Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Chronic constipation and irritable bowel syndrome (IBS) manifest as prevalent gastrointestinal disorders, while digestive tract cancers (DTCs) present formidable challenges to global well-being. However, extant observational studies proffer uncertain insights into potential causal relationships of constipation and IBS with susceptibility to DTCs.

Methods

We executed Mendelian randomization (MR) analysis to establish causal connections between these conditions and seven distinct categories of DTCs, including colorectal carcinoma (CRC), hepatocellular cancer (HCC), esophageal malignancy (ESCA), pancreatic adenocarcinoma (PAAD), biliary tract carcinoma (BTCs), gastric carcinoma (GC), and small intestine neoplasm (SIC). Leveraging instrumental variables (IVs) obtained from GWAS data of the FinnGen database, we employed a range of analytical methodologies, including inverse-variance weighting multiplicative random effects (IVW_MRE), inverse-variance weighting fixed effects (IVW_FE), maximum likelihood (ML), weighted median (WM), MR‒Egger regression, and the MR-PRESSO test.

Results

We observed a substantial linkage between genetically predicted constipation and increased vulnerability to PAAD (OR = 2.29, 95% CI: 1.422-3.69, = 0.001) the IVW method. Following the removal of outlier SNPs through MR-PRESSO, genetically predicted IBS was affiliated with an increased risk of CRC (OR = 1.17, 95% CI: 1-1.37, = 0.05). Nonetheless, decisive causal correlations of constipation or IBS with other DTCs remain elusive.

Conclusion

In summary, genetically predicted constipation was associated with an augmented PAAD risk, and IBS was associated with an increased CRC susceptibility within European cohorts, in agreement with some observational studies. Nevertheless, the causal associations of constipation and IBS with other DTCs remain inconclusive.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928283326231229061358
2024-01-11
2025-09-21
Loading full text...

Full text loading...

