Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

miR-1468-5p, a type of microRNA, is acknowledged for its crucial involvement in a variety of cancerous processes. Nonetheless, the specific impact of this microRNA on lung adenocarcinoma (LUAD) has not yet been clearly defined.

Objective

Our aim was to investigate how miR-1468-5p influences LUAD.

Methods

The Cancer Genome Atlas (TCGA) offered specimens for our research. Employing statistical techniques, we assessed the diagnostic and prognostic significance of miR-1468-5p, as well as its association with clinical characteristics. Our analysis delved into the target genes and the regulatory mechanisms influenced by miR-1468-5p. The expression levels of miR-1468-5p in LUAD cell lines were validated through quantitative reverse transcription polymerase chain reaction (qRT-PCR).

Results

The expression of miR-1468-5p varied significantly across different cancer types. The presence of reduced miR-1468-5p levels was correlated with a lower likelihood of overall survival in LUAD patients, with a statistically significant result ( = 0.005). miR-1468-5p demonstrated independent prognostic significance in LUAD and potentially contributes to disease progression multiple pathways, including the HIF-1 signaling pathway and more. There was a significant reduction in miR-1468-5p expression in LUAD cell lines when compared to cells of the normal lung epithelium.

Conclusion

miR-1468-5p may serve as a useful patent as a therapeutic intervention target and a prognostic indicator for LUAD patients.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928344326240927071620
2025-02-03
2025-11-02
Loading full text...

Full text loading...

References

  1. AvanciniA. SartoriG. GkountakosA. CasaliM. TrestiniI. TregnagoD. BriaE. JonesL.W. MilellaM. LanzaM. PilottoS. Physical activity and exercise in lung cancer care: Will promises be fulfilled?Oncologist2020253e555e56910.1634/theoncologist.2019‑046332162811
    [Google Scholar]
  2. LiangR. LiX. LiW. ZhuX. LiC. DNA methylation in lung cancer patients: Opening a "window of life" under precision medicine.Biomed Pharmacother.2021144112202
    [Google Scholar]
  3. WangZ. GuanW. MaY. ZhouX. SongG. WeiJ. WangC. MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway.BMC Cancer202323166810.1186/s12885‑023‑11113‑937460940
    [Google Scholar]
  4. QiangH. ZhanX. WangW. ChengZ. MaS. JiangC. A study on the correlations of the miR-31 expression with the pathogenesis and prognosis of head and neck squamous cell carcinoma.Cancer Biother. Radiopharm.201934318919510.1089/cbr.2018.262130628842
    [Google Scholar]
  5. LuS. ZhouC. ZouB. ZhangH. FengM. MiR-4295 facilitates cell proliferation and metastasis in head and neck squamous cell carcinoma by targeting NPTX1.Genes Immun.202021141210.1038/s41435‑019‑0081‑031118494
    [Google Scholar]
  6. ZhangX.J. JinY. SongJ.L. DengF. MiR-373 promotes proliferation and metastasis of oral squamous cell carcinoma by targeting SPOP.Eur. Rev. Med. Pharmacol. Sci.201923125270527631298378
    [Google Scholar]
  7. TangL. YuanY. ZhaiH. WangJ. ZhangD. LiangH. ShiY. DuanL. JiangX. MicroRNA-125b-5p correlates with prognosis and lung adenocarcinoma progression.Front. Mol. Biosci.2022878869010.3389/fmolb.2021.78869035187068
    [Google Scholar]
  8. LinZ. HuangW. XieZ. YiY. LiZ. Expression, clinical significance, immune infiltration, and regulation network of miR-3940-5p in lung adenocarcinoma based on bioinformatic analysis and experimental validation.Int. J. Gen. Med.2022156451646410.2147/IJGM.S37576135966511
    [Google Scholar]
  9. JiangX. YuanY. TangL. WangJ. ZhangD. ChoW.C. DuanL. Identification and validation prognostic impact of MiRNA-30a-5p in lung adenocarcinoma.Front. Oncol.20221283199710.3389/fonc.2022.83199735127546
    [Google Scholar]
  10. JiangK. ZhiT. XuW. XuX. WuW. YuT. NieE. ZhouX. BaoZ. JinX. ZhangJ. WangY. LiuN. MicroRNA-1468-5p inhibits glioma cell proliferation and induces cell cycle arrest by targeting RRM1.Am. J. Cancer Res.20177478480028469953
    [Google Scholar]
  11. SanchezV. GolyardiF. MayakiD. EchavarriaR. HarelS. XiaJ. HussainS.N.A. Negative regulation of angiogenesis by novel micro RNAs.Pharmacol. Res.201913917318110.1016/j.phrs.2018.11.01030414893
    [Google Scholar]
  12. ZhouC WeiW MaJ YangY LiangL ZhangY Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels.Mol Ther.20212941512152810.1016/j.ymthe.2020.12.034
    [Google Scholar]
  13. YangD. LiuM. JiangJ. LuoY. WangY. ChenH. LiD. