Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Mass spectrometry imaging (MSI) is an imaging method based on mass spectrometry technology that can simultaneously visualize the spatial distribution of various biological molecules. The use of MSI in cancer detection and drug discovery has been extensively investigated in recent years.

Objective

This review aims to summarize the latest advances of MSI and its specific applications in cancer detection and drug discovery, providing a basic understanding of the development and application of MSI in the past five years and offering references for the further application of MSI in cancer detection and drug discovery.

Methods

In the database, “mass spectrometry imaging”, “cancer treatment”, and “drug discovery” were used as keywords for literature retrieval, and the time range was limited to “2018-2023”. After organizing and analyzing the literature and patents, a review was conducted.

Results

Based on the literature, it was found that the updated progress of MSI in the past five years mostly focused on concrete methods, operation procedures, facilities, and composite applications. The patents of MSI were mainly correlated with the mass spectrometry imaging system and its application in cancer treatment. MSI is conducive to investigating the therapeutic schedule of cancer and searching for new drugs.

Conclusion

MSI is a convenient, fast and powerful technology that has made great progress in sample preparation, instrumentation, quantitation, and multimodal imaging. MSI has emerged as a powerful technique in various biomedical applications, which has strong potential in cancer detection, treatment, formation mechanism research, discovery of biomarkers, and drug discovery process.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928269691231203164021
2024-01-23
2025-09-21
Loading full text...

Full text loading...

References

  1. BuchbergerA.R. DeLaneyK. JohnsonJ. LiL. Mass spectrometry imaging: A review of emerging advancements and future insights.Anal. Chem.201890124026510.1021/acs.analchem.7b0473329155564
    [Google Scholar]
  2. ZeperA. Progress on mass spectrometry lmaging technology and lts application.Fenxi Ceshi Xuebao2022410913351344
    [Google Scholar]
  3. SpenglerB. Mass spectrometry imaging of biomolecular information.Anal. Chem.2015871648210.1021/ac504543v25490190
    [Google Scholar]
  4. CastaingR. SlodzianG. Microanalyse par émission ionique secondaire.J. Microsc.19621
    [Google Scholar]
  5. GalleP. LefevreR. Secondary ion emission microanalysis : biomedical applications.Microsc. Acta Suppl.1978452341354293485
    [Google Scholar]
  6. NieW. LuQ. HuT. XieM. HuY. Visualizing the distribution of curcumin in the root of Curcuma longa via VUV-postionization mass spectrometric imaging.Analyst (Lond.)2022148117518110.1039/D2AN01516A36472862
    [Google Scholar]
  7. LiN. LiS. WangQ. YangS. HouY. GaoY. ZhangX. ZhangM. ChenH. A novel visualization method for the composition analysis of processed garlic by MALDI-TOF imaging mass spectrometry (MSI) and Q-TOF LC-MS/MS.Food Res. Int.202316811274610.1016/j.foodres.2023.11274637120200
    [Google Scholar]
  8. FeucherollesM. FracheG. MALDI Mass Spectrometry Imaging: A Potential Game-Changer in a Modern Microbiology.Cells20221123390010.3390/cells1123390036497158
    [Google Scholar]
  9. MinK. LiY. LinY. YangX. ChenZ. ChenB. MaM. LiuQ. JiangG. Mass Spectrometry Imaging Strategy for In Situ Quantification of Soot in Size-Segregated Air Samples.Anal. Chem.20229444151891519710.1021/acs.analchem.2c0144336301736
    [Google Scholar]
  10. ZhangM. ZhangY. WangH. LiN. LiB. XiaoH. BianW. CaiZ. [Mass spectrometry imaging technology and its application in breast cancer research].Se Pu202139657858710.3724/SP.J.1123.2020.1000534227318
    [Google Scholar]
  11. YoshimuraY. ZaimaN. Application of Mass Spectrometry Imaging for Visualizing Food Components.Foods20209557510.3390/foods905057532375379
    [Google Scholar]
  12. MorisasaM. SatoT. KimuraK. MoriT. Goto-InoueN. Application of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging for Food Analysis.Foods201981263310.3390/foods812063331810360
    [Google Scholar]
  13. NeumannE.K. DjambazovaK.V. CaprioliR.M. SpragginsJ.M. Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine.J. Am. Soc. Mass Spectrom.202031122401241510.1021/jasms.0c0023232886506
    [Google Scholar]
  14. DobleP.A. de VegaR.G. BishopD.P. HareD.J. ClasesD. Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry Imaging in Biology.Chem. Rev.202112119117691182210.1021/acs.chemrev.0c0121934019411
    [Google Scholar]
  15. BrayF. LaversanneM. WeiderpassE. SoerjomataramI. The ever‐increasing importance of cancer as a leading cause of premature death worldwide.Cancer2021127163029303010.1002/cncr.3358734086348
    [Google Scholar]
  16. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  17. RisomT. ChangP. RostS. ZiaiJ. Mass Spectrometry-Based Tissue Imaging of the Tumor Microenvironment.Methods Mol. Biol.2023266017118510.1007/978‑1‑0716‑3163‑8_1237191797
    [Google Scholar]
  18. ColeL.M. ClenchM.R. Mass spectrometry imaging tools in oncology.Biomarkers Med.20159986386810.2217/bmm.15.6126330284
    [Google Scholar]
  19. Schwaiger-HaberM. StancliffeE. AnbukumarD.S. SellsB. YiJ. ChoK. Adkins-TravisK. ChhedaM.G. ShriverL.P. PattiG.J. Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem.Nat. Commun.2023141287610.1038/s41467‑023‑38403‑x37208361
    [Google Scholar]
  20. GoodwinR.J.A. TakatsZ. BunchJ. A Critical and Concise Review of Mass Spectrometry Applied to Imaging in Drug Discovery.SLAS Discov.202025996397610.1177/247255522094184332713279
    [Google Scholar]
