Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Breast cancer is a public health issue in developing and developed countries. Nowadays, the concept of BCSC (breast cancer stem cell) is gaining popularity among oncology researchers. The breast cancer stem cell is a tiny cell fraction inside the tumor mass that shows features that look like stem cells that are implicated in the genesis, recurrence, and metastasis of breast cancer tumors. Extracellular cues, mutations, and epigenetic control all contribute to the intricacy of gene expression control in Breast cancer stem cells. Thus, signaling pathways identified in breast cancer are Hedgehog and NOTCH, signal transducer and transcription 3, wingless-type MMTV integration site family (Wnt)/-catenin, and nuclear factor-kappa B, particularly connected with a phenotype of stem cell. Furthermore, the tumor microenvironment, such as hypoxic regions, can impact these BCSCs. Various approved signaling pathway targeted molecules have been patented, which show protective effects against breast cancer and have been used in clinical uses. PARP inhibitors are found to be very useful in the treatment of breast cancer. Promoting studies on the molecular pathways underlying the development of cancer in breast cancer patients was one of the main objectives of this study topic. The objective of this review Topic was to discover new intrinsic and extrinsic molecular pathways. Research focusing on novel signaling pathways that may lead to novel treatments or identifying patients at-risk of not responding to standard therapy approaches were the areas of focus we highlighted. The paper covers the linkage between breast cancer stem cells and cellular signaling, the tumor microenvironment in BC, and the relevance of signaling pathways and their therapeutic interventions. The review also covered patent applications associated with these signaling pathways and their prospects.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928267931231120065335
2024-01-19
2025-09-21
Loading full text...

Full text loading...

References

  1. SopikV. SunP. NarodS.A. Impact of microinvasion on breast cancer mortality in women with ductal carcinoma in situ.Breast Cancer Res. Treat.2018167378779510.1007/s10549‑017‑4572‑2 29119353
    [Google Scholar]
  2. MonticcioloD.L. NewellM.S. MoyL. NiellB. MonseesB. SicklesE.A. Breast cancer screening in women at higher-than-average risk: Recommendations from the ACR.J. Am. Coll. Radiol.201815340841410.1016/j.jacr.2017.11.034 29371086
    [Google Scholar]
  3. FengY. SpeziaM. HuangS. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis.Genes Dis.2018527710610.1016/j.gendis.2018.05.001 30258937
    [Google Scholar]
  4. GaleaM. Benign breast disorders. United Kingdom.Surgery2019vol 37151156
    [Google Scholar]
  5. RuedaO.M. SammutS.J. SeoaneJ.A. Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups.Nature2019567774839940410.1038/s41586‑019‑1007‑8 30867590
    [Google Scholar]
  6. JiaY. ShiL. YunF. Transcriptome sequencing profiles reveal lncRNAs may involve in breast cancer (ER/PR positive type) by interaction with RAS associated genes.Pathol. Res. Pract.2019215615240510.1016/j.prp.2019.03.033 30981459
    [Google Scholar]
  7. GaoX. DongQ.Z. Advance in metabolism and target therapy in breast cancer stem cells.World J. Stem Cells202012111295130610.4252/wjsc.v12.i11.1295 33312399
    [Google Scholar]
  8. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑5 32517735
    [Google Scholar]
  9. ThakurV. KuttyR.V. Recent advances in nanotheranostics for triple negative breast cancer treatment.J. Exp. Clin. Cancer Res.201938143010.1186/s13046‑019‑1443‑1 31661003
    [Google Scholar]
  10. DemisseiB.G. FreedmanG. FeigenbergS.J. Early changes in cardiovascular biomarkers with contemporary thoracic radiation therapy for breast cancer, lung cancer, and lymphoma.Int. J. Radiat. Oncol. Biol. Phys.2019103485186010.1016/j.ijrobp.2018.11.013 30445173
    [Google Scholar]
  11. FosterB. SindhuK. HepelJ. Three-dimensional bioabsorbable tissue marker placement is associated with decreased tumor bed volume among patients receiving radiation therapy for breast cancer.Pract. Radiat. Oncol.201992e134e14110.1016/j.prro.2018.09.005 30268431
    [Google Scholar]
  12. LiJ. LiuG. JiY. Switching to anastrozole plus goserelin vs continued tamoxifen for adjuvant therapy of premenopausal early-stage breast cancer: preliminary results from a randomized trial.Cancer Manag. Res.20181129930710.2147/CMAR.S183672 30643455
    [Google Scholar]
  13. NakatsukasaK. KoyamaH. OuchiY. Effects of denosumab on bone mineral density in Japanese women with osteoporosis treated with aromatase inhibitors for breast cancer.J. Bone Miner. Metab.201937230130610.1007/s00774‑018‑0917‑0 29520506
    [Google Scholar]
  14. LandercasperJ. RamirezL.D. BorgertA.J. A reappraisal of the comparative effectiveness of lumpectomy versus mastectomy on breast cancer survival: A propensity score–matched update from the national cancer data base (NCDB).Clin. Breast Cancer2019193e481e49310.1016/j.clbc.2019.02.006 30878300
    [Google Scholar]
  15. TangJ.Y. HoY. ChangC.Y. LiuH.L. Discovery of novel irreversible her2 inhibitors for breast cancer treatment.J. Biomed. Sci. Eng.201912422524410.4236/jbise.2019.124016
