Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Garlic ( L.) has been consumed globally as a functional food and traditional medicine for various ailments. Its active organosulfur compounds (OSCs) have demonstrated significant anticancer properties, particularly against gastric cancer. However, a comprehensive review of these effects and the underlying molecular mechanisms, including their role in overcoming drug resistance, is currently lacking. This review systematically examines both preclinical and clinical studies on the anticancer effects of garlic and its organosulfur compounds against gastric cancer, with a focus on patents. Emphasis is placed on explaining the mechanisms of action, exploring how these compounds can overcome drug resistance, and highlighting relevant patents that have been granted in this field. The literature search included databases, like PubMed, Web of Science, Google Scholar, ScienceDirect, and patent databases, including articles and patents published up to October 2024. Preclinical studies demonstrate that garlic-derived organosulfur compounds possess anticancer activities against gastric cancer. They work through multiple mechanisms, including inducing apoptosis, causing cell cycle arrest, inhibiting cancer stem cell properties, suppressing epithelial-mesenchymal transition, and modulating key signaling pathways, like PI3K/Akt and NF-κB. These compounds also show potential in overcoming drug resistance by downregulating multidrug resistance proteins and enhancing the effectiveness of standard chemotherapy drugs. Clinical studies suggest that regular garlic consumption may reduce the risk of gastric cancer and improve outcomes in patients undergoing chemotherapy. This review highlights the significant potential of garlic’s organosulfur compounds as complementary agents in gastric cancer prevention and treatment and emphasizes the relevance of existing patents and the need for further clinical trials to confirm these effects and develop effective therapeutic strategies.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928367900250116074925
2025-01-27
2025-09-21
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  2. Van CutsemE. SagaertX. TopalB. HaustermansK. PrenenH. Gastric cancer.Lancet2016388100602654266410.1016/S0140‑6736(16)30354‑3 27156933
    [Google Scholar]
  3. HolohanC. Van SchaeybroeckS. LongleyD.B. JohnstonP.G. Cancer drug resistance: An evolving paradigm.Nat. Rev. Cancer2013131071472610.1038/nrc3599 24060863
    [Google Scholar]
  4. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  5. AtanasovA.G. ZotchevS.B. DirschV.M. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  6. CraggG.M. PezzutoJ.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents.Med. Princ. Pract.201625Suppl. 2415910.1159/000443404
    [Google Scholar]
  7. GreenwellM. RahmanP.K. Medicinal plants: Their use in anticancer treatment.Int. J. Pharm. Sci. Res.20156114103411210.13040/ijpsr.0975‑8232.6(10).4103‑12 26594645
    [Google Scholar]
  8. TariqA. SadiaS. PanK. A systematic review on ethnomedicines of anti-cancer plants.Phytother. Res.201731220226410.1002/ptr.5751 28093828
    [Google Scholar]
  9. LiuW. WangY. XiaL. LiJ. Research progress of plant-derived natural products against drug-resistant cancer.Nutrients202416679710.3390/nu16060797 38542707
    [Google Scholar]
  10. DemainA.L. VaishnavP. Natural products for cancer chemotherapy.Microb. Biotechnol.20114668769910.1111/j.1751‑7915.2010.00221.x 21375717
    [Google Scholar]
  11. MilnerJ.A. A historical perspective on garlic and cancer.J. Nutr.200113131027S1031S10.1093/jn/131.3.1027S 11238810