  21. HayasakaT. Application of Imaging Mass Spectrometry for Drug Discovery.Yakugaku Zasshi2016136216317010.1248/yakushi.15‑00226‑426831787
    [Google Scholar]
  22. NishidateM. HayashiM. AikawaH. TanakaK. NakadaN. MiuraS. RyuS. HigashiT. IkarashiY. FujiwaraY. HamadaA. Applications of MALDI mass spectrometry imaging for pharmacokinetic studies during drug development.Drug Metab. Pharmacokinet.201934420921610.1016/j.dmpk.2019.04.00631101590
    [Google Scholar]
  23. NwabufoC.K. AigbogunO.P. Potential application of mass spectrometry imaging in pharmacokinetic studies.Xenobiotica202252881182710.1080/00498254.2022.211990036048000
    [Google Scholar]
  24. SmithA. IablokovV. MazzaM. GuarnerioS. DentiV. IvanovaM. StellaM. PigaI. ChinelloC. HeijsB. van VeelenP.A. BenediktssonH. MuruveD.A. MagniF. Detecting Proteomic Indicators to Distinguish Diabetic Nephropathy from Hypertensive Nephrosclerosis by Integrating Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging with High-Mass Accuracy Mass Spectrometry.Kidney Blood Press. Res.202045223324810.1159/00050518732062660
    [Google Scholar]
  25. EllisB.M. FischerC.N. MartinL.B. BachmannB.O. McLeanJ.A. Spatiochemically Profiling Microbial Interactions with Membrane Scaffolded Desorption Electrospray Ionization-Ion Mobility-Imaging Mass Spectrometry and Unsupervised Segmentation.Anal. Chem.20199121137031371110.1021/acs.analchem.9b0299231600444
    [Google Scholar]
  26. ErlmeierF. SunN. ShenJ. FeuchtingerA. BuckA. PradeV.M. KunzkeT. SchramlP. MochH. AutenriethM. WeichertW. HartmannA. WalchA. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging: Diagnostic Pathways and Metabolites for Renal Tumor Entities.Oncology2023101212613310.1159/00052643636198279
    [Google Scholar]
  27. ZhaoY.Z. XuY. GongC. JuY.R. LiuZ.X. XuX. Analysis of Small Molecule Compounds by Matrix-assisted Laser Desorptionlonization Mass Spectrometry with Fe3O4Nanoparticles as Matrix.Anal. Chem.20214901103112
    [Google Scholar]
  28. PalermoA. ForsbergE.M. WarthB. AispornaA.E. BillingsE. KuangE. BentonH.P. BerryD. SiuzdakG. Fluorinated Gold Nanoparticles for Nanostructure Imaging Mass Spectrometry.ACS Nano20181276938694810.1021/acsnano.8b0237629966083
    [Google Scholar]
  29. FülöpA. BausbacherT. RizzoS. ZhouQ. GillandtH. HopfC. RittnerM. New Derivatization Reagent for Detection of free Thiol-groups in Metabolites and Proteins in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.Anal. Chem.20209296224622810.1021/acs.analchem.9b0563032233426
    [Google Scholar]
  30. BednaříkA. BölskerS. SoltwischJ. DreisewerdK. An On‐Tissue Paternò–Büchi Reaction for Localization of Carbon–Carbon Double Bonds in Phospholipids and Glycolipids by Matrix‐Assisted Laser‐Desorption–Ionization Mass‐Spectrometry Imaging.Angew. Chem. Int. Ed.20185737120921209610.1002/anie.20180663530025193
    [Google Scholar]
  31. CooksR.G. OuyangZ. TakatsZ. WisemanJ.M. Ambient Mass Spectrometry.Science200631157671566157010.1126/science.111942616543450
    [Google Scholar]
  32. HeJ. SunC. LiT. LuoZ. HuangL. SongX. LiX. AblizZ. A Sensitive and Wide Coverage Ambient Mass Spectrometry Imaging Method for Functional Metabolites Based Molecular Histology.Adv. Sci. (Weinh.)2018511180025010.1002/advs.20180025030479912
    [Google Scholar]
  33. WuL. QiK. LiuC. HuY. XuM. PanY. Enhanced Coverage and Sensitivity of Imprint DESI Mass Spectrometry Imaging for Plant Leaf Metabolites by Post-photoionization.Anal. Chem.20229443151081511610.1021/acs.analchem.2c0332936201321
    [Google Scholar]
  34. YangM. UnsihuayD. HuH. Nguele MekeF. QuZ. ZhangZ.Y. LaskinJ. Nano-DESI Mass Spectrometry Imaging of Proteoforms in Biological Tissues with High Spatial Resolution.Anal. Chem.202395125214522210.1021/acs.analchem.2c0479536917636
    [Google Scholar]
  35. EtaloD.W. Díez-SimónC. de VosR.C.H. HallR.D. Laser Ablation Electrospray Ionization-Mass Spectrometry Imaging (LAESI-MS) for Spatially Resolved Plant Metabolomics.Methods Mol. Biol.2018177825326710.1007/978‑1‑4939‑7819‑9_1829761444
    [Google Scholar]
  36. SzulcJ. RumanT. Laser Ablation Remote-Electrospray Ionisation Mass Spectrometry (LARESI MSI) Imaging—New Method for Detection and Spatial Localization of Metabolites and Mycotoxins Produced by Moulds.Toxins (Basel)2020121172010.3390/toxins1211072033217921
    [Google Scholar]
  37. Sheraz née RabbaniS. BarberA. FletcherJ.S. LockyerN.P. VickermanJ.C. Enhancing secondary ion yields in time of flight-secondary ion mass spectrometry using water cluster primary beams.Anal. Chem.201385125654565810.1021/ac401373223718847
    [Google Scholar]
  38. LorkA.A. VoK.L.L. PhanN.T.N. Chemical Imaging and Analysis of Single Nerve Cells by Secondary Ion Mass Spectrometry Imaging and Cellular Electrochemistry.Front. Synaptic Neurosci.20221485495710.3389/fnsyn.2022.85495735651734
    [Google Scholar]
  39. NounM. AkoumehR. AbbasI. Cell and Tissue Imaging by TOF-SIMS and MALDI-TOF: An Overview for Biological and Pharmaceutical Analysis.Microsc. Microanal.202228112610.1017/S143192762101359334809729
    [Google Scholar]
  40. Buszewska-ForajtaM. RafińskaK. BuszewskiB. Tissue sample preparations for preclinical research determined by molecular imaging mass spectrometry using matrix‐assisted laser desorption/ionization.J. Sep. Sci.20224571345136110.1002/jssc.20210057835122386
    [Google Scholar]
  41. ZaimaN. HayasakaT. Goto-InoueN. SetouM. Matrix-assisted laser desorption/ionization imaging mass spectrometry.Int. J. Mol. Sci.201011125040505510.3390/ijms1112504021614190
    [Google Scholar]
  42. SeeleyE.H. OppenheimerS.R. MiD. ChaurandP. CaprioliR.M. Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections.J. Am. Soc. Mass Spectrom.20081981069107710.1016/j.jasms.2008.03.01618472274