References

  1. AzizI. WhiteheadW.E. PalssonO.S. TörnblomH. SimrénM. An approach to the diagnosis and management of Rome IV functional disorders of chronic constipation.Expert Rev. Gastroenterol. Hepatol.2020141394610.1080/17474124.2020.1708718 31893959
    [Google Scholar]
  2. ParthasarathyG. ChenJ. ChenX. Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic constipation.Gastroenterology20161502367379.e110.1053/j.gastro.2015.10.005 26460205
    [Google Scholar]
  3. MarklandA.D. PalssonO. GoodeP.S. BurgioK.L. Busby-WhiteheadJ. WhiteheadW.E. Association of low dietary intake of fiber and liquids with constipation: Evidence from the national health and nutrition examination survey.Am. J. Gastroenterol.2013108579680310.1038/ajg.2013.73 23567352
    [Google Scholar]
  4. MazlynM.M. NagarajahL.H.L. FatimahA. NorimahA.K. GohK.L. Stool patterns of Malaysian adults with functional constipation: Association with diet and physical activity.Malays. J. Nutr.20131915364 24800384
    [Google Scholar]
  5. ChanA.O.O. ChengC. HuiW-M. Differing coping mechanisms, stress level and anorectal physiology in patients with functional constipation.World J. Gastroenterol.200511345362536610.3748/wjg.v11.i34.5362 16149147
    [Google Scholar]
  6. LacyB.E. MearinF. ChangL. Bowel disorders.Gastroenterology2016150613931407.e510.1053/j.gastro.2016.02.031 27144627
    [Google Scholar]
  7. ChongP.P. ChinV.K. LooiC.Y. WongW.F. MadhavanP. YongV.C. The microbiome and irritable bowel syndrome – A review on the pathophysiology, current research and future therapy.Front. Microbiol.201910113610.3389/fmicb.2019.01136 31244784
    [Google Scholar]
  8. ÖhmanL. SimrénM. Pathogenesis of IBS: Role of inflammation, immunity and neuroimmune interactions.Nat. Rev. Gastroenterol. Hepatol.20107316317310.1038/nrgastro.2010.4 20101257
    [Google Scholar]
  9. BarbaraG. BarbaroM.R. FuschiD. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier.Front. Nutr.2021871835610.3389/fnut.2021.718356 34589512
    [Google Scholar]
  10. BensonA.B. VenookA.P. Al-HawaryM.M. Small bowel adenocarcinoma, version 1.2020, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.20191791109113310.6004/jnccn.2019.0043 31487687
    [Google Scholar]
  11. BensonA.B. D’AngelicaM.I. AbbottD.E. Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202119554156510.6004/jnccn.2021.0022 34030131
    [Google Scholar]
  12. AjaniJ.A. D’AmicoT.A. BentremD.J. Esophageal and esophagogastric junction cancers, version 2.2019, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.201917785588310.6004/jnccn.2019.0033 31319389
    [Google Scholar]
  13. BensonA.B.III VenookA.P. Al-HawaryM.M. Rectal cancer, version 2.2018, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.201816787490110.6004/jnccn.2018.0061 30006429
    [Google Scholar]
  14. TemperoM.A. MalafaM.P. Al-HawaryM. Pancreatic adenocarcinoma, version 2.2021, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202119443945710.6004/jnccn.2021.0017 33845462
    [Google Scholar]
  15. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  16. ArnoldM. AbnetC.C. NealeR.E. Global burden of 5 major types of gastrointestinal cancer.Gastroenterology20201591335349.e1510.1053/j.gastro.2020.02.068 32247694
    [Google Scholar]
  17. Lofton-DayC.E. SledziewskiA.Z. LescheR. Methods and nucleic acids for analyses of cellular proliferative disorders US11186879B2.United StatesEpigenomics AG2021
    [Google Scholar]
  18. AhlquistD.A. TaylorW.R. KisielJ.B. Detecting esophageal disorders US11104960B2 Mayo foundation for medical education and research.United StatesExact Sciences Corp.2021
    [Google Scholar]
  19. SundbøllJ. ThygesenS.K. VeresK. Risk of cancer in patients with constipation.Clin. Epidemiol.20191129931010.2147/CLEP.S205957 31118818
    [Google Scholar]