    [Google Scholar]
  12. ParreñoR. Rodríguez-AlcocerE. Martínez-GuardiolaC. Turning garlic into a modern crop: State of the art and perspectives.Plants2023126121210.3390/plants12061212 36986902
    [Google Scholar]
  13. ButtM.S. SultanM.T. ButtM.S. IqbalJ. Garlic: nature’s protection against physiological threats.Crit. Rev. Food Sci. Nutr.200949653855110.1080/10408390802145344 19484634
    [Google Scholar]
  14. BanerjeeS.K. MaulikS.K. Effect of garlic on cardiovascular disorders: A review.Nutr. J.200211410.1186/1475‑2891‑1‑4 12537594
    [Google Scholar]
  15. Garlic and its derivatives. U.S. Food and Drug Administration2024
    [Google Scholar]
  16. BorlinghausJ. AlbrechtF. GruhlkeM. NwachukwuI. SlusarenkoA. Allicin: Chemistry and biological properties.Molecules2014198125911261810.3390/molecules190812591 25153873
    [Google Scholar]
  17. ZhangH. WangH. QinL. LinS. Garlic‐derived compounds: Epigenetic modulators and their antitumor effects.Phytother. Res.20243831329134410.1002/ptr.8108 38194996
    [Google Scholar]
  18. SuJ. XiaH. HeH. Diallyl disulfide antagonizes DJ ‐1 mediated proliferation, epithelial–mesenchymal transition, and chemoresistance in gastric cancer cells.Environ. Toxicol.20243984105411910.1002/tox.24300 38642008
    [Google Scholar]
  19. ShangA. CaoS.Y. XuX.Y. Bioactive compounds and biological functions of garlic (Allium sativum L.).Foods20198724610.3390/foods8070246 31284512
    [Google Scholar]
  20. CHEN B. Effect of diallyl trisulfide on the expression of folate receptor α in human gastric cancer cell lines BGC823 and AGS and the related regulatory mechanism.Cancer Res Clin20216565571
    [Google Scholar]
  21. MallaR. MarniR. ChakrabortyA. KamalM.A. Diallyl disulfide and diallyl trisulfide in garlic as novel therapeutic agents to overcome drug resistance in breast cancer.J. Pharm. Anal.202212222123110.1016/j.jpha.2021.11.004 35582397
    [Google Scholar]
  22. SendlA. Allium sativum and Allium ursinum: Part 1 Chemistry, analysis, history, botany.Phytomedicine19951432333910.1016/S0944‑7113(11)80011‑5 23196023
    [Google Scholar]
  23. NaginiS. Cancer chemoprevention by garlic and its organosulfur compounds-panacea or promise?Anticancer. Agents Med. Chem.20088331332110.2174/187152008783961879 18393790
    [Google Scholar]
  24. TrioP.Z. YouS. HeX. HeJ. SakaoK. HouD.X. Chemopreventive functions and molecular mechanisms of garlic organosulfur compounds.Food Funct.20145583384410.1039/c3fo60479a 24664286
    [Google Scholar]
  25. PandeyP. KhanF. AlshammariN. SaeedA. AqilF. SaeedM. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management.Front. Pharmacol.202314115403410.3389/fphar.2023.1154034 37021043
    [Google Scholar]
  26. ZhangY. LiuX. RuanJ. ZhuangX. ZhangX. LiZ. Phytochemicals of garlic: Promising candidates for cancer therapy.Biomed. Pharmacother.202012310973010.1016/j.biopha.2019.109730 31877551
    [Google Scholar]
  27. KimJ.Y. KwonO. Garlic intake and cancer risk: An analysis using the Food and Drug Administration’s evidence-based review system for the scientific evaluation of health claims.Am. J. Clin. Nutr.200989125726410.3945/ajcn.2008.26142 19056580
    [Google Scholar]
  28. AmagaseH. PeteschB.L. MatsuuraH. KasugaS. ItakuraY. Intake of garlic and its bioactive components.J. Nutr.20011313955S962S10.1093/jn/131.3.955S 11238796
    [Google Scholar]
  29. KothariD. LeeW.D. NiuK.M. KimS.K. The genus Allium as poultry feed additive: A review.Animals2019912103210.3390/ani9121032 31779230
    [Google Scholar]