    [Google Scholar]
  43. HermannJ. NoelsH. TheelenW. LelligM. Orth-AlampourS. BoorP. JankowskiV. JankowskiJ. Sample preparation of formalin-fixed paraffin-embedded tissue sections for MALDI-mass spectrometry imaging.Anal. Bioanal. Chem.202041261263127510.1007/s00216‑019‑02296‑x31989198
    [Google Scholar]
  44. Fernández-VegaA. Chicano-GálvezE. PrenticeB.M. AndersonD. Priego-CapoteF. López-BascónM.A. Calderón-SantiagoM. AvendañoM.S. Guzmán-RuizR. Tena-SempereM. FernándezJ.A. CaprioliR.M. MalagónM.M. Optimization of a MALDI-Imaging protocol for studying adipose tissue-associated disorders.Talanta202021912118410.1016/j.talanta.2020.12118432887102
    [Google Scholar]
  45. LeeY.R. BriggsM.T. KuliwabaJ.S. AndersonP.H. CondinaM.R. HoffmannP. Gelatin-coated indium tin oxide slides improve human cartilage-bone tissue adherence and N-glycan signal intensity for mass spectrometry imaging.Anal. Bioanal. Chem.2021413102675268210.1007/s00216‑020‑02986‑x33063168
    [Google Scholar]
  46. RujchanarongD. LeflerJ. SaundersJ.E. PippinS. SpruillL. BethardJ.R. BallL.E. MehtaA.S. DrakeR.R. OstrowskiM.C. AngelP.M. Defining the Tumor Microenvironment by Integration of Immunohistochemistry and Extracellular Matrix Targeted Imaging Mass Spectrometry.Cancers (Basel)20211317441910.3390/cancers1317441934503228
    [Google Scholar]
  47. CliftC.L. DrakeR.R. MehtaA. AngelP.M. Multiplexed imaging mass spectrometry of the extracellular matrix using serial enzyme digests from formalin-fixed paraffin-embedded tissue sections.Anal. Bioanal. Chem.2021413102709271910.1007/s00216‑020‑03047‑z33206215
    [Google Scholar]
  48. LukowskiJ.K. WeaverE.M. HummonA.B. Analyzing Liposomal Drug Delivery Systems in Three-Dimensional Cell Culture Models Using MALDI Imaging Mass Spectrometry.Anal. Chem.201789168453845810.1021/acs.analchem.7b0200628731323
    [Google Scholar]
  49. MittalP. PriceZ.K. LokmanN.A. RicciardelliC. OehlerM.K. Klingler-HoffmannM. HoffmannP. Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI) for Monitoring of Drug Response in Primary Cancer Spheroids.Proteomics20191921-22190014610.1002/pmic.20190014631474002
    [Google Scholar]
  50. PaineM.R.L. EllisS.R. MaloneyD. HeerenR.M.A. VerhaertP.D.E.M. Digestion-Free Analysis of Peptides from 30-year-old Formalin-Fixed, Paraffin-Embedded Tissue by Mass Spectrometry Imaging.Anal. Chem.201890159272928010.1021/acs.analchem.8b0183829975508
    [Google Scholar]
  51. StevenR.T. NiehausM. TaylorA.J. NasifA. EliaE. GoodwinR.J.A. TakatsZ. BunchJ. Atmospheric-Pressure Infrared Laser-Ablation Plasma-Postionization Mass Spectrometry Imaging of Formalin-Fixed Paraffin-Embedded (FFPE) and Fresh-Frozen Tissue Sections with No Sample Preparation.Anal. Chem.202294289970997410.1021/acs.analchem.2c0069035798333
    [Google Scholar]
  52. KelleyA.R. ColleyM. DyerS. BachS.B.H. ZhuX. PerryG. Ethanol-Fixed, Paraffin-Embedded Tissue Imaging: Implications for Alzheimer’s Disease Research.J. Am. Soc. Mass Spectrom.202031122416242010.1021/jasms.0c0019532803969
    [Google Scholar]
  53. UrbanC. BuckA. SivekeJ.T. LordickF. LuberB. WalchA. AichlerM. PAXgene fixation enables comprehensive metabolomic and proteomic analyses of tissue specimens by MALDI MSI.Biochim. Biophys. Acta, Gen. Subj.201818621516010.1016/j.bbagen.2017.10.00529024724
    [Google Scholar]
  54. ChenH. LiX. ChenF. LiL. YeF. BuH. GongM. [Performance Comparison of Two Cryosection Embedding Agents Used for Desorption Electrospray Ionization Mass Spectrometry Imaging].Sichuan Da Xue Xue Bao Yi Xue Ban2022532303309[Performance Comparison of Two Cryosection Embedding Agents Used for Desorption Electrospray Ionization Mass Spectrometry Imaging].35332734
    [Google Scholar]
  55. HeY. GuoW. LuoK. SunQ. LinZ. CaiZ. Poly-l-lysine-based tissue embedding compatible with matrix-assisted laser desorption ionization-mass spectrometry imaging analysis of dry and fragile aristolochia plants.J. Chromatogr. A2019160846038910.1016/j.chroma.2019.46038931378528
    [Google Scholar]
  56. ZhangY.X. ZhangY.D. ShiY.P. A reliable and effective sample preparation protocol of MALDI-TOF-MSI for lipids imaging analysis in hard and dry cereals.Food Chem.202339813391110.1016/j.foodchem.2022.13391135969989
    [Google Scholar]
  57. DannhornA. KazancE. LingS. NikulaC. KaraliE. SerraM.P. VorngJ.L. IngleseP. MaglennonG. HammG. SwalesJ. StrittmatterN. BarryS.T. SansomO.J. PoulogiannisG. BunchJ. GoodwinR.J.A. TakatsZ. Universal Sample Preparation Unlocking Multimodal Molecular Tissue Imaging.Anal. Chem.20209216110801108810.1021/acs.analchem.0c0082632519547
    [Google Scholar]
  58. Bøgeskov SchmidtF. HeskesA.M. ThinagaranD. Lindberg MøllerB. JørgensenK. BoughtonB.A. Mass Spectrometry Based Imaging of Labile Glucosides in Plants.Front. Plant Sci.2018989210.3389/fpls.2018.0089230002667
    [Google Scholar]
  59. MaL. XieQ. DuM. HuangY. ChenY. ChenD. XuY. XuH. WuX. YinZ. Sample preparation optimization of insects and zebrafish for whole-body mass spectrometry imaging.Anal. Bioanal. Chem.2022414164777479010.1007/s00216‑022‑04102‑735508646
    [Google Scholar]
  60. YoonS. LeeT.G. Biological tissue sample preparation for time-of-flight secondary ion mass spectrometry (ToF–SIMS) imaging.Nano Converg.2018512410.1186/s40580‑018‑0157‑y30467706
    [Google Scholar]
  61. LiY. CaoX. ZhanL. XueJ. WangJ. XiongC. NieZ. Hot electron transfer promotes ion production in plasmonic metal nanostructure assisted laser desorption ionization mass spectrometry.Chem. Commun. (Camb.)20185477109051090810.1039/C8CC05793A30206581
    [Google Scholar]
  62. LiN. WangP. LiuX. HanC. RenW. LiT. LiX. TaoF. ZhaoZ. Developing IR-780 as a Novel Matrix for Enhanced MALDI MS Imaging of Endogenous High-Molecular-Weight Lipids in Brain Tissues.Anal. Chem.20199124158731588210.1021/acs.analchem.9b0431531718156
    [Google Scholar]
  63. TreuA. RömppA. Matrix ions as internal standard for high mass accuracy matrix‐assisted laser desorption/ionization mass spectrometry imaging.Rapid Commun. Mass Spectrom.20213516e911010.1002/rcm.911033880828
    [Google Scholar]
  64. LiuH. ZhouY. WangJ. XiongC. XueJ. ZhanL. NieZ. N -Phenyl-2-naphthylamine as a Novel MALDI Matrix for Analysis and in Situ Imaging of Small Molecules.Anal. Chem.201890172973610.1021/acs.analchem.7b0271029172460
    [Google Scholar]
  65. HuangP. HuangC.Y. LinT.C. LinL.E. YangE. LeeC. HsuC.C. ChouP.T. Toward the Rational Design of Universal Dual Polarity Matrix for MALDI Mass Spectrometry.Anal. Chem.202092107139714510.1021/acs.analchem.0c0057032314914
    [Google Scholar]
  66. LiuY. ChenL. QinL. HanM. LiJ. LuoF. XueK. FengJ. ZhouY. WangX. Enhanced in situ detection and imaging of lipids in biological tissues by using 2,3-dicyanohydroquinone as a novel matrix for positive-ion MALDI-MS imaging.Chem. Commun. (Camb.)20195583125591256210.1039/C9CC06961E31577294
    [Google Scholar]
  67. QiuX. ChenF. LiuT. FengF. ZhangY. FengX. ZhangF. Developing CHCA/PPD as a novel matrix for enhanced matrix‐assisted laser desorption/ionization‐mass spectrometry imaging for analysis of antibiotics in grass carp tissues.Rapid Commun. Mass Spectrom.2023375e942810.1002/rcm.942836346288
    [Google Scholar]
  68. HeH. QinL. ZhangY. HanM. LiJ. LiuY. QiuK. DaiX. LiY. ZengM. GuoH. ZhouY. WangX. 3,4-Dimethoxycinnamic Acid as a Novel Matrix for Enhanced In Situ Detection and Imaging of Low-Molecular-Weight Compounds in Biological Tissues by MALDI-MSI.Anal. Chem.20199142634264310.1021/acs.analchem.8b0352230636403
    [Google Scholar]
  69. ZhaoX. PanY. LiX. WangH. Application of lignin as MALDI matrix in the detection of small molecule substances.CN113267557B2022
  70. LiB. TangW. WangF. LiuE. The use of hydrazine as a matrix in matrix assisted laser desorption ionization mass spectrometry.CN112557497B2022
  71. ZhaoY. TangM. LiaoQ. LiZ. LiH. XiK. TanL. ZhangM. XuD. ChenH.Y. Disposable MoS 2 -Arrayed MALDI MS chip for high-throughput and rapid quantification of sulfonamides in multiple real samples.ACS Sens.20183480681410.1021/acssensors.8b0005129578331
    [Google Scholar]
  72. LiB. SunR. GordonA. GeJ. ZhangY. LiP. YangH. 3-Aminophthalhydrazide (Luminol) as a matrix for dual-polarity MALDI MS Imaging.Anal. Chem.201991138221822810.1021/acs.analchem.9b0080331149814
    [Google Scholar]
  73. LiuH. HanM. LiJ. QinL. ChenL. HaoQ. JiangD. ChenD. JiY. HanH. LongC. ZhouY. FengJ. WangX. A Caffeic Acid Matrix Improves In Situ Detection and Imaging of Proteins with High Molecular Weight Close to 200,000 Da in Tissues by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.Anal. Chem.20219335119201192810.1021/acs.analchem.0c0548034405989
    [Google Scholar]
  74. HanC. LiS. YueQ. LiN. YangH. ZhaoZ. Polydopamine-capped AgNPs as a novel matrix overcoming the ion suppression of phosphatidylcholine for MALDI MS comprehensive imaging of glycerophospholipids and sphingolipids in impact-induced injured brain.Analyst2019144216304631210.1039/C9AN01361J31552925
    [Google Scholar]
  75. XuQ. TianR. LuC. Mass spectrometry imaging of low-molecular-weight phenols liberated from plastics.Anal. Chem.20219340137031371010.1021/acs.analchem.1c0339734570463
    [Google Scholar]
  76. ZhaoH. ZhaoH. YiS. ZhangR. Nickel Nanoparticles/Graphene Composite as New Matrix-assisted LaselDesorption/lonization Matrix and Adsorbent for Highly Efficient MassSpectrometry Analysis of Small Biomolecules.Anal. Chem.2021491220552066
    [Google Scholar]
  77. IloroI. BuenoA. CalvoJ. UrretaH. ElortzaF. Langartech: A Custom-Made MALDI Matrix Sprayer for MALDI Imaging Mass Spectrometry.SLAS Technol.201621226026710.1177/221106821560732026391011
    [Google Scholar]
  78. TuckerL.H. Conde-GonzálezA. CobiceD. HammG.R. GoodwinR.J.A. CampbellC.J. ClarkeD.J. MackayC.L. MALDI matrix application utilizing a modified 3d printer for accessible high resolution mass spectrometry imaging.Anal. Chem.201890158742874910.1021/acs.analchem.8b0067029863333
    [Google Scholar]
  79. XieH. WuR. HungY.L.W. ChenX. ChanT.W.D. Development of a matrix sublimation device with controllable crystallization temperature for MALDI mass spectrometry imaging.Anal. Chem.202193166342634710.1021/acs.analchem.1c0026033852267
    [Google Scholar]
  80. NambiarS. KahnN. GummerJ.P.A. Matrix-assisted laser desorption ionization mass spectrometry imaging by freeze-spot deposition of the matrix.J. Am. Soc. Mass Spectrom.20213271829183610.1021/jasms.1c0006334047188
    [Google Scholar]
  81. HuangX. ZhanL. SunJ. XueJ. LiuH. XiongC. NieZ. Utilizing a mini-humidifier to deposit matrix for MALDI Imaging.Anal. Chem.201890148309831310.1021/acs.analchem.8b0171429939716
    [Google Scholar]
  82. LuoY. SongC. MaoJ. PengZ. SunS. ZhangY. YuA. ZhangW. ZhaoW. OuyangG. Developing a noncontact heating matrix spraying apparatus with controllable matrix film formation for maldi mass spectrometry Imaging.Anal. Chem.20229435121361214310.1021/acs.analchem.2c0219235993787
    [Google Scholar]
  83. MengL. HanJ. ChenJ. WangX. HuangX. LiuH. NieZ. Development of an automatic ultrasonic matrix sprayer for matrix-assisted laser desorption/ionization mass spectrometry imaging.Anal. Chem.202294176457646210.1021/acs.analchem.2c0040335438954
    [Google Scholar]
  84. WangW. XuF. WuF. WuH. DingC.F. DingL. Genetic algorithm parallel optimization of a new high mass resolution planar electrostatic ion trap mass analyzer.Analyst2022147245764577410.1039/D2AN01568D36413223
    [Google Scholar]
  85. MathewA. EijkelG.B. AnthonyI.G.M. EllisS.R. HeerenR.M.A. Characterization of microchannel plate detector response for the detection of native multiply charged high mass single ions in orthogonal‐time‐of‐flight mass spectrometry using a Timepix detector.J. Mass Spectrom.2022574e482010.1002/jms.482035347816
    [Google Scholar]
  86. HuJ. System for distinguishing biomolecular mass spectrometry imaging for clinical medical research based on biological molecule imaging and life science research, has distributed mass spectrometry imaging system that is signally connected with log-in module.CN115171805
  87. YamaguchiS. Mass spectrometry data analysis method involves displaying integrated mass spectrum, accepting designation of selection of peak by user, on mass spectrum, and creating mass spectrometry imaging image corresponding to peak accepted by peak selection accepting unit.WO2023032181
  88. YamaguchiS. Imaging mass spectrometer for visualizing spatial distribution of compound present in sample e.g. biological tissue slice, has calculating portion that calculates or estimates by using mass spectrometry data obtained respectively in other analysis ranges.WO2023037536
  89. WenD. ChenX. Calibrating signal of imaging mass spectrometry, involves selecting sample as standard sample, establishing first standard curve and first regression model, converting actual metal content of each pixel into calibration signal value followed by scanning sample to be calibrated.CN115452929
  90. ArndtJ. R. DebordJ. D. System for image processing of mass spectrometry data, has computer system that generates delta dataset based on comparison of second data plot to first data plot.WO2022108942
  91. UnannouncedI. Displacement platform useful for imaging sample mass spectrum to be detected in mass spectrometry imaging system, comprises object stage formed with groove contains sample to be tested, cooling plate overlapped with carrying table, and stable phase medium circulated in cooling channel.CN115312370
  92. LehmannR. KalinitchenkoI. LymanR. Hybrid mass spectrometry apparatus for analyzing analyte sample, has ion source from which a quantity of analyte ions is sourced for providing an ion beam, and quadrupole mass analyzer provided for analyzing the ion beam.EP4089713-A1; US2022367169-A1; CN115346855-A.
  93. YamaguchiS. Imaging mass spectrometer for observing morphology of biological tissue, has segmentation image creator for creating segmentation images corresponding to measurement area or partial area in area by arranging pixels on dimensions.US2021391160-A1; CN113808141-A; JP2021196260-A; US11545348-B2
  94. ZhangJ. ZhangL. WenT. BaiJ. CaoY. LuY. GuoY. Open-type mass spectrometry imaging device based on laser desorption auxiliary carbon fiber ionization, has sample to be tested that is located on laser, sampling and ionization end of carbon fiber and sample inlet of spectrometer.CN216978930-U; CN115308294-A.
  95. LiuH. SunJ. ZhanL. HuangX. NieZ. Ultrasonic spraying device for spraying matrix-assisted laser desorption ionization-flight time mass spectrometry imaging matrix, has controller that generates electronic high-frequency oscillation to make atomation sheet to generate high frequency resonance.CN115249609
  96. YuJ. LuanC. ChenX. ZhangH. WuJ. Mass spectrum target plate with molecular weight calibration function, has detection area and calibration hole that are located on same horizontal plane and independent from each other.CN215375267
  97. ShichiH. Matrix assisted laser desorption/ionization (MALDI) mass spectrometer has parameter determination unit that determines parameter for drawing out and transporting ion generated by parameter or for producing ion in ion source.JP2022048483
  98. QinD. GuA. ShiJ. Desorption ionization probe useful for scanning biological tissue sample, comprises e.g. capillary tube, whose one end extends out of nozzle by two through pipes, whose one end is connected to other end of capillary tube, and one end of other end is connected to other end of cavity structure.CN113793795
  99. NakakimuraY. Imaging mass spectrometer performing mass spectrometry imaging, has position alignment unit performs position alignment between mass spectrometry imaging image and reference image while creating mass spectrometry imaging image of ion.WO2019150553-A1; JP2019568520-X; JP7040537-B2.
  100. MatsuoE. YamamotoT. Imaging mass spectrometry device has image creation unit which creates image data in which value obtained by integrating intensity data corresponding to fragment ions, and display unit that displays image corresponding to image data.EP3675149-A1; US2020211829-A1; JP2020106293-A; JP7167705-B2.
  101. NakakimuraY. Method for processing data of imaging mass spectrometer, involves overlapping transformation of one image into several mass spectrometry imaging images, and carrying out superposition of mass spectrometry imaging images. WO2019186965-A1; JP2020508761-X; JP6927415-B2.
  102. YamaguchiS. Imaging mass spectrometry data processor for imaging mass spectrometer, has mass difference image creation unit that creates and displays image showing two-dimensional distribution of mass difference corresponding to measurement area.WO2019229899-A1; JP2020522474-X; US2021242004-A1; JP6973639-B2; US11211235-B2.
  103. OgataK. IkegamiM. Imaging mass spectrometry data processor has superposition image display process unit which creates image obtained by overlapping optical image after adjustment on same area and displays created image on screen of display unit.WO2018037570-A1; JP2018536033-X; CN109690307-A; EP3505924-A1; EP3505924-A4; US2019287774-A1; JP6743895-B2.