    [Google Scholar]
  16. SinW.C. LimC.L. Breast cancer stem cells—from origins to targeted therapy.Stem Cell Investig.20174129610.21037/sci.2017.11.03 29270422
    [Google Scholar]
  17. ChiotakiR. PolioudakiH. TheodoropoulosP.A. Stem cell technology in breast cancer: Current status and potential applications.Stem Cells Cloning201691729 27217783
    [Google Scholar]
  18. SuterR. MarcumJ.A. The molecular genetics of breast cancer and targeted therapy.Biologics200713241258 19707334
    [Google Scholar]
  19. Al-HajjM. ClarkeM.F. Self-renewal and solid tumor stem cells.Oncogene200423437274728210.1038/sj.onc.1207947 15378087
    [Google Scholar]
  20. GangopadhyayS. NandyA. HorP. MukhopadhyayA. Breast cancer stem cells: A novel therapeutic target.Clin. Breast Cancer201313171510.1016/j.clbc.2012.09.017 23127340
    [Google Scholar]
  21. Olivares-UrbanoM.A. Griñán-LisónC. MarchalJ.A. NúñezM.I. CSC radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in Cancer.Cells202097165110.3390/cells9071651 32660072
    [Google Scholar]
  22. De AngelisM. FrancescangeliF. ZeunerA. Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: New challenges and therapeutic opportunities. Vol. 11.Cancers20191110156910.3390/cancers11101569 31619007
    [Google Scholar]
  23. WangY. ZhangY. HuangQ. LiC. Integrated bioinformatics analysis reveals key candidate genes and pathways in breast cancer.Mol. Med. Rep.20181768091810010.3892/mmr.2018.8895 29693125
    [Google Scholar]
  24. DeyP. RathodM. DeA. Targeting stem cells in the realm of drug-resistant breast cancer.Breast Cancer20191111513510.2147/BCTT.S189224
    [Google Scholar]
  25. PalomerasS. Ruiz-MartínezS. PuigT. Targeting breast cancer stem cells to overcome treatment resistance. Vol. 23.Molecules2018239219310.3390/molecules23092193 30200262
    [Google Scholar]
  26. PindiproluS.K.S.S. KrishnamurthyP.T. ChintamaneniP.K. KarriV.V.S.R. Nanocarrier based approaches for targeting breast cancer stem cells.Artif. Cells Nanomed. Biotechnol.201846588589810.1080/21691401.2017.1366337 28826237
    [Google Scholar]
  27. PratA. ParkerJ.S. KarginovaO. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer.Breast Cancer Res.2010125R6810.1186/bcr2635 20813035
    [Google Scholar]
  28. SabatierR. FinettiP. GuilleA. Claudin-low breast cancers: Clinical, pathological, molecular and prognostic characterization.Mol. Cancer201413122810.1186/1476‑4598‑13‑228 25277734
    [Google Scholar]
  29. DiasK. Dvorkin-GhevaA. HallettR.M. Claudin-low breast cancer; clinical & pathological characteristics.PLoS One2017121e016866910.1371/journal.pone.0168669 28045912
    [Google Scholar]
  30. ABC of breast diseases: Breast cancer—epidemiology, risk factors, and genetics. Vol. 321.BMJ20001198
    [Google Scholar]
  31. MikiY. SwensenJ. Shattuck-EidensD. FutrealP.A. HarshmanK. TavtigianS. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1.Science19942665182667110.1126/science.7545954
    [Google Scholar]
  32. EastonD. FordD. PetoJ. Inherited susceptibility to breast cancer.Cancer Surv.19931895113 8013003
    [Google Scholar]
  33. MamouchF. BerradaN. AoullayZ. El KhanoussiB. ErrihaniH. Inflammatory breast cancer: A literature review.World J. Oncol.201895-612913510.14740/wjon1161 30524636
    [Google Scholar]
  34. LevineP.H. SteinhornS.C. RiesL.G. AronJ.L. Inflammatory breast cancer: the experience of the surveillance, epidemiology, and end results (SEER) program.J. Natl. Cancer Inst.1985742291297 3856043
    [Google Scholar]
  35. HanceK.W. AndersonW.F. DevesaS.S. YoungH.A. LevineP.H. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute.J. Natl. Cancer Inst.2005971396697510.1093/jnci/dji172 15998949
    [Google Scholar]
  36. GiulianoA.E. EdgeS.B. HortobagyiG.N. Cancer staging manual: Breast cancer. In: Annals of Surgical Oncology.201817835
    [Google Scholar]
  37. Neratinib + fulvestrant + trastuzumab for HR-positive, HER2-negative, HER2-mutant metastatic breast cancer: Outcomes and biomarker analysis from the SUMMIT trial.Ann. Oncol.2012
    [Google Scholar]
  38. Van LaereS. Van der AuweraI. Van den EyndenG. Distinct molecular phenotype of inflammatory breast cancer compared to non-inflammatory breast cancer using Affymetrix-based genome-wide gene-expression analysis.Br. J. Cancer20079781165117410.1038/sj.bjc.6603967 17848951
    [Google Scholar]
  39. KatohH. WangD. DaikokuT. SunH. DeyS.K. DuBoisR.N. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis.Cancer Cell201324563164410.1016/j.ccr.2013.10.009 24229710
    [Google Scholar]
  40. Van LaereS. Van der AuweraI. Van den EyndenG.G. Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis.Breast Cancer Res. Treat.200593323724610.1007/s10549‑005‑5157‑z 16172796
    [Google Scholar]
  41. NiwaY. KandaH. ShikauchiY. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma.Oncogene200524426406641710.1038/sj.onc.1208788 16007195
    [Google Scholar]
  42. OvermoyerB AlmendroV ShuS PeluffoG ParkS NakhlisF. Abstract P4-06-01: JAK2/STAT3 activity in inflammatory breast cancer supports the investigation of JAK2 therapeutic targeting.Cancer Res.201272S24P4-06-01-P4-06–01
    [Google Scholar]