  20. GuérinA. ModyR. FokB. Risk of developing colorectal cancer and benign colorectal neoplasm in patients with chronic constipation.Aliment. Pharmacol. Ther.2014401839210.1111/apt.12789 24832002
    [Google Scholar]
  21. KojimaM. WakaiK. TokudomeS. Bowel movement frequency and risk of colorectal cancer in a large cohort study of Japanese men and women.Br. J. Cancer20049071397140110.1038/sj.bjc.6601735 15054462
    [Google Scholar]
  22. RobertsM.C. MillikanR.C. GalankoJ.A. MartinC. SandlerR.S. Constipation, laxative use, and colon cancer in a North Carolina population.Am. J. Gastroenterol.200398485786410.1111/j.1572‑0241.2003.07386.x 12738468
    [Google Scholar]
  23. AndersonJ.C. LacyB.E. Editorial: Constipation and colorectal cancer risk: A continuing conundrum.Am. J. Gastroenterol.2014109101650165210.1038/ajg.2014.292 25287089
    [Google Scholar]
  24. StallerK. OlénO. SöderlingJ. Chronic constipation as a risk factor for colorectal cancer: Results from a nationwide, case-control study.Clin. Gastroenterol. Hepatol.202220818671876.e210.1016/j.cgh.2021.10.024 34687968
    [Google Scholar]
  25. PowerA.M. TalleyN.J. FordA.C. Association between constipation and colorectal cancer: Systematic review and meta-analysis of observational studies.Am. J. Gastroenterol.2013108689490310.1038/ajg.2013.52 23481143
    [Google Scholar]
  26. ZhangX. WuK. ChoE. Prospective cohort studies of bowel movement frequency and laxative use and colorectal cancer incidence in US women and men.Cancer Causes Control20132451015102410.1007/s10552‑013‑0176‑2 23456271
    [Google Scholar]
  27. SimonsC.C.J.M. SchoutenL.J. WeijenbergM.P. GoldbohmR.A. van den BrandtP.A. Bowel movement and constipation frequencies and the risk of colorectal cancer among men in the netherlands cohort study on diet and cancer.Am. J. Epidemiol.2010172121404141410.1093/aje/kwq307 20980354
    [Google Scholar]
  28. WickramasingheD. KamburugamuwaS. XavierC. SamarasekeraN. WarusavitarneJ. Prevalence of irritable bowel syndrome and its association with colorectal cancer: A systematic review and meta‐analysis.ANZ J. Surg.20239361480148610.1111/ans.18223 36757832
    [Google Scholar]
  29. HsiaoC.W. HuangW.Y. KeT.W. Association between irritable bowel syndrome and colorectal cancer: A nationwide population-based study.Eur. J. Intern. Med.2014251828610.1016/j.ejim.2013.11.005 24268837
    [Google Scholar]
  30. WuX. WangJ. YeZ. Risk of colorectal cancer in patients with irritable bowel syndrome: A meta-analysis of population-based observational studies.Front. Med.2022981912210.3389/fmed.2022.819122
    [Google Scholar]
  31. WuS. YuanC. LiuS. Irritable bowel syndrome and long-term risk of cancer: A prospective cohort study among 0.5 million adults in UK biobank.Am. J. Gastroenterol.2022117578579310.14309/ajg.0000000000001674 35130187
    [Google Scholar]
  32. EmdinC.A. KheraA.V. KathiresanS. Mendelian randomization.JAMA2017318191925192610.1001/jama.2017.17219 29164242
    [Google Scholar]
  33. BurgessS. SmallD.S. ThompsonS.G. A review of instrumental variable estimators for Mendelian randomization.Stat. Methods Med. Res.20172652333235510.1177/0962280215597579 26282889
    [Google Scholar]
  34. LawlorD.A. HarbordR.M. SterneJ.A.C. TimpsonN. Davey SmithG. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology.Stat. Med.20082781133116310.1002/sim.3034 17886233
    [Google Scholar]
  35. YangH. ChenL. LiuK. Mendelian randomization rules out the causal relationship between serum lipids and cholecystitis.BMC Med. Genomics202114122410.1186/s12920‑021‑01082‑y 34535143
    [Google Scholar]
  36. ZhouX. WangL. XiaoJ. Alcohol consumption, DNA methylation and colorectal cancer risk: Results from pooled cohort studies and Mendelian randomization analysis.Int. J. Cancer20221511839410.1002/ijc.33945 35102554
    [Google Scholar]