  104. TakeshitaK. Imaging mass spectrometry device for displaying mass spectrometry imaging image, has data matrix creation unit which is provided for creating data matrix on basis of mass spectrum data that is collected already.WO2021019752-A1; CN114096839-A; JP2021536565-X; US2022262611-A1; JP7248126-B2.
  105. IkegamiM. OgataK. Imaging mass spectrometry data processor, has compound identification unit that identifies compound which exists in region of interest using calculation completed spectrum.WO2018037569-A1; JP2018536032-X; CN109642890-A; US2019189414-A1; EP3505923-A1; EP3505923-A4; JP6695556-B2; US10950423-B2; CN109642890-B.
  106. YamaguchiS. Imaging mass spectrometry data processor for observing two-dimensional distribution image of compound in e.g. biological tissue, has distribution image creation unit that creates image which shows two-dimensional intensity distribution.WO2019229898-A1; JP2020522473-X; US2021225626-A1; US11201042-B2; JP7001157-B2.
  107. OshikawaT. Display processing device used in imaging mass spectrometry system, has display control unit that is configured to classify multiple intensity distribution data into multiple intensity distribution images and display group on display unit.WO2019150653-A1; JP2019568577-X; JP6897804-B2.
  108. YamaguchiS. Imaging analyzer e.g. imaging mass spectrometer for performing analysis process of sample such as biological tissue section, has estimated image creation unit that creates estimated image based on pseudo regression-analysis result. WO2021095210-A1; CN114556523-A.
  109. LiuJ. XiongX. OuyangZ. Data processing and analysis for mass spectrometry imaging.Methods Mol. Biol.2015120319520910.1007/978‑1‑4939‑1357‑2_1925361679
    [Google Scholar]
  110. Rosas-RománI. WinklerR. Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ).PeerJ Comput. Sci.20217e58510.7717/peerj‑cs.58534179452
    [Google Scholar]
  111. LiebF. BoskampT. StarkH.G. Peak detection for MALDI mass spectrometry imaging data using sparse frame multipliers.J. Proteomics202022510385210.1016/j.jprot.2020.10385232531407
    [Google Scholar]
  112. RàfolsP. HeijsB. del CastilloE. YanesO. McDonnellL.A. BrezmesJ. Pérez-TaboadaI. VallejoM. García-AltaresM. CorreigX. rMSIproc: an R package for mass spectrometry imaging data processing.Bioinformatics202036113618361910.1093/bioinformatics/btaa14232108859
    [Google Scholar]
  113. LilljaJ. DuncanK.D. LanekoffI. Ion-to-Image, i2i, a Mass Spectrometry Imaging Data Analysis Platform for Continuous Ionization Techniques.Anal. Chem.20239531115891159510.1021/acs.analchem.3c0161537505508
    [Google Scholar]
  114. MüllerW.H. De PauwE. FarJ. MalherbeC. EppeG. Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: A concise review of the last decade.Prog. Lipid Res.20218310111410.1016/j.plipres.2021.10111434217733
    [Google Scholar]
  115. PomastowskiP. BuszewskiB. Complementarity of Matrix- and Nanostructure-Assisted Laser Desorption/Ionization Approaches.Nanomaterials (Basel)20199226010.3390/nano902026030769830
    [Google Scholar]
  116. ZhuQ. WangZ. WangY. TengF. DuJ. DouS. LuN. Investigation of surface morphology on ion desorption in SALDI-MS on tailored silicon nanopillar arrays.J. Phys. Chem. C202012442450245710.1021/acs.jpcc.9b09520
    [Google Scholar]
  117. MüllerW.H. VerdinA. De PauwE. MalherbeC. EppeG. Surface‐assisted laser desorption/ionization mass spectrometry imaging: A review.Mass Spectrom. Rev.202241337342010.1002/mas.2167033174287
    [Google Scholar]
  118. LiuC. QiK. YaoL. XiongY. ZhangX. ZangJ. TianC. XuM. YangJ. LinZ. LvY. XiongW. PanY. Imaging of polar and nonpolar species using compact desorption electrospray ionization/postphotoionization mass spectrometry.Anal. Chem.201991106616662310.1021/acs.analchem.9b0052030907581
    [Google Scholar]
  119. NeumannE.K. ComiT.J. SpegazziniN. MitchellJ.W. RubakhinS.S. GilletteM.U. BhargavaR. SweedlerJ.V. Multimodal chemical analysis of the brain by high mass resolution mass spectrometry and infrared spectroscopic imaging.Anal. Chem.20189019115721158010.1021/acs.analchem.8b0291330188687
    [Google Scholar]
  120. RyabchykovO. PoppJ. BocklitzT. Fusion of MALDI spectrometric imaging and raman spectroscopic data for the analysis of biological samples.Front Chem.2018625710.3389/fchem.2018.0025730062092
    [Google Scholar]
  121. PaceC.L. SimmonsJ. KellyR.T. MuddimanD.C. Multimodal mass spectrometry imaging of rat brain using IR-MALDESI and NanoPOTS-LC-MS/MS.J. Proteome Res.202221371372010.1021/acs.jproteome.1c0064134860515
    [Google Scholar]
  122. WangN. LiX. WangR. DingZ. Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment.Biotechnol. J.2021169210004110.1002/biot.20210004134125481
    [Google Scholar]
  123. BerghmansE. Van RaemdonckG. SchildermansK. WillemsH. BoonenK. MaesE. MertensI. PauwelsP. BaggermanG. MALDI mass spectrometry imaging linked with top-down proteomics as a tool to study the non-small-cell lung cancer tumor microenvironment.Methods Protoc.2019224410.3390/mps202004431164623
    [Google Scholar]
  124. BoyleS.T. MittalP. KaurG. HoffmannP. SamuelM.S. Klingler-HoffmannM. Uncovering Tumor–Stroma Inter-relationships Using MALDI Mass Spectrometry Imaging.J. Proteome Res.202019104093410310.1021/acs.jproteome.0c0051132870688
    [Google Scholar]
  125. LuisG. GodfroidA. NishiumiS. CiminoJ. BlacherS. MaquoiE. WeryC. CollignonA. LonguespéeR. Montero-RuizL. DassoulI. MaloujahmoumN. PottierC. MazzucchelliG. DepauwE. BellahcèneA. YoshidaM. NoelA. SounniN.E. Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence.Redox Biol.20214310200610.1016/j.redox.2021.10200634030117
    [Google Scholar]
  126. AclandM. MittalP. LokmanN.A. Klingler-HoffmannM. OehlerM.K. HoffmannP. Mass spectrometry analyses of multicellular tumor spheroids.Proteomics Clin. Appl.2018123170012410.1002/prca.20170012429227035
    [Google Scholar]
  127. ChenY. WangT. XieP. SongY. WangJ. CaiZ. Mass spectrometry imaging revealed alterations of lipid metabolites in multicellular tumor spheroids in response to hydroxychloroquine.Anal. Chim. Acta2021118433901110.1016/j.aca.2021.33901134625248
    [Google Scholar]
  128. TianX. ZhangG. ZouZ. YangZ. Anticancer drug affects metabolomic profiles in multicellular spheroids: Studies using mass spectrometry imaging combined with machine learning.Anal. Chem.20199195802580910.1021/acs.analchem.9b0002630951294