  30. BozinB. Mimica-DukicN. SamojlikI. GoranA. IgicR. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae).Food Chem.2008111492592910.1016/j.foodchem.2008.04.071 26050009
    [Google Scholar]
  31. WeinerL. ShinI. ShimonL.J.W. Thiol‐disulfide organization in alliin lyase (alliinase) from garlic (Allium sativum).Protein Sci.200918119620510.1002/pro.10 19177363
    [Google Scholar]
  32. StollA. SeebeckE. Chemical investigations on alliin, the specific principle of garlic.Adv. Enzymol. Relat. Areas Mol. Biol.19511137740010.1002/9780470122563.ch8 24540596
    [Google Scholar]
  33. MontañoA. BeatoV.M. MansillaF. OrgazF. Effect of genetic characteristics and environmental factors on organosulfur compounds in garlic (Allium sativum L.) grown in Andalusia, Spain.J. Agric. Food Chem.20115941301130710.1021/jf104494j 21247176
    [Google Scholar]
  34. LiuP. WengR. ShengX. Profiling of organosulfur compounds and amino acids in garlic from different regions of China.Food Chem.202030512549910.1016/j.foodchem.2019.125499 31606694
    [Google Scholar]
  35. ValentinoH. CampbellA.C. SchuermannJ.P. Structure and function of a flavin-dependent S-monooxygenase from garlic (Allium sativum).J. Biol. Chem.202029532110421105510.1074/jbc.RA120.014484 32527723
    [Google Scholar]
  36. Melguizo-RodríguezL. García-RecioE. RuizC. De Luna-BertosE. Illescas-MontesR. Costela-RuizV.J. Biological properties and therapeutic applications of garlic and its components.Food Funct.20221352415242610.1039/D1FO03180E 35174827
    [Google Scholar]
  37. HeH. MaY. HuangH. A comprehensive understanding about the pharmacological effect of diallyl disulfide other than its anti-carcinogenic activities.Eur. J. Pharmacol.202189317380310.1016/j.ejphar.2020.173803 33359648
    [Google Scholar]
  38. PuccinelliM. StanS. Dietary bioactive diallyl trisulfide in cancer prevention and treatment.Int. J. Mol. Sci.2017188164510.3390/ijms18081645 28788092
    [Google Scholar]
  39. BastakiS.M.A. OjhaS. KalaszH. AdeghateE. Chemical constituents and medicinal properties of Allium species.Mol. Cell. Biochem.2021476124301432110.1007/s11010‑021‑04213‑2 34420186
    [Google Scholar]
  40. Fernández-BedmarZ. Demyda-PeyrásS. Merinas-AmoT. del Río-CelestinoM. Nutraceutic potential of two Allium species and their distinctive organosulfur compounds: A multi-assay evaluation.Foods20198622210.3390/foods8060222 31234398
    [Google Scholar]
  41. De GreefD. BartonE.M. SandbergE.N. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review.Semin. Cancer Biol.20217321926410.1016/j.semcancer.2020.11.020 33301861
    [Google Scholar]
  42. HuG. CaiK. LiY. Significant inhibition of garlic essential oil on benzo[a]pyrene formation in charcoal-grilled pork sausages relates to sulfide compounds.Food Res. Int.202114111012710.1016/j.foodres.2021.110127 33641994
    [Google Scholar]
  43. MartinsN. PetropoulosS. FerreiraI.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review.Food Chem.2016211415010.1016/j.foodchem.2016.05.029 27283605
    [Google Scholar]
  44. AvgeriI. ZeliouK. PetropoulosS.A. BebeliP.J. PapasotiropoulosV. LamariF.N. Variability in bulb organosulfur compounds, sugars, phenolics, and pyruvate among greek garlic genotypes: association with antioxidant properties.Antioxidants202091096710.3390/antiox9100967 33050229
    [Google Scholar]
  45. Plata-RuedaA. MartínezL.C. SantosM.H.D. Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae).Sci. Rep.2017714640610.1038/srep46406 28425475
    [Google Scholar]
  46. TuratiF. PelucchiC. GuercioV. VecchiaC.L. GaleoneC. Allium vegetable intake and gastric cancer: A case–control study and meta‐analysis.Mol. Nutr. Food Res.201559117117910.1002/mnfr.201400496 25215621