  43. MarottaL.L.C. AlmendroV. MarusykA. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24– stem cell–like breast cancer cells in human tumors.J. Clin. Invest.201112172723273510.1172/JCI44745 21633165
    [Google Scholar]
  44. VanL.S.J. Van Der AuweraI. Van Den EyndenG.G. ElstH.J. WeylerJ. HarrisA.L. Nuclear factor-κB signature of inflammatory breast cancer by cDNA microarray validated by quantitative real-time reverse transcription-PCR, immunohistochemistry, and nuclear factor-κB DNA-binding.Clin. Cancer Res.2006121132493256
    [Google Scholar]
  45. LereboursF. VacherS. AndrieuC. NF-kappa B genes have a major role in Inflammatory Breast Cancer.BMC Cancer2008814110.1186/1471‑2407‑8‑41 18248671
    [Google Scholar]
  46. PanQ. BaoL.W. MerajverS.D. Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NFkappaB signaling cascade.Mol. Cancer Res.2003110701706 12939395
    [Google Scholar]
  47. WangD. DuBoisR.N. Immunosuppression associated with chronic inflammation in the tumor microenvironment.Carcinogenesis201536101085109310.1093/carcin/bgv123 26354776
    [Google Scholar]
  48. ScioliM.G. StortiG. D’AmicoF. The role of breast cancer stem cells as a prognostic marker and a target to improve the efficacy of breast cancer therapy. Vol. 11.Cancers2019117102110.3390/cancers11071021 31330794
    [Google Scholar]
  49. Al-HajjM. WichaM.S. Benito-HernandezA. MorrisonS.J. ClarkeM.F. Prospective identification of tumorigenic breast cancer cells.Proc. Natl. Acad. Sci.200310073983398810.1073/pnas.0530291100 12629218
    [Google Scholar]
  50. BadveS. NakshatriH. Breast-cancer stem cells—beyond semantics.Lancet Oncol.2012131e43e4810.1016/S1470‑2045(11)70191‑7
    [Google Scholar]
  51. AlanaziI.O. KhanZ. Understanding EGFR signaling in breast cancer and breast cancer stem cells: Overexpression and therapeutic implications. Vol. 17.Asian Pac. J. Cancer Prev.201617244545310.7314/APJCP.2016.17.2.445 26925626
    [Google Scholar]
  52. KoC.C.H. ChiaW.K. SelvarajahG.T. CheahY.K. WongY.P. TanG.C. The role of Breast cancer stem cell-related biomarkers as prognostic factors. Vol. 10.Diagnostics202010972110.3390/diagnostics10090721
    [Google Scholar]
  53. TanS. YamashitaA. GaoS.J. KurisawaM. Hyaluronic acid hydrogels with defined crosslink density for the efficient enrichment of breast cancer stem cells.Acta Biomater.20199432032910.1016/j.actbio.2019.05.040 31125725
    [Google Scholar]
  54. YangF. XuJ. TangL. GuanX. Breast cancer stem cell: The roles and therapeutic implications.Cell. Mol. Life Sci.201774695196610.1007/s00018‑016‑2334‑7 27530548
    [Google Scholar]
  55. LiuX. GaoJ. SunY. Mutation of N-linked glycosylation in EpCAM affected cell adhesion in breast cancer cells.Biol. Chem.2017398101119112610.1515/hsz‑2016‑0232 28315854
    [Google Scholar]
  56. PascualG. AvgustinovaA. MejettaS. Targeting metastasis-initiating cells through the fatty acid receptor CD36.Nature20175417635414510.1038/nature20791 27974793
    [Google Scholar]
  57. NilenduP. KumarA. KumarA. PalJ.K. SharmaN.K. Breast cancer stem cells as last soldiers eluding therapeutic burn: A hard nut to crack.Int. J. Cancer2018142171710.1002/ijc.30898 28722143
    [Google Scholar]
  58. CollinaF. Di BonitoM. Li BergolisV. De LaurentiisM. VitaglianoC. CerroneM. Prognostic value of cancer stem cells markers in triple-negative breast cancer.Biomed Res. Int.2015201515868210.1155/2015/158682
    [Google Scholar]
  59. SuyamaK. OnishiH. ImaizumiA. CD24 suppresses malignant phenotype by downregulation of SHH transcription through STAT1 inhibition in breast cancer cells.Cancer Lett.20163741445310.1016/j.canlet.2015.12.013 26797459
    [Google Scholar]
  60. WangZ. WangN. LiW. Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway.Carcinogenesis201435102346235610.1093/carcin/bgu155 25085904
    [Google Scholar]
  61. EvansM.K. BrownM.C. GeradtsJ. XIAP regulation by MNK links MAPK and NFkB signaling to determine an aggressive breast cancer phenotype.Cancer Res.20187871726173810.1158/0008‑5472.CAN‑17‑1667 29351901
    [Google Scholar]
  62. CuiJ. LiP. LiuX. HuH. WeiW. Abnormal expression of the Notch and Wnt/β-catenin signaling pathways in stem-like ALDHhiCD44+ cells correlates highly with Ki-67 expression in breast cancer.Oncol. Lett.2015941600160610.3892/ol.2015.2942 25789008
    [Google Scholar]
  63. BourguignonL.Y.W. SpevakC.C. WongG. Abstract 2039: Hyaluronan-CD44 interaction with PKCε promotes oncogenic signaling by the stem cell marker, Nanog and the production of microRNA-21 leading to downregulation of the tumor suppressor protein, PDCD4, anti-apoptosis and chemotherapy resistance in breast tumor cells.Cancer Res.201070S82039910.1158/1538‑7445.AM10‑2039
    [Google Scholar]
  64. ChenL. BourguignonL.Y.W. Hyaluronan-CD44 interaction promotes c-Jun signaling and miRNA21 expression leading to Bcl-2 expression and chemoresistance in breast cancer cells.Mol. Cancer20141315210.1186/1476‑4598‑13‑52 24606718
    [Google Scholar]
  65. BourguignonL.Y.W. WongG. EarleC. KruegerK. SpevakC.C. Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion.J. Biol. Chem.201028547367213673510.1074/jbc.M110.162305 20843787
    [Google Scholar]
  66. YoshidaK. YamamotoY. OchiyaT. miRNA signaling networks in cancer stem cells.Regen. Ther.2021171710.1016/j.reth.2021.01.004 33598508