    [Google Scholar]
  129. Le RhunE. DuhamelM. WisztorskiM. GimenoJ.P. ZairiF. EscandeF. ReynsN. KobeissyF. MaurageC.A. SalzetM. FournierI. Evaluation of non-supervised MALDI mass spectrometry imaging combined with microproteomics for glioma grade III classification.Biochim. Biophys. Acta. Proteins Proteomics20171865787589010.1016/j.bbapap.2016.11.01227890679
    [Google Scholar]
  130. TanA.W. WeljieA.M. Metabolite imaging at the margin: Visualizing metabolic tumor gradients using mass spectrometry.Cancer Res.20208061231123310.1158/0008‑5472.CAN‑20‑013732169889
    [Google Scholar]
  131. WangG. QiuM. XingX. ZhouJ. YaoH. LiM. YinR. HouY. LiY. PanS. HuangY. YangF. BaiF. NieH. DiS. GuoL. MengZ. WangJ. YinY. Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis.Sci. Transl. Med.202214630eabk275610.1126/scitranslmed.abk275635108060
    [Google Scholar]
  132. Kirchberger-TolstikT. RyabchykovO. BocklitzT. DirschO. SettmacherU. PoppJ. StallmachA. Nondestructive molecular imaging by Raman spectroscopy vs. marker detection by MALDI IMS for an early diagnosis of HCC.Analyst (Lond.)202114641239125210.1039/D0AN01555E33313629
    [Google Scholar]
  133. HolzlechnerM. EugeninE. PrideauxB. Mass spectrometry imaging to detect lipid biomarkers and disease signatures in cancer.Cancer Rep.201926e122910.1002/cnr2.122932729258
    [Google Scholar]
  134. PietkiewiczD. PlewaS. ZaborowskiM. GarrettT.J. MatuszewskaE. KokotZ.J. MatysiakJ. Mass spectrometry imaging in gynecological cancers: The best is yet to come.Cancer Cell Int.202222141410.1186/s12935‑022‑02832‑336536419
    [Google Scholar]
  135. JuY. ZhangH. YuK. JiangJ. Application progress of mass spectrometry imaging technology in tumor research.Fenxi Ceshi Xuebao202039012834
    [Google Scholar]
  136. DuhamelM. DrelichL. WisztorskiM. AboulouardS. GimenoJ.P. OgrincN. DevosP. CardonT. WellerM. EscandeF. ZairiF. MaurageC.A. Le RhunÉ. FournierI. SalzetM. Spatial analysis of the glioblastoma proteome reveals specific molecular signatures and markers of survival.Nat. Commun.2022131666510.1038/s41467‑022‑34208‑636333286
    [Google Scholar]
  137. ClarkA.R. CalligarisD. ReganM.S. Pomeranz KrummelD. AgarJ.N. KallayL. MacDonaldT. SchniederjanM. SantagataS. PomeroyS.L. AgarN.Y.R. SenguptaS. Rapid discrimination of pediatric brain tumors by mass spectrometry imaging.J. Neurooncol.2018140226927910.1007/s11060‑018‑2978‑230128689
    [Google Scholar]
  138. KarunakaranM. BarretoS.G. Surgery for pancreatic cancer: current controversies and challenges.Future Oncol.202117365135516210.2217/fon‑2021‑053334747183
    [Google Scholar]
  139. ConnollyL. JamzadA. KaufmannM. FarquharsonC.E. RenK. RudanJ.F. FichtingerG. MousaviP. Combined Mass Spectrometry and Histopathology Imaging for Perioperative Tissue Assessment in Cancer Surgery.J. Imaging202171020310.3390/jimaging710020334677289
    [Google Scholar]
  140. ZhaoX.B. KangJ.Y. ShiY.P. Noncovalent Dual-Locked Near-Infrared Fluorescent Probe for Precise Imaging of Tumor via Hypoxia/Glutathione Activation.Anal. Chem.202294176574658110.1021/acs.analchem.2c0040635437984
    [Google Scholar]
  141. ZhaoX. HaW. GaoK. ShiY. Precisely traceable drug delivery of azoreductase-responsive prodrug for colon targeting via multimodal imaging.Anal. Chem.202092139039904710.1021/acs.analchem.0c0122032501673
    [Google Scholar]
  142. StrittmatterN. MossJ.I. RaceA.M. SuttonD. CanalesJ.R. LingS. WongE. WilsonJ. SmithA. HowesC. BunchJ. BarryS.T. GoodwinR.J.A. AshfordM.B. Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution.Theranostics20221252162217410.7150/thno.6800035265205
    [Google Scholar]
  143. ZhangJ. DuQ. SongX. GaoS. PangX. LiY. ZhangR. AblizZ. HeJ. Evaluation of the tumor-targeting efficiency and intratumor heterogeneity of anticancer drugs using quantitative mass spectrometry imaging.Theranostics20201062621263010.7150/thno.4176332194824
    [Google Scholar]
  144. XieP. ZhangH. WuP. ChenY. CaiZ. Three-dimensional mass spectrometry imaging reveals distributions of lipids and the drug metabolite associated with the enhanced growth of colon cancer cell spheroids treated with triclosan.Anal. Chem.20229440136671367510.1021/acs.analchem.2c0076836170179
    [Google Scholar]
  145. HanJ. QianT. MoH. QianH. MaF. Predicting effect of immunotherapy based on tissue mass spectrometry imaging involves acquiring an image of mass spectrometry imaging of tumor tissue of patient, obtaining protein marker information in image, and then obtaining tumor cell protein marker expression data.CN114509491
  146. CaoL. LiX. ShiH. LiJ. TangB. Typing system of lung cancer benign and malignant, comprises substrate sublimation system, imaging mass spectrometry microscope system, and data processing system.CN114199980
  147. LeiY. LiX. CaoL. ShiH. TangB. LiJ. Pathological typing system for non-small cell lung cancer, comprises freezing slicing system, substrate sublimation system, imaging mass spectrometry microscope system, and data processing system. CN114295706
  148. EberlinL. S. CressmanE. BensussanA. V. LinJ. GuoC. KrishnamurthyS. Detecting cancer cells in lung cancer sample used for treating cancer, by performing desorption electrospray ionization mass spectrometry imaging on sample using restricted mass range in negative ion mode to obtain molecular profile, and applying statistical algorithm on molecular profile.WO2022047104
  149. MaH. YuS. HuangL. HeJ. ChenJ. MaoX. Method for screening thyroid follicular tumor identification diagnostic marker, involves using molecular marker evaluation model to construct benign and malignant evaluation of malignant potential of thyroid follicular tumour.CN115112745
  150. YuS. WangH. Performing combined screening process for early diagnosis marker of pancreatic cancer, involves performing auxiliary screening to abnormal distribution of metabolite based on diagnosis of tissue biopsy and pathology.CN114720616
  151. WuJ. ChenX. Method for discriminating tumor tissue, involves sampling lipids from surface of tissue followed by obtaining characteristic fingerprint of lipid molecules, establishing variety of tumor discriminant models and mass spectrometry imaging.CN110243921-A; WO2020259187-A1; CN110243921-B.