    [Google Scholar]
  47. ZhouY. ZhuangW. HuW. LiuG.J. WuT.X. WuX.T. Consumption of large amounts of Allium vegetables reduces risk for gastric cancer in a meta-analysis.Gastroenterology20111411808910.1053/j.gastro.2011.03.057 21473867
    [Google Scholar]
  48. WangY. HuangP. WuY. Association and mechanism of garlic consumption with gastrointestinal cancer risk: A systematic review and meta analysis.Oncol. Lett.202223412510.3892/ol.2022.13245 35222725
    [Google Scholar]
  49. DalmartelloM. TuratiF. ZhangZ.F. Allium vegetables intake and the risk of gastric cancer in the Stomach cancer Pooling (StoP) Project.Br. J. Cancer2022126121755176410.1038/s41416‑022‑01750‑5 35210588
    [Google Scholar]
  50. KimH. KeumN. GiovannucciE.L. FuchsC.S. BaoY. Garlic intake and gastric cancer risk: Results from two large prospective US cohort studies.Int. J. Cancer201814351047105310.1002/ijc.31396 29569711
    [Google Scholar]
  51. LiW.Q. ZhangJ.Y. MaJ.L. Effects of Helicobacter pylori treatment and vitamin and garlic supplementation on gastric cancer incidence and mortality: Follow-up of a randomized intervention trial.BMJ2019366l501610.1136/bmj.l5016 31511230
    [Google Scholar]
  52. GuoY. LiZ.X. ZhangJ.Y. Association between lifestyle factors, vitamin and garlic supplementation, and gastric cancer outcomes.JAMA Netw. Open202036e20662810.1001/jamanetworkopen.2020.6628 32589229
    [Google Scholar]
  53. MaJ.L. ZhangL. BrownL.M. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality.J. Natl. Cancer Inst.2012104648849210.1093/jnci/djs003 22271764
    [Google Scholar]
  54. SuX.Q. YinZ.Y. JinQ.Y. Allium vegetable intake associated with the risk of incident gastric cancer: A continuous follow-up study of a randomized intervention trial.Am. J. Clin. Nutr.20231171223210.1016/j.ajcnut.2022.10.017 36789941
    [Google Scholar]
  55. NieC. HanX. WeiR. Association of ZNF331 and WIF1 methylation in peripheral blood leukocytes with the risk and prognosis of gastric cancer.BMC Cancer202121155110.1186/s12885‑021‑08199‑4 33992091
    [Google Scholar]
  56. QiaoL. WongB.C.Y. Targeting apoptosis as an approach for gastrointestinal cancer therapy.Drug Resist. Updat.2009123556410.1016/j.drup.2009.02.002 19278896
    [Google Scholar]
  57. CarneiroB.A. El-DeiryW.S. Targeting apoptosis in cancer therapy.Nat. Rev. Clin. Oncol.202017739541710.1038/s41571‑020‑0341‑y 32203277
    [Google Scholar]
  58. a ZhangW. HaM. GongY. XuY. DongN. YuanY. Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways.Oncol. Rep.20102461585159210.3892/or_00001021 21042755
    [Google Scholar]
  59. b Yuan HaM GongY XuY DongN YuanY. Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways.Oncol. Rep.20102461585159210.3892/or_00001021 21042755
    [Google Scholar]
  60. SunL. WangX. Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells.World J. Gastroenterol.2003991930193410.3748/wjg.v9.i9.1930 12970878
    [Google Scholar]
  61. LeeY. Induction of apoptosis by S-allylmercapto-L-cysteine, a biotransformed garlic derivative, on a human gastric cancer cell line.Int. J. Mol. Med.200821676577010.3892/ijmm.21.6.765 18506370
    [Google Scholar]
  62. SunH.J. MengL.Y. ShenY. ZhuY.Z. LiuH.R. S-benzyl-cysteine-mediated cell cycle arrest and apoptosis involving activation of mitochondrial-dependent caspase cascade through the p53 pathway in human gastric cancer SGC-7901 cells.Asian Pac. J. Cancer Prev.201314116379638410.7314/APJCP.2013.14.11.6379 24377536
    [Google Scholar]