    [Google Scholar]
  67. LeichterA.L. SullivanM.J. EcclesM.R. ChatterjeeA. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours.Mol. Cancer20171611510.1186/s12943‑017‑0584‑0 28103887
    [Google Scholar]
  68. KhanA.Q. AhmedE.I. ElareerN.R. JunejoK. SteinhoffM. UddinS. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies.Cells20198884010.3390/cells8080840
    [Google Scholar]
  69. SiW. ShenJ. ZhengH. FanW. The role and mechanisms of action of microRNAs in cancer drug resistance.Clin. Epigenetics20191112510.1186/s13148‑018‑0587‑8 30744689
    [Google Scholar]
  70. HanM. LiuM. WangY. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN.PLoS One201276e3952010.1371/journal.pone.0039520 22761812
    [Google Scholar]
  71. SongS.J. PolisenoL. SongM.S. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling.Cell2013154231132410.1016/j.cell.2013.06.026 23830207
    [Google Scholar]
  72. TroschelF.M. BöhlyN. BorrmannK. miR-142-3p attenuates breast cancer stem cell characteristics and decreases radioresistance in vitro.Tumour Biol.201840810.1177/1010428318791887 30091683
    [Google Scholar]
  73. ChuJ. LiY. FanX. MiR-4319 suppress the malignancy of triple-negative breast cancer by regulating self-renewal and tumorigenesis of stem cells.Cell. Physiol. Biochem.201848259360410.1159/000491888 30021199
    [Google Scholar]
  74. El HelouR. PinnaG. CabaudO. miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling.Cell Rep.20171892256226810.1016/j.celrep.2017.02.016 28249169
    [Google Scholar]
  75. LiuT. HuK. ZhaoZ. MicroRNA-1 down-regulates proliferation and migration of breast cancer stem cells by inhibiting the Wnt/β-catenin pathway.Oncotarget2015639416384164910.18632/oncotarget.5873 26497855
    [Google Scholar]
  76. FuH. FuL. XieC. miR-375 inhibits cancer stem cell phenotype and tamoxifen resistance by degrading HOXB3 in human ER-positive breast cancer.Oncol. Rep.20173721093109910.3892/or.2017.5360 28075453
    [Google Scholar]
  77. BozorgiA. KhazaeiS. KhademiA. KhazaeiM. Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells.Iran. J. Basic Med. Sci.2020238970983 32952942
    [Google Scholar]
  78. PaineE. PalmantierR. AkiyamaS.K. OldenK. RobertsJ.D. Arachidonic acid activates mitogen-activated protein (MAP) kinase-activated protein kinase 2 and mediates adhesion of a human breast carcinoma cell line to collagen type IV through a p38 MAP kinase-dependent pathway.J. Biol. Chem.200027515112841129010.1074/jbc.275.15.11284 10753939
    [Google Scholar]
  79. YousefniaS. Seyed ForootanF. Seyed ForootanS. Nasr EsfahaniM.H. GureA.O. GhaediK. Mechanistic pathways of malignancy in breast cancer stem cells.Front. Oncol.20201045210.3389/fonc.2020.00452 32426267
    [Google Scholar]
  80. SantenR.J. SongR.X. McPhersonR. The role of mitogen-activated protein (MAP) kinase in breast cancer.J. Steroid Biochem. Mol. Biol.200280223925610.1016/S0960‑0760(01)00189‑3 11897507
    [Google Scholar]
  81. JiangW. WangX. ZhangC. XueL. YangL. Expression and clinical significance of MAPK and EGFR in triple negative breast cancer.Oncol. Lett.20201931842184810.3892/ol.2020.11274 32194678
    [Google Scholar]
  82. XuM. WangS. WangY. Role of p38γ MAPK in regulation of EMT and cancer stem cells.Biochim. Biophys. Acta Mol. Basis Dis.20181864113605361710.1016/j.bbadis.2018.08.024 30251680
    [Google Scholar]
  83. LeeJ.J.X. LohK. YapY.S. PI3K/Akt/mTOR inhibitors in breast cancer.Cancer Biol. Med.2015124342354 26779371
    [Google Scholar]
  84. PaplomataE. O’ReganR. The PI3K/AKT/mTOR pathway in breast cancer: Targets, trials and biomarkers.Ther. Adv. Med. Oncol.20146415416610.1177/1758834014530023 25057302
    [Google Scholar]
  85. Gonzalez-AnguloA.M. BlumenscheinG.R.Jr Defining biomarkers to predict sensitivity to PI3K/Akt/mTOR pathway inhibitors in breast cancer.Cancer Treat. Rev.201339431332010.1016/j.ctrv.2012.11.002 23218708
    [Google Scholar]
  86. CarmonaF.J. MontemurroF. KannanS. AKT signaling in ERBB2-amplified breast cancer.Pharmacol. Ther.2016158637010.1016/j.pharmthera.2015.11.013 26645663
    [Google Scholar]
  87. DethlefsenC. HøjfeldtG. HojmanP. The role of intratumoral and systemic IL-6 in breast cancer.Breast Cancer Res. Treat.2013138365766410.1007/s10549‑013‑2488‑z 23532539
    [Google Scholar]
  88. SunX. ZhangJ. WangZ. Shp2 plays a critical role in IL-6-induced EMT in breast cancer cells.Int. J. Mol. Sci.201718239510.3390/ijms18020395 28208810
    [Google Scholar]
  89. AmirS. SimionC. Umeh-GarciaM. Regulation of the T-box transcription factor Tbx3 by the tumour suppressor microRNA-206 in breast cancer.Br. J. Cancer2016114101125113410.1038/bjc.2016.73 27100732
    [Google Scholar]
  90. WillmerT. CooperA. PeresJ. OmarR. PrinceS. The T-Box transcription factor 3 in development and cancer.Biosci. Trends201711325426610.5582/bst.2017.01043 28579578
    [Google Scholar]
  91. FrydrychowiczM. BoruczkowskiM. Kolecka-BednarczykA. DworackiG. The dual role of treg in cancer.Scand. J. Immunol.201786643644310.1111/sji.12615 28941312
    [Google Scholar]
  92. SiglV. JonesL.P. PenningerJ.M. RANKL/RANK: From bone loss to the prevention of breast cancer.Open Biol.201661116023010.1098/rsob.160230 27881737