  152. IfaD. R. DillA. L. FerreiraC. R. EberlinL. S. CooksR. G. Assessing tissue sample for presence of cancerous cells comprises e.g. receiving mass spectral data of tissue sample, producing mass spectral image of tissue sample based on mass spectral data, receiving histochemical data of tissue sample and producing optical image of tissue sample.US2021356480
  153. SeeleyE. H. SmootK. R. AndersonH. R. LinS. H. Analyzing tissue sample by generating sample ions directly from tissue sample using matrix-assisted laser desorption ionization (MALDI) ionization source, and identifying at least one esophageal tumor related compound in tissue sample. US2020096519
  154. RamalloGuevaraC. PaulssenD. PopovaA.A. HopfC. LevkinP.A. Fast Nanoliter‐Scale Cell Assays Using Droplet Microarray–Mass Spectrometry Imaging.Adv. Biol.202153200027910.1002/adbi.20200027933729695
    [Google Scholar]
  155. ShiR. PanP. LvR. MaC. WuE. GuoR. ZhaoZ. SongH. ZhouJ. LiuY. XuG. HouT. KangZ. LiuJ. High-throughput glycolytic inhibitor discovery targeting glioblastoma by graphite dots–assisted LDI mass spectrometry.Sci. Adv.202287eabl492310.1126/sciadv.abl492335171681
    [Google Scholar]
  156. TobiasF. McIntoshJ.C. LaBoniaG.J. BoyceM.W. LockettM.R. HummonA.B. Developing a Drug Screening Platform: MALDI-Mass Spectrometry Imaging of Paper-Based Cultures.Anal. Chem.20199124153701537610.1021/acs.analchem.9b0353631755703
    [Google Scholar]
  157. UngerM.S. SchumacherL. EnzleinT. WeigtD. Zamek-GliszczynskiM.J. SchwabM. NiesA.T. DrewesG. SchulzS. ReinhardF.B.M. HopfC. Direct Automated MALDI mass spectrometry analysis of cellular transporter function: Inhibition of OATP2B1 Uptake by 294 Drugs.Anal. Chem.20209217118511185910.1021/acs.analchem.0c0218632867487
    [Google Scholar]
  158. SimonR.P. WinterM. KleinerC. RiesR. SchnappG. HeimannA. LiJ. Zuvela-JelaskaL. BretschneiderT. LuippoldA.H. ReindlW. BischoffD. BüttnerF.H. MALDI-TOF mass spectrometry-based high-throughput screening for inhibitors of the cytosolic DNA Sensor cGAS.SLAS Discov.202025437238310.1177/247255521988018531583948
    [Google Scholar]
  159. PangX. GaoS. GaM. ZhangJ. LuoZ. ChenY. ZhangR. HeJ. AblizZ. Mapping metabolic networks in the brain by ambient mass spectrometry imaging and metabolomics.Anal. Chem.202193176746675410.1021/acs.analchem.1c0046733890766
    [Google Scholar]
  160. RandallE.C. EmdalK.B. LaramyJ.K. KimM. RoosA. CalligarisD. ReganM.S. GuptaS.K. MladekA.C. CarlsonB.L. JohnsonA.J. LuF.K. XieX.S. JoughinB.A. ReddyR.J. PengS. AbdelmoulaW.M. JacksonP.R. KolluriA. KellersbergerK.A. AgarJ.N. LauffenburgerD.A. SwansonK.R. TranN.L. ElmquistW.F. WhiteF.M. SarkariaJ.N. AgarN.Y.R. Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma.Nat. Commun.201891490410.1038/s41467‑018‑07334‑330464169
    [Google Scholar]
  161. JiangH. GaoS. HuG. HeJ. JinH. Innovation in drug toxicology: Application of mass spectrometry imaging technology.Toxicology202146415300010.1016/j.tox.2021.15300034695509
    [Google Scholar]
  162. MengY. GaoC. LuQ. MaS. HangW. Single-cell mass spectrometry imaging of multiple drugs and nanomaterials at organelle level.ACS Nano2021158132201322910.1021/acsnano.1c0292234313107
    [Google Scholar]
  163. PrideauxB. LenaertsA. DartoisV. Imaging and spatially resolved quantification of drug distribution in tissues by mass spectrometry.Curr. Opin. Chem. Biol.2018449310010.1016/j.cbpa.2018.05.00729957376
    [Google Scholar]
  164. WangZ. FuW. HuoM. HeB. LiuY. TianL. LiW. ZhouZ. WangB. XiaJ. ChenY. WeiJ. AblizZ. Spatial-resolved metabolomics reveals tissue-specific metabolic reprogramming in diabetic nephropathy by using mass spectrometry imaging.Acta Pharm. Sin. B202111113665367710.1016/j.apsb.2021.05.01334900545
    [Google Scholar]
  165. SpruillM.L. Maletic-SavaticM. MartinH. LiF. LiuX. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging.Biochem. Pharmacol.202220111508010.1016/j.bcp.2022.11508035561842
    [Google Scholar]
/content/journals/pra/10.2174/0115748928269691231203164021
Loading
/content/journals/pra/10.2174/0115748928269691231203164021
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test