  63. LingH. LuL.F. HeJ. XiaoG.H. JiangH. SuQ. Diallyl disulfide selectively causes checkpoint kinase-1 mediated G2/M arrest in human MGC803 gastric cancer cell line.Oncol. Rep.20143252274228210.3892/or.2014.3417 25176258
    [Google Scholar]
  64. BoS. HuiH. LiW. Chk1, but not Chk2, is responsible for G2/M phase arrest induced by diallyl disulfide in human gastric cancer BGC823 cells.Food Chem. Toxicol.201468617010.1016/j.fct.2014.03.007 24650757
    [Google Scholar]
  65. LingH. WenL. JiX.X. Growth inhibitory effect and Chk1-dependent signaling involved in G2/M arrest on human gastric cancer cells induced by diallyl disulfide.Braz. J. Med. Biol. Res.201043327127810.1590/S0100‑879X2010007500004 20401435
    [Google Scholar]
  66. ZhangX. ZhuY. DuanW. FengC. HeX. Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway.Mol. Med. Rep.20151142755276010.3892/mmr.2014.3109 25523417
    [Google Scholar]
  67. YuanJ.P. LingH. ZhangM.X. LiuY. SongY. SuQ. Diallyl disulfide-induced G2/M arrest of human gastric cancer MGC803 cells involves activation of p38 MAP kinase pathways.World J. Gastroenterol.20041018273110.3748/wjg.v10.i18.2731 14960237
    [Google Scholar]
  68. HaM.W. YuanY. Allicin induced cell cycle arrest in human gastric cancer cell lines.Zhonghua Zhong Liu Za Zhi20042610585589 15634516
    [Google Scholar]
  69. GeM. ZhuJ. YiK. Diallyl trisulfide inhibits gastric cancer stem cell properties through ΔNp63/sonic hedgehog pathway.Mol. Carcinog.202362111673168510.1002/mc.23607 37477518
    [Google Scholar]
  70. SuB. SuJ. ZengY. Diallyl disulfide inhibits TGF β1 induced upregulation of Rac1 and β catenin in epithelial mesenchymal transition and tumor growth of gastric cancer.Oncol. Rep.20183962797280610.3892/or.2018.6345 29620286
    [Google Scholar]
  71. SuB. SuJ. ZengY. Diallyl disulfide suppresses epithelial-mesenchymal transition, invasion and proliferation by downregulation of LIMK1 in gastric cancer.Oncotarget201679104981051210.18632/oncotarget.7252 26871290
    [Google Scholar]
  72. WangG. LiuG. YeY. FuY. ZhangX. Upregulation of miR-34a by diallyl disulfide suppresses invasion and induces apoptosis in SGC-7901 cells through inhibition of the PI3K/Akt signaling pathway.Oncol. Lett.20161142661266710.3892/ol.2016.4266 27073535
    [Google Scholar]
  73. JiangX. ZhuX. XuH. Diallyl trisulfide suppresses tumor growth through the attenuation of Nrf2/Akt and activation of p38/JNK and potentiates cisplatin efficacy in gastric cancer treatment.Acta Pharmacol. Sin.20173871048105810.1038/aps.2016.176 28344324
    [Google Scholar]
  74. WangJ. SiL. WangG. BaiZ. LiW. Increased sulfiredoxin expression in gastric cancer cells may be a molecular target of the anticancer component diallyl trisulfide.BioMed Res. Int.201920191810.1155/2019/4636804 30863778
    [Google Scholar]
  75. LeeJ.E. LeeR.A. KimK.H. LeeJ.H. Induction of apoptosis with diallyl disulfide in AGS gastric cancer cell line.J. Korean Surg. Soc.2011812859510.4174/jkss.2011.81.2.85 22066106
    [Google Scholar]
  76. LiN. GuoR. LiW. A proteomic investigation into a human gastric cancer cell line BGC823 treated with diallyl trisulfide.Carcinogenesis20062761222123110.1093/carcin/bgi306 16344271
    [Google Scholar]
  77. LiY. LuY.Y. Isolation of diallyl trisulfide inducible differentially expressed genes in human gastric cancer cells by modified cDNA representational difference analysis.DNA Cell Biol.2002211177178010.1089/104454902320908423 12489988
    [Google Scholar]
  78. ZhuX. JiangX. LiA. S-allylmercaptocysteine suppresses the growth of human gastric cancer xenografts through induction of apoptosis and regulation of MAPK and PI3K/Akt signaling pathways.Biochem. Biophys. Res. Commun.2017491382182610.1016/j.bbrc.2017.06.107 28642133