    [Google Scholar]
  93. ZhangY. WangX. Targeting the Wnt/β-catenin signaling pathway in cancer.J. Hematol. Oncol.202013116510.1186/s13045‑020‑00990‑3
    [Google Scholar]
  94. ChatterjeeA. PaulS. BishtB. BhattacharyaS. SivasubramaniamS. PaulM.K. Advances in targeting the WNT/β-catenin signaling pathway in cancer.Drug Discov. Today20222718210110.1016/j.drudis.2021.07.007 34252612
    [Google Scholar]
  95. YanY. LiuF. HanL. HIF-2α promotes conversion to a stem cell phenotype and induces chemoresistance in breast cancer cells by activating Wnt and Notch pathways.J. Exp. Clin. Cancer Res.201837125610.1186/s13046‑018‑0925‑x
    [Google Scholar]
  96. SahinI. EturiA. De SouzaA. Glycogen synthase kinase-3 beta inhibitors as novel cancer treatments and modulators of antitumor immune responses.Cancer Biol. Ther.20192081047105610.1080/15384047.2019.1595283 30975030
    [Google Scholar]
  97. JianY. KongL. XuH. Protein phosphatase 1 regulatory inhibitor subunit 14C promotes triple‐negative breast cancer progression via sustaining inactive glycogen synthase kinase 3 beta.Clin. Transl. Med.2022121e72510.1002/ctm2.725 35090098
    [Google Scholar]
  98. RodgersS.J. HamilaS.A. MitchellC.A. OomsL.M. A late endosome signaling hub that couples PI3Kα and WNT/β-catenin signaling in breast cancer.Mol. Cell. Oncol.202184195447010.1080/23723556.2021.1954470 34616876
    [Google Scholar]
  99. PeiY. LiG. RanJ. WanX. WeiF. WangL. Kinesin family member 11 enhances the self-renewal ability of breast cancer cells by participating in the Wnt/β-catenin pathway.J. Breast Cancer201922452253210.4048/jbc.2019.22.e51 31897327
    [Google Scholar]
  100. SiddharthS. GoutamK. DasS. Nectin-4 is a breast cancer stem cell marker that induces WNT/β-catenin signaling via Pi3k/Akt axis.Int. J. Biochem. Cell Biol.201789859410.1016/j.biocel.2017.06.007 28600142
    [Google Scholar]
  101. LiY. ChenG. YanY. FanQ. CASC15 promotes epithelial to mesenchymal transition and facilitates malignancy of hepatocellular carcinoma cells by increasing TWIST1 gene expression via miR-33a-5p sponging.Eur. J. Pharmacol.201986017258910.1016/j.ejphar.2019.172589 31401158
    [Google Scholar]
  102. FicoF. Santamaria-MartínezA. The tumor microenvironment as a driving force of breast cancer stem cell plasticity. Vol. 12.Cancers20201212386310.3390/cancers12123863 33371274
    [Google Scholar]
  103. ShiW. HarrisA.L. Notch signaling in breast cancer and tumor angiogenesis: cross-talk and therapeutic potentials.J. Mammary Gland Biol. Neoplasia2006111415210.1007/s10911‑006‑9011‑7 16947085
    [Google Scholar]
  104. JinS. MutveiA.P. ChivukulaI.V. Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ.Oncogene201332414892490210.1038/onc.2012.517 23178494
    [Google Scholar]
  105. JeongG.Y. ParkM.K. ChoiH.J. NSD3-induced methylation of H3K36 activates NOTCH signaling to drive breast tumor initiation and metastatic progression.Cancer Res.2021811779010.1158/0008‑5472.CAN‑20‑0360 32967925
    [Google Scholar]
  106. HossainF. SorrentinoC. UcarD.A. Notch signaling regulates mitochondrial metabolism and NF-κB activity in triple-negative breast cancer cells via IKKα-dependent non-canonical pathways.Front. Oncol.20188DEC57510.3389/fonc.2018.00575 30564555
    [Google Scholar]
  107. DohenyD. ManoreS.G. WongG.L. LoH.W. Hedgehog signaling and truncated GLI1 in cancer.Cells202099211410.3390/cells9092114 32957513
    [Google Scholar]
  108. CarpenterR.L. LoH.W. Hedgehog pathway and GLI1 isoforms in human cancer.Discov. Med.20121369105113 22369969
    [Google Scholar]
  109. WuY. LiM. LinJ. HuC. Hippo/TEAD4 signaling pathway as a potential target for the treatment of breast cancer. ReviewOncol. Lett.202121431310.3892/ol.2021.12574
    [Google Scholar]
  110. WangZ. KongQ. SuP. Regulation of Hippo signaling and triple negative breast cancer progression by an ubiquitin ligase RNF187.Oncogenesis2020933610.1038/s41389‑020‑0220‑5 32198343
    [Google Scholar]
  111. ZhouR. DingY. XueM. XiongB. ZhuangT. RNF181 modulates Hippo signaling and triple negative breast cancer progression.Cancer Cell Int.202020129110.1186/s12935‑020‑01397‑3 32655323
    [Google Scholar]
  112. ChowA. ZhouW. LiuL. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB.Sci. Rep.201441575010.1038/srep05750 25034888
    [Google Scholar]
  113. Güney EskilerG. Deveci ÖzkanA. KaleliS. BilirC. Inhibition of TLR4/TRIF/IRF3 signaling pathway by curcumin in breast cancer cells.J. Pharm. Pharm. Sci.201922128129110.18433/jpps30493 31287789
    [Google Scholar]
  114. RoscignoG. CirellaA. AffinitoA. MiR-216a acts as a negative regulator of breast cancer by modulating stemness properties and tumor microenvironment.Int. J. Mol. Sci.2020217231310.3390/ijms21072313 32230799
    [Google Scholar]
  115. MohamedA. KrajewskiK. CakarB. MaC.X. Targeted therapy for breast cancer.Am. J. Pathol.201318341096111210.1016/j.ajpath.2013.07.005 23988612
    [Google Scholar]
  116. HuY. GaoJ. WangM. LiM. Potential prospect of CDK4/6 inhibitors in triple-negative breast cancer. Vol. 13.Cancer Manag. Res.2021135223523710.2147/CMAR.S310649 34234565
    [Google Scholar]
  117. RozeboomB. DeyN. DeP.E.R. + metastatic breast cancer: Past, present, and a prescription for an apoptosis-targeted future.Am. J. Cancer Res.201991228212831 31911865