  37. YinL. YanH. ChenK. Diet-derived circulating antioxidants and risk of digestive system tumors: A mendelian randomization study.Nutrients20221416327410.3390/nu14163274 36014780
    [Google Scholar]
  38. LuoX. TuZ. ChenH. DingJ. Blood lipids and risk of colon or rectal cancer: A Mendelian randomization study.J. Cancer Res. Clin. Oncol.2021147123591359910.1007/s00432‑021‑03790‑5 34490583
    [Google Scholar]
  39. ZhangX. YangX. ZhangT. YinX. ManJ. LuM. Association of educational attainment with esophageal cancer, Barrett’s esophagus, and gastroesophageal reflux disease, and the mediating role of modifiable risk factors: A Mendelian randomization study.Front. Public Health202311102236710.3389/fpubh.2023.1022367 37056646
    [Google Scholar]
  40. SunJ. ZhaoJ. JiangF. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome.Genome Med.20231517510.1186/s13073‑023‑01229‑9 37726845
    [Google Scholar]
  41. WuY. WangZ. YangY. Exploration of potential novel drug targets and biomarkers for small cell lung cancer by plasma proteome screening.Front. Pharmacol.202314126678210.3389/fphar.2023.1266782 37745050
    [Google Scholar]
  42. RenF. JinQ. LiuT. RenX. ZhanY. Proteome-wide mendelian randomization study implicates therapeutic targets in common cancers.J. Transl. Med.202321164610.1186/s12967‑023‑04525‑5 37735436
    [Google Scholar]
  43. KazmiN. RobinsonT. ZhengJ. KarS. MartinR.M. RidleyA.J. Rho GTPase gene expression and breast cancer risk: A Mendelian randomization analysis.Sci. Rep.2022121146310.1038/s41598‑022‑05549‑5 35087170
    [Google Scholar]
  44. DaviesN.M. HolmesM.V. Davey SmithG. Reading mendelian randomisation studies: A guide, glossary, and checklist for clinicians.BMJ2018362k601k60110.1136/bmj.k601 30002074
    [Google Scholar]
  45. SandersonE GlymourMM HolmesMV Mendelian randomization Nat Rev Methods Primers2022102:610.1038/s43586‑021‑00092‑5
    [Google Scholar]
  46. ChenY. ShenJ. WuY. Tea consumption and risk of lower respiratory tract infections: A two-sample mendelian randomization study.Eur. J. Nutr.202362138539310.1007/s00394‑022‑02994‑w 36042048
    [Google Scholar]
  47. ZieglerA. PahlkeF. KönigI.R. Comments on ‘Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology’ by Debbie A. Lawlor, R. M. Harbord, J. A. Sterne, N. Timpson and G. Davey Smith.Statistics in Medicine Stat Med200827152974297610.1002/sim.3034
    [Google Scholar]
  48. VerbanckM. ChenC.Y. NealeB. DoR. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases.Nat. Genet.201850569369810.1038/s41588‑018‑0099‑7 29686387
    [Google Scholar]
  49. BowdenJ. Davey SmithG. BurgessS. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression.Int. J. Epidemiol.201544251252510.1093/ije/dyv080 26050253
    [Google Scholar]
  50. BurgessS. ThompsonS.G. Interpreting findings from Mendelian randomization using the MR-Egger method.Eur. J. Epidemiol.201732537738910.1007/s10654‑017‑0255‑x 28527048
    [Google Scholar]
  51. BurgessS. ButterworthA. ThompsonS.G. Mendelian randomization analysis with multiple genetic variants using summarized data.Genet. Epidemiol.201337765866510.1002/gepi.21758 24114802
    [Google Scholar]
  52. PagoniP. DimouN.L. MurphyN. StergiakouliE. Using Mendelian randomisation to assess causality in observational studies.Evid. Based Ment. Health2019222677110.1136/ebmental‑2019‑300085 30979719
    [Google Scholar]
  53. BurgessS. DudbridgeF. ThompsonS.G. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods.Stat. Med.201635111880190610.1002/sim.6835 26661904
    [Google Scholar]
  54. BowdenJ. Davey SmithG. HaycockP.C. BurgessS. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator.Genet. Epidemiol.201640430431410.1002/gepi.21965 27061298
    [Google Scholar]
  55. PierceB.L. BurgessS. Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable estimators.Am. J. Epidemiol.201317871177118410.1093/aje/kwt084 23863760