    [Google Scholar]
  79. HuP-J. WargovichM.J. Effect of diallyl sulfide on MNNG-induced nuclear aberrations and ornithine decarboxylase activity in the glandular stomach mucosa of the Wistar rat.Cancer Lett.1989471-215315810.1016/0304‑3835(89)90192‑4 2636029
    [Google Scholar]
  80. ShiraniM. PakzadR. HaddadiM.H. The global prevalence of gastric cancer in Helicobacter pylori-infected individuals: A systematic review and meta-analysis.BMC Infect. Dis.202323154310.1186/s12879‑023‑08504‑5 37598157
    [Google Scholar]
  81. MalfertheinerP. CamargoM.C. El-OmarE. Helicobacter pylori infection.Nat. Rev. Dis. Primers2023911910.1038/s41572‑023‑00431‑8 37081005
    [Google Scholar]
  82. PiscioneM. MazzoneM. Di MarcantonioM.C. MuraroR. MincioneG. Eradication of Helicobacter pylori and gastric cancer: A controversial relationship.Front. Microbiol.20211263085210.3389/fmicb.2021.630852 33613500
    [Google Scholar]
  83. SenchukovaM.A. Helicobacter pylori and gastric cancer progression.Curr. Microbiol.2022791238310.1007/s00284‑022‑03089‑9 36329283
    [Google Scholar]
  84. YangS. HaoS. YeH. ZhangX. Cross-talk between Helicobacter pylori and gastric cancer: A scientometric analysis.Front. Cell. Infect. Microbiol.202414135309410.3389/fcimb.2024.1353094 38357448
    [Google Scholar]
  85. WangF. MengW. WangB. QiaoL. Helicobacter pylori-induced gastric inflammation and gastric cancer.Cancer Lett.2014345219620210.1016/j.canlet.2013.08.016 23981572
    [Google Scholar]
  86. WroblewskiL.E. PeekR.M.Jr Helicobacter pylori, cancer, and the gastric microbiota.Adv. Exp. Med. Biol.201690839340810.1007/978‑3‑319‑41388‑4_19 27573782
    [Google Scholar]
  87. Portal-CelhayC. Perez-PerezG.I. Immune responses to Helicobacter pylori colonization: Mechanisms and clinical outcomes.Clin. Sci.2006110330531410.1042/CS20050232 16464172
    [Google Scholar]
  88. WangS-K. ZhuH-F. HeB-S. H pylori infection is associated with polarization of T helper cell immune responses in gastric carcinogenesis. World journal of gastroenterology.WJG20071321292310.3748/wjg.v13.i21.2923 17589941
    [Google Scholar]
  89. Takahashi-KanemitsuA. KnightC.T. HatakeyamaM. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis.Cell. Mol. Immunol.2020171506310.1038/s41423‑019‑0339‑5 31804619
    [Google Scholar]
  90. HatakeyamaM. Oncogenic mechanisms of the Helicobacter pylori CagA protein.Nat. Rev. Cancer20044968869410.1038/nrc1433 15343275
    [Google Scholar]
  91. SalvatoriS. MarafiniI. LaudisiF. MonteleoneG. StolfiC. Helicobacter pylori and gastric cancer: Pathogenetic mechanisms.Int. J. Mol. Sci.2023243289510.3390/ijms24032895 36769214
    [Google Scholar]
  92. SivamG.P. Protection against Helicobacter pylori and other bacterial infections by garlic.J. Nutr.200113131106S1108S10.1093/jn/131.3.1106S 11238826
    [Google Scholar]
  93. SiX.B. ZhangX.M. WangS. LanY. ZhangS. HuoL.Y. Allicin as add-on therapy for Helicobacter pylori infection: A systematic review and meta-analysis.World J. Gastroenterol.201925396025604010.3748/wjg.v25.i39.6025 31660038
    [Google Scholar]
  94. LiZ. YingX. ShanF. JiJ. The association of garlic with Helicobacter pylori infection and gastric cancer risk: A systematic review and meta‐analysis.Helicobacter2018235e1253210.1111/hel.12532 30155945
    [Google Scholar]
  95. ZardastM. NamakinK. Esmaelian KahoJ. HashemiS.S. Assessment of antibacterial effect of garlic in patients infected with Helicobacter pylori using urease breath test.Avicenna J. Phytomed.201665495501 27761418