    [Google Scholar]
  118. ShomaliM GuoZ ChengJ SullivanA El-AhmadY SunF. Abstract P4-02-08: Amcenestrant in combination with CDK4/6 inhibitor palbociclib demonstrates synergistic anti-tumor activity in ER+ endocrine-resistant breast cancer xenograft models.Cancer Res202282S4P4-02-08
    [Google Scholar]
  119. LinN.U. Contemporary management of breast cancer brain metastases.Breast201948S2810.1016/S0960‑9776(19)30630‑7
    [Google Scholar]
  120. YeF. DewanjeeS. LiY. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer.Mol. Cancer202322110510.1186/s12943‑023‑01805‑y 37415164
    [Google Scholar]
  121. ProssnitzE.R. BartonM. The G-protein-coupled estrogen receptor GPER in health and disease.Nat. Rev. Endocrinol.201171271572610.1038/nrendo.2011.122 21844907
    [Google Scholar]
  122. PepermansR.A. SharmaG. ProssnitzE.R. G protein-coupled estrogen receptor in cancer and stromal cells: Functions and novel therapeutic perspectives. Vol. 10.Cells202110367210.3390/cells10030672 33802978
    [Google Scholar]
  123. MolinaL. BustamanteF.A. BhoolaK.D. FigueroaC.D. EhrenfeldP. Possible role of phytoestrogens in breast cancer via GPER-1/GPR30 signaling.Clin. Sci.2018132242583259810.1042/CS20180885 30545896
    [Google Scholar]
  124. DongC. WuJ. ChenY. NieJ. ChenC. Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast Cancer. Vol. 12.Front. Pharmacol.2021
    [Google Scholar]
  125. CostaR.L.B. HanH.S. GradisharW.J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: A review.Breast Cancer Res. Treat.2018169339740610.1007/s10549‑018‑4697‑y 29417298
    [Google Scholar]
  126. ErolesP. BoschA. Pérez-FidalgoA.J. LluchA. Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways.Cancer Treat. Rev.201238669870710.1016/j.ctrv.2011.11.005 22178455
    [Google Scholar]
  127. BraicuC. BuseM. BusuiocC. A comprehensive review on MAPK: A promising therapeutic target in cancer. Vol. 11.Cancers20191110161810.3390/cancers11101618
    [Google Scholar]
  128. KorzenieckiC. PrieferR. Targeting KRAS mutant cancers by preventing signaling transduction in the MAPK pathway.Eur. J. Med. Chem.202121111300610.1016/j.ejmech.2020.113006 33228976
    [Google Scholar]
  129. ChristyJ. PriyadharshiniL. Differential expression analysis of JAK/STAT pathway related genes in breast cancer.Meta Gene20181612212910.1016/j.mgene.2018.02.008
    [Google Scholar]
  130. ShaoF. PangX. BaegG.H. Targeting the JAK/STAT signaling pathway for breast cancer.Curr. Med. Chem.202128255137515110.2174/1875533XMTEyxMTM6x 33290193
    [Google Scholar]
  131. LiangX. TangS. LiuX. Discovery of novel pyrrolo[2,3- d]pyrimidine-based derivatives as potent JAK/HDAC dual inhibitors for the treatment of refractory solid tumors.J. Med. Chem.20226521243126410.1021/acs.jmedchem.0c02111 33586434
    [Google Scholar]
  132. LiR. HuangY. LinJ. Distinct effects of general anesthetics on lung metastasis mediated by IL-6/JAK/STAT3 pathway in mouse models.Nat. Commun.202011164210.1038/s41467‑019‑14065‑6 32005799
    [Google Scholar]
  133. Wesseling-RozendaalY. van DoornA. Willard-GalloK. van de StolpeA. Characterization of immunoactive and immunotolerant CD4+ t cells in breast cancer by measuring activity of signaling pathways that determine immune cell function.Cancers202214349010.3390/cancers14030490 35158758
    [Google Scholar]
  134. Quintás-CardamaA. VerstovsekS. Molecular pathways: Jak/STAT pathway: Mutations, inhibitors, and resistance.Clin. Cancer Res.20131981933194010.1158/1078‑0432.CCR‑12‑0284 23406773
    [Google Scholar]
  135. StoverD.G. Gil Del AlcazarC.R. BrockJ. Phase II study of ruxolitinib, a selective JAK1/2 inhibitor, in patients with metastatic triple-negative breast cancer.NPJ Breast Cancer2018411010.1038/s41523‑018‑0060‑z 29761158
    [Google Scholar]
  136. KhannaP. LeeJ.S. SereemaspunA. LeeH. BaegG.H. GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling.Sci. Rep.201881951110.1038/s41598‑018‑27864‑6 29934528
    [Google Scholar]
  137. NabilG. AlzhraniR. AlsaabH. CD44 targeted nanomaterials for treatment of triple-negative breast cancer.Cancers202113489810.3390/cancers13040898 33672756
    [Google Scholar]
  138. HuangR. FaratianD. SimsA.H. Increased STAT1 signaling in endocrine-resistant breast cancer.PLoS One201494e9422610.1371/journal.pone.0094226 24728078
    [Google Scholar]
  139. KlarmannG.J. DeckerA. FarrarW.L. Epigenetic gene silencing in the Wnt pathway in breast cancer.Epigenetics200832596310.4161/epi.3.2.5899 18398311
    [Google Scholar]
  140. KovalA. KatanaevV.L. Dramatic dysbalancing of the Wnt pathway in breast cancers.Sci. Rep.201881732910.1038/s41598‑018‑25672‑6 29743726
    [Google Scholar]
  141. van SchieE.H. van AmerongenR. Aberrant WNT/CTNNB1 signaling as a therapeutic target in human breast cancer: Weighing the evidence.Front. Cell Dev. Biol.202082510.3389/fcell.2020.00025 32083079
    [Google Scholar]
  142. CastagnoliL. TagliabueE. PupaS.M. Inhibition of the Wnt signalling pathway: An avenue to control breast cancer aggressiveness.Int. J. Mol. Sci.20202123906910.3390/ijms21239069 33260642
    [Google Scholar]