    [Google Scholar]
  56. EggerM. SmithG.D. SchneiderM. MinderC. Bias in meta-analysis detected by a simple, graphical test.BMJ1997315710962963410.1136/bmj.315.7109.629 9310563
    [Google Scholar]
  57. HemaniG. TillingK. Davey SmithG. Orienting the causal relationship between imprecisely measured traits using GWAS summary data.PLoS Genet.20171311e100708110.1371/journal.pgen.1007081 29149188
    [Google Scholar]
  58. O’SullivanJ. LysaghtJ. DonohoeC.L. ReynoldsJ.V. Obesity and gastrointestinal cancer: The interrelationship of adipose and tumour microenvironments.Nat. Rev. Gastroenterol. Hepatol.2018151169971410.1038/s41575‑018‑0069‑7 30323319
    [Google Scholar]
  59. HaasS.L. YeW. LöhrJ.M. Alcohol consumption and digestive tract cancer.Curr. Opin. Clin. Nutr. Metab. Care201215545746710.1097/MCO.0b013e3283566699 22797570
    [Google Scholar]
  60. VithayathilM. CarterP. KarS. MasonA.M. BurgessS. LarssonS.C. Body size and composition and risk of site-specific cancers in the UK Biobank and large international consortia: A mendelian randomisation study.PLoS Med.2021187e100370610.1371/journal.pmed.1003706 34324486
    [Google Scholar]
  61. LarssonS.C. BurgessS. Appraising the causal role of smoking in multiple diseases: A systematic review and meta-analysis of Mendelian randomization studies.EBioMedicine20228210415410.1016/j.ebiom.2022.104154 35816897
    [Google Scholar]
  62. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  63. van de VeldeC.J.H. BoelensP.G. BorrasJ.M. EURECCA colorectal: Multidisciplinary management: European consensus conference colon & rectum.Eur. J. Cancer20145011.e11.e3410.1016/j.ejca.2013.06.048 24183379
    [Google Scholar]
  64. RajagopalaS.V. VasheeS. OldfieldL.M. The human microbiome and cancer.Cancer Prev. Res.201710422623410.1158/1940‑6207.CAPR‑16‑0249 28096237
    [Google Scholar]
  65. NørgaardM. FarkasD.K. PedersenL. Irritable bowel syndrome and risk of colorectal cancer: A Danish nationwide cohort study.Br. J. Cancer201110471202120610.1038/bjc.2011.65 21343936
    [Google Scholar]
  66. SilveiraE.A. SantosA.S.A.C. RibeiroJ.N. NollM. dos Santos RodriguesA.P. de OliveiraC. Prevalence of constipation in adults with obesity class II and III and associated factors.BMC Gastroenterol.202121121710.1186/s12876‑021‑01806‑5 33980157
    [Google Scholar]
  67. GhoshalU.C. Postinfection irritable bowel syndrome.Gut Liver202216333134010.5009/gnl210208 34789582
    [Google Scholar]
  68. HajekP. GillisonF. McRobbieH. Stopping smoking can cause constipation.Addiction200398111563156710.1046/j.1360‑0443.2003.00497.x 14616182
    [Google Scholar]
  69. TalleyN.J. PowellN. WalkerM.M. Role of smoking in functional dyspepsia and irritable bowel syndrome: Three random population‐based studies.Aliment. Pharmacol. Ther.2021541324210.1111/apt.16372 33983640
    [Google Scholar]
  70. YuanS. ChenJ. RuanX. Smoking, alcohol consumption, and 24 gastrointestinal diseases: Mendelian randomization analysis.eLife202312e8405110.7554/eLife.84051 36727839
    [Google Scholar]
  71. YangW. YangX. CaiX. The prevalence of irritable bowel syndrome among chinese university students: A systematic review and meta-analysis.Front. Public Health20221086472110.3389/fpubh.2022.864721 35493361
    [Google Scholar]
  72. AkobengA.K. Understanding type I and type II errors, statistical power and sample size.Acta Paediatr.2016105660560910.1111/apa.13384 26935977
    [Google Scholar]
  73. SchmidtS.A.J. LoS. HollesteinL.M. Research techniques made simple: Sample size estimation and power calculation.J. Invest. Dermatol.201813881678168210.1016/j.jid.2018.06.165 30032783
    [Google Scholar]
/content/journals/pra/10.2174/0115748928283326231229061358
Loading
/content/journals/pra/10.2174/0115748928283326231229061358
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test