    [Google Scholar]
  96. SitarzR. SkieruchaM. MielkoJ. OfferhausJ. MaciejewskiR. PolkowskiW. Gastric cancer: Epidemiology, prevention, classification, and treatment.Cancer Manag. Res.20181023924810.2147/CMAR.S149619 29445300
    [Google Scholar]
  97. ZhengT. WangJ. ChenX. LiuL. Role of microRNA in anticancer drug resistance.Int. J. Cancer2010126121010.1002/ijc.24782 19634138
    [Google Scholar]
  98. SiW. ShenJ. ZhengH. FanW. The role and mechanisms of action of microRNAs in cancer drug resistance.Clin. Epigenetics20191112510.1186/s13148‑018‑0587‑8 30744689
    [Google Scholar]
  99. GottesmanM.M. LaviO. HallM.D. GilletJ.P. Toward a better understanding of the complexity of cancer drug resistance.Annu. Rev. Pharmacol. Toxicol.20165618510210.1146/annurev‑pharmtox‑010715‑103111 26514196
    [Google Scholar]
  100. OritaH. MaeharaY. AnaiH. Expression of P‐glycoprotein influences resistance against anthracyclines in clinical gastric carcinomas.Semin. Surg. Oncol.199410213513910.1002/ssu.2980100215 7914378
    [Google Scholar]
  101. JeddiF. SoozangarN. SadeghiM.R. Nrf2 overexpression is associated with P-glycoprotein upregulation in gastric cancer.Biomed. Pharmacother.20189728629210.1016/j.biopha.2017.10.129 29091877
    [Google Scholar]
  102. ChoY. KimY.K. Cancer stem cells as a potential target to overcome multidrug resistance.Front. Oncol.20201076410.3389/fonc.2020.00764 32582535
    [Google Scholar]
  103. ChenT. YangK. YuJ. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients.Cell Res.201222124825810.1038/cr.2011.109 21727908
    [Google Scholar]
  104. ShibueT. WeinbergR.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications.Nat. Rev. Clin. Oncol.2017141061162910.1038/nrclinonc.2017.44 28397828
    [Google Scholar]
  105. ReedJ.C. Bcl-2–family proteins and hematologic malignancies: History and future prospects.Blood200811173322333010.1182/blood‑2007‑09‑078162 18362212
    [Google Scholar]
  106. ThomadakiH. ScorilasA. BCL2 family of apoptosis-related genes: Functions and clinical implications in cancer.Crit. Rev. Clin. Lab. Sci.200643116710.1080/10408360500295626 16531274
    [Google Scholar]
  107. GengM. WangL. LiP. Correlation between chemosensitivity to anticancer drugs and Bcl-2 expression in gastric cancer.Int. J. Clin. Exp. Pathol.201361125542559 24228120
    [Google Scholar]
  108. LiuR. ChenY. LiuG. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers.Cell Death Dis.202011979710.1038/s41419‑020‑02998‑6 32973135
    [Google Scholar]
  109. Bentires-AljM. BarbuV. FilletM. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells.Oncogene2003221909710.1038/sj.onc.1206056 12527911
    [Google Scholar]
  110. SchitoL. SemenzaG.L. Hypoxia-inducible factors: Master regulators of cancer progression.Trends Cancer201621275877010.1016/j.trecan.2016.10.016 28741521
    [Google Scholar]
  111. SemenzaG.L. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy.Trends Pharmacol. Sci.201233420721410.1016/j.tips.2012.01.005 22398146
    [Google Scholar]
  112. BrodzickaA. GalantyA. PaśkoP. Modulation of multidrug resistance transporters by food components and dietary supplements: Implications for cancer therapy efficacy and safety.Curr. Issues Mol. Biol.20244699686970610.3390/cimb46090576 39329928
    [Google Scholar]
  113. TinoushB. ShirdelI. WinkM. Phytochemicals: Potential lead molecules for MDR reversal.Front. Pharmacol.20201183210.3389/fphar.2020.00832 32636741
    [Google Scholar]
  114. IciekM. KwiecieńI. WłodekL. Biological properties of garlic and garlic‐derived organosulfur compounds.Environ. Mol. Mutagen.200950324726510.1002/em.20474 19253339