  143. CuiJ. ChenH. ZhangK. LiX. Targeting the Wnt signaling pathway for breast cancer bone metastasis therapy.J. Mol. Med.2022100337338410.1007/s00109‑021‑02159‑y 34821953
    [Google Scholar]
  144. TianH. LiuJ. ChenJ. GatzaM.L. BlobeG.C. Fibulin-3 is a novel TGF-β pathway inhibitor in the breast cancer microenvironment.Oncogene201534455635564710.1038/onc.2015.13 25823021
    [Google Scholar]
  145. ChenH.S. BaiM.H. ZhangT. LiG.D. LiuM. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells.Int. J. Oncol.20154641730173810.3892/ijo.2015.2870 25647396
    [Google Scholar]
  146. de KruijfE.M. DekkerT.J.A. HawinkelsL.J.A.C. The prognostic role of TGF-β signaling pathway in breast cancer patients.Ann. Oncol.201324238439010.1093/annonc/mds333 23022998
    [Google Scholar]
  147. ZhaoY. MaJ. FanY. TGF ‐β transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways.Mol. Oncol.201812330532110.1002/1878‑0261.12162 29215776
    [Google Scholar]
  148. KhoshakhlaghM. SoleimaniA. BinabajM.M. Therapeutic potential of pharmacological TGF-β signaling pathway inhibitors in the pathogenesis of breast cancer.Biochem. Pharmacol.2019164172210.1016/j.bcp.2019.03.031 30905655
    [Google Scholar]
  149. ScollenS. LuccariniC. BaynesC. TGF-β signaling pathway and breast cancer susceptibility.Cancer Epidemiol. Biomarkers Prev.20112061112111910.1158/1055‑9965.EPI‑11‑0062 21527583
    [Google Scholar]
  150. GorbachevaA.M. UvarovaA.N. UstiugovaA.S. EGR1 and RXRA transcription factors link TGF-β pathway and CCL2 expression in triple negative breast cancer cells.Sci. Rep.20211111412010.1038/s41598‑021‑93561‑6 34239022
    [Google Scholar]
  151. LiuQ. HodgeJ. WangJ. Emodin reduces breast cancer lung metastasis by suppressing macrophage-induced breast cancer cell epithelial-mesenchymal transition and cancer stem cell formation.Theranostics202010188365838110.7150/thno.45395 32724475
    [Google Scholar]
  152. YipN.C. FombonI.S. LiuP. Disulfiram modulated ROS–MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties.Br. J. Cancer2011104101564157410.1038/bjc.2011.126 21487404
    [Google Scholar]
  153. FilippiI. CarraroF. NaldiniA. Interleukin-1 β affects MDAMB231 breast cancer cell migration under hypoxia: Role of HIF-1 α and NF B transcription factors.Mediators Inflamm.20152015789414
    [Google Scholar]
  154. Prud’hommeG. Cancer stem cells and novel targets for antitumor strategies.Curr. Pharm. Des.201218192838284910.2174/138161212800626120 22390767
    [Google Scholar]
  155. SunkaraT. BandaruS.S. BoyillaR. KunadharajuR. KukkadapuP. ChennamadhavuniA. Poly adenosine diphosphate-ribose polymerase (PARP) inhibitors in pancreatic cancer.Cureus2022142e22575
    [Google Scholar]
  156. GroellyF.J. FawkesM. DaggR.A. BlackfordA.N. TarsounasM. Targeting DNA damage response pathways in cancer.Nat. Rev. Cancer2023232789410.1038/s41568‑022‑00535‑5 36471053
    [Google Scholar]
  157. BornsteinE. JimenoA. Olaparib for the treatment of ovarian cancer.Drugs Today2016521172810.1358/dot.2016.52.1.2440714 26937492
    [Google Scholar]
  158. LeeJ.M. HaysJ.L. ChiouV.L. Phase I/Ib study of olaparib and carboplatin in women with triple negative breast cancer.Oncotarget2017845791757918710.18632/oncotarget.16577 29108297
    [Google Scholar]
  159. YonemoriK. ShimomuraA. YasojimaH. A phase I/II trial of olaparib tablet in combination with eribulin in Japanese patients with advanced or metastatic triple-negative breast cancer previously treated with anthracyclines and taxanes.Eur. J. Cancer2019109849110.1016/j.ejca.2018.11.014 30703739
    [Google Scholar]
  160. FaschingP.A. LinkT. HaukeJ. Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (GeparOLA study).Ann. Oncol.2021321495710.1016/j.annonc.2020.10.471 33098995
    [Google Scholar]
  161. JennerZ.B. SoodA.K. ColemanR.L. Evaluation of rucaparib and companion diagnostics in the PARP inhibitor landscape for recurrent ovarian cancer therapy.Future Oncol.201612121439145610.2217/fon‑2016‑0002
    [Google Scholar]
  162. DrewY. LedermannJ. HallG. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer.Br. J. Cancer2016114772373010.1038/bjc.2016.41
    [Google Scholar]
  163. WilsonR.H. EvansT.R.J. MiddletonM.R. A phase I study of intravenous and oral rucaparib in combination with chemotherapy in patients with advanced solid tumours.Br. J. Cancer2017116788489210.1038/bjc.2017.36 28222073
    [Google Scholar]
  164. KalraM. TongY. JonesD.R. Cisplatin +/− rucaparib after preoperative chemotherapy in patients with triple-negative or BRCA mutated breast cancer.NPJ Breast Cancer2021712910.1038/s41523‑021‑00240‑w 33753748
    [Google Scholar]
  165. CortesiL. RugoH.S. JackischC. An overview of PARP inhibitors for the treatment of breast Cancer.Target. Oncol.202116325528210.1007/s11523‑021‑00796‑4 33710534
    [Google Scholar]
  166. MuralimanoharanS. GuoC. MyattL. MaloyanA. RominaF. MantiM. Comparative proteome profile of human placenta from normal and preeclamptic pregnancies.ProQuest Diss Theses201571125
    [Google Scholar]
  167. LipovkaY. KonhilasJ.P. The complex nature of oestrogen signalling in breast cancer: Enemy or ally?Biosci. Rep.2016363e0035210.1042/BSR20160017 27160081
    [Google Scholar]
  168. Saha RoyS. VadlamudiR.K. Role of estrogen receptor signaling in breast cancer metastasis.Int. J. Breast Cancer201220121810.1155/2012/654698 22295247
