‑17‑0665 29545473
    [Google Scholar]
  60. SenkalC.E. SalamaM.F. SniderA.J. Ceramide is metabolized to acylceramide and stored in lipid droplets.Cell Metab.201725368669710.1016/j.cmet.2017.02.010 28273483
    [Google Scholar]
  61. CruzA.L.S. BarretoE.A. FazoliniN.P.B. ViolaJ.P.B. BozzaP.T. Lipid droplets: Platforms with multiple functions in cancer hallmarks.Cell Death Dis.202011210510.1038/s41419‑020‑2297‑3 32029741
    [Google Scholar]
  62. McIntoshA.L. StoreyS.M. AtshavesB.P. Intracellular lipid droplets contain dynamic pools of sphingomyelin: ADRP binds phospholipids with high affinity.Lipids201045646547710.1007/s11745‑010‑3424‑1 20473576
    [Google Scholar]
  63. BlouinC.M. Le LayS. EberlA. Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects.J. Lipid Res.201051594595610.1194/jlr.M001016 19965594
    [Google Scholar]
  64. El-HafidiM. CorreaF. ZazuetaC. Mitochondrial dysfunction in metabolic and cardiovascular diseases associated with cardiolipin remodeling.Biochim. Biophys. Acta Mol. Basis Dis.20201866616574410.1016/j.bbadis.2020.165744 32105822
    [Google Scholar]
  65. KiebishM.A. HanX. ChengH. ChuangJ.H. SeyfriedT.N. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer.J. Lipid Res.200849122545255610.1194/jlr.M800319‑JLR200 18703489
    [Google Scholar]
  66. TeraoM. GoracciL. CelestiniV. Role of mitochondria and cardiolipins in growth inhibition of breast cancer cells by retinoic acid.J. Exp. Clin. Cancer Res.201938143610.1186/s13046‑019‑1438‑y
    [Google Scholar]
  67. DeshmukhA. DeshpandeK. ArfusoF. NewsholmeP. DharmarajanA. Cancer stem cell metabolism: A potential target for cancer therapy.Mol. Cancer201615169910.1186/s12943‑016‑0555‑x 27825361
    [Google Scholar]
  68. NairS. SobotkaK.S. JoshiP. Lipopolysaccharide‐induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo.Glia20196761047106110.1002/glia.23587 30637805
    [Google Scholar]
  69. HoqueA. SivakumaranP. BondS.T. Mitochondrial fission protein Drp1 inhibition promotes cardiac mesodermal differentiation of human pluripotent stem cells.Cell Death Discov.2018413910.1038/s41420‑018‑0042‑9 29531836
    [Google Scholar]
  70. TranQ. JungJ.H. ParkJ. S6 kinase 1 plays a key role in mitochondrial morphology and cellular energy flow.Cell. Signal.201848132410.1016/j.cellsig.2018.04.002 29673648
    [Google Scholar]
  71. PennoA. HackenbroichG. ThieleC. Phospholipids and lipid droplets.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20131831358959410.1016/j.bbalip.2012.12.001
    [Google Scholar]
  72. HoffmannP.R. deCathelineauA.M. OgdenC.A. Phosphatidylserine (PS) induces PS receptor–mediated macropinocytosis and promotes clearance of apoptotic cells.J. Cell Biol.2001155464966010.1083/jcb.200108080 11706053
    [Google Scholar]
  73. SeneviratneA.K. XuM. HenaoJ.J.A. The mitochondrial transacylase, tafazzin, regulates aml stemness by modulating intracellular levels of phospholipids.Cell Stem Cell2019244621636.e1610.1016/j.stem.2019.02.020 30930145
    [Google Scholar]
  74. XuC. ZhengZ. FangL. Phosphatidylserine enhances osteogenic differentiation in human mesenchymal stem cells via ERK signal pathways.Mater. Sci. Eng. C20133331783178810.1016/j.msec.2013.01.005 23827636
    [Google Scholar]
  75. KeckesovaZ. DonaherJ.L. De CockJ. LACTB is a tumour suppressor that modulates lipid metabolism and cell state.Nature2017543764768168610.1038/nature21408 28329758
    [Google Scholar]
  76. TassevaG. BaiH.D. DavidescuM. HaromyA. MichelakisE. VanceJ.E. Phosphatidylethanolamine deficiency in mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology.J. Biol. Chem.201328864158417310.1074/jbc.M112.434183 23250747
    [Google Scholar]
  77. RiekhofW.R. VoelkerD.R. Uptake and utilization of lyso-phosphatidylethanolamine by Saccharomyces cerevisiae.J. Biol. Chem.200628148365883659610.1074/jbc.M608851200 17015438
    [Google Scholar]
  78. AokiJ. TairaA. TakanezawaY. Serum lysophosphatidic acid is produced through diverse phospholipase pathways.J. Biol. Chem.200227750487374874410.1074/jbc.M206812200 12354767
    [Google Scholar]
  79. JonasA. Lecithin cholesterol acyltransferase.Biochim. Biophys. Acta Mol. Cell Biol. Lipids200015291-324525610.1016/S1388‑1981(00)00153‑0
    [Google Scholar]
/content/journals/pra/10.2174/0115748928275772231226063458
Loading
/content/journals/pra/10.2174/0115748928275772231226063458
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test