    [Google Scholar]
  115. KhakbazP. PanahizadehR. VatankhahM.A. NajafzadehN. Allicin reduces 5-fluorouracil-resistance in gastric cancer cells through modulating MDR1, DKK1, and WNT5A expression.Drug Res.202171844845410.1055/a‑1525‑1499 34261152
    [Google Scholar]
  116. AntonyM.L. SinghS.V. Molecular mechanisms and targets of cancer chemoprevention by garlic-derived bioactive compound diallyl trisulfide.Indian J. Exp. Biol.20114911805816 22126011
    [Google Scholar]
  117. GanDX Injectable garlic formulation and a method of using the injectable garlic formulation.Patent US20220118044A12022
  118. JeonR RyuJ-H HyewonC Yoon-JungK Sang-HyunM Ji-HoonY Organic sulfur compound, method for preparing same, and pharmaceutical composition for preventing or treating cancer or an inflammatory disease, containing same as active ingredient.Patent US11230525B2 2022
  119. RabinkovA MironT MirelmanD WilchekM Site-specific in situ generation of allicin using a targeted alliinase delivery system for the treatment of cancers, tumors, infectious diseases and other allicin-sensitive diseases.Patent US7445802B22008
  120. BaiX.W.J. Medicinal composition for treating gastric cancerPatent CN102552652 (A)2012
  121. ZhongC. Traditional Chinese medicine composition for treating gastric cancer.Patent CN113368205 (A)2021
  122. KimSB KimGS KimWB KwakWJ BangSH Composition comprising S-Allyl-L-Cysteine as active ingredient for preventing or treating gastrointestinal disorders.Patent US20120196936A12012
  123. XinR. Preparation method and application of plant cell enzymolysis extract for treating helicobacter pylori.Patent CN117379521 (A),2014
  124. FarmerS AlibekK TskhayA Compositions and methods for treating and preventing helicobacter pylori infections.Patent US20220096587A1,2022
  125. AlsinaM. ArrazubiV. DiezM. TaberneroJ. Current developments in gastric cancer: From molecular profiling to treatment strategy.Nat. Rev. Gastroenterol. Hepatol.202320315517010.1038/s41575‑022‑00703‑w 36344677
    [Google Scholar]
  126. LiJ. WangY.F. ShenZ.C. ZouQ. LinX.F. WangX.Y. Recent developments on natural polysaccharides as potential anti-gastric cancer substance: Structural feature and bioactivity.Int. J. Biol. Macromol.202323212339010.1016/j.ijbiomac.2023.123390 36706878
    [Google Scholar]
  127. StępieńA.E. TrojniakJ. TabarkiewiczJ. Anti-cancer and anti-inflammatory properties of black garlic.Int. J. Mol. Sci.2024253180110.3390/ijms25031801 38339077
    [Google Scholar]
  128. Sánchez-GloriaJ.L. RadaK.M. Juárez-RojasJ.G. Role of sulfur compounds in garlic as potential therapeutic option for inflammation and oxidative stress in asthma.Int. J. Mol. Sci.202223241559910.3390/ijms232415599 36555240
    [Google Scholar]
  129. SharmaV. SinhaE. SinghJ. Investigation of in-vitro anti-cancer and apoptotic potential of garlic-derived nanovesicles against prostate and cervical cancer cell lines.Asian Pac. J. Cancer Prev.202425257558510.31557/APJCP.2024.25.2.575 38415544
    [Google Scholar]
  130. LawsonL.D. GardnerC.D. Composition, stability, and bioavailability of garlic products used in a clinical trial.J. Agric. Food Chem.200553166254626110.1021/jf050536+ 16076102
    [Google Scholar]
  131. LawsonL.D. HunsakerS.M. Allicin bioavailability and bioequivalence from garlic supplements and garlic foods.Nutrients201810781210.3390/nu10070812 29937536
    [Google Scholar]
/content/journals/pra/10.2174/0115748928367900250116074925
Loading
/content/journals/pra/10.2174/0115748928367900250116074925
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test