    [Google Scholar]
  169. HervouetE. CartronP.F. JouvenotM. Delage-MourrouxR. Epigenetic regulation of estrogen signaling in breast cancer.Epigenetics20138323724510.4161/epi.23790 23364277
    [Google Scholar]
  170. DingJ. KuangP. Regulation of erα stability and estrogen signaling in breast cancer by HOIL-1.Front. Oncol.20211166468910.3389/fonc.2021.664689
    [Google Scholar]
  171. KhatpeA. AdebayoA. HerodotouC. KumarB. NakshatriH. Nexus between PI3K/AKT and estrogen receptor signaling in breast cancer. Vol. 13.Cancers202113336910.3390/cancers13030369 33498407
    [Google Scholar]
  172. JiramongkolY. LamE.W.F. FOXO transcription factor family in cancer and metastasis.Cancer Metastasis Rev.202039368170910.1007/s10555‑020‑09883‑w 32372224
    [Google Scholar]
  173. MukherjeeA. HollernD.P. WilliamsO.G. A review of FOXI3 regulation of development and possible roles in cancer progression and metastasis.Front. Cell Dev. Biol.20186JUL6910.3389/fcell.2018.00069 30018953
    [Google Scholar]
  174. LaissueP. The forkhead-box family of transcription factors: Key molecular players in colorectal cancer pathogenesis.Mol. Cancer2019181510.1186/s12943‑019‑0938‑x 30621735
    [Google Scholar]
  175. ShiotaM. SongY. YokomizoA. Foxo3a suppression of urothelial cancer invasiveness through Twist1, Y-box-binding protein 1, and E-cadherin regulation.Clin. Cancer Res.201016235654566310.1158/1078‑0432.CCR‑10‑0376 21138866
    [Google Scholar]
  176. MichaelJ.A. JudithH. StefanF. KathrinG. PetraO. FOXO transcription factors as potential therapeutic targets in neuroblastoma.Neuroblastoma. IntechOpen2012
    [Google Scholar]
  177. YeH. DuanM. Downregulation of FOXO6 in breast cancer promotes epithelial–mesenchymal transition and facilitates migration and proliferation of cancer cells.Cancer Manag. Res.2018105145515610.2147/CMAR.S157661 30464613
    [Google Scholar]
  178. BuechelD. SugiyamaN. RubinsteinN. Parsing β-catenin’s cell adhesion and Wnt signaling functions in malignant mammary tumor progression.Proc. Natl. Acad. Sci.202111834e202022711810.1073/pnas.2020227118 34408016
    [Google Scholar]
  179. ZhangJ. ThorikayM. van der ZonG. van DintherM. ten DijkeP. Studying tgf-β signaling and tgf-β-induced epithelial-to-mesenchymal transition in breast cancer and normal cells.J. Vis. Exp.2020202016410.3791/61830 33191940
    [Google Scholar]
  180. GuoB. WuS. ZhuX. Micropeptide CIP 2A‐ BP encoded by LINC 00665 inhibits triple‐negative breast cancer progression.EMBO J.2020391e10219010.15252/embj.2019102190 31755573
    [Google Scholar]
  181. Interferon signaling pathway-related gene panel, diagnostic product and application thereof.Patent 202301945312023
    [Google Scholar]
  182. Substituted bisphenylalkylurea compounds and methods of treating breast cancer.Patent 202103096072021
    [Google Scholar]
  183. Composition for inhibiting a growth of cancer stem cells comprising ciclesonide. KRPatent 20180041595A2020
    [Google Scholar]
  184. Dual pi3k and wnt pathway inhibition as a treatment for cancer. USPatent 20160303137A12020
    [Google Scholar]
  185. Stat3 as a theranostic indicator. WOPatent 2008127716A32008
    [Google Scholar]
  186. Di MairaG. GentiliniA. PastoreM. The protein kinase CK2 contributes to the malignant phenotype of cholangiocarcinoma cells.Oncogenesis20198116110.1038/s41389‑019‑0171‑x 31641101
    [Google Scholar]
  187. D’AmoreC. BorgoC. SarnoS. SalviM. Role of CK2 inhibitor CX-4945 in anti-cancer combination therapy – potential clinical relevance.Cell. Oncol.20204361003101610.1007/s13402‑020‑00566‑w
    [Google Scholar]
  188. YunJ. LeeS.H. KimS.Y. Antitumor activity of amivantamab (Jnj-61186372), an egfr–met bispecific antibody, in diverse models of egfr exon 20 insertion–driven nsclc.Cancer Discov.20201081194120910.1158/2159‑8290.CD‑20‑0116 32414908
    [Google Scholar]
  189. ModiS. SauraC. YamashitaT. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer.N. Engl. J. Med.2020382761062110.1056/NEJMoa1914510 31825192
    [Google Scholar]
  190. VermaS. MilesD. GianniL. Trastuzumab emtansine for HER2-positive advanced breast cancer.N. Engl. J. Med.2012367191783179110.1056/NEJMoa1209124 23020162
    [Google Scholar]
  191. ZhouX. ZhangQ. LiangG. LiangX. LuoB. Overexpression of HMGB3 and its prognostic value in breast cancer.Front. Oncol.202212104892110.3389/fonc.2022.1048921 36620553
    [Google Scholar]
  192. QianY. LouK. ZhouH. ZhangL. YuanY. Efficacy and safety of anlotinib-based treatment in metastatic breast cancer patients.Front. Oncol.202212104245110.3389/fonc.2022.1042451 36568219
    [Google Scholar]
  193. CohenP. CrossD. JänneP.A. Kinase drug discovery 20 years after imatinib: Progress and future directions.Nat. Rev. Drug Discov.202120755156910.1038/s41573‑021‑00195‑4 34002056
    [Google Scholar]
  194. KatsutaE. OpyrchalM. Editorial: Novel signaling pathways and therapy in breast cancer.Front. Oncol.202313121502310.3389/fonc.2023.1215023 37260979
    [Google Scholar]
/content/journals/pra/10.2174/0115748928267931231120065335
Loading
/content/journals/pra/10.2174/0115748928267931231120065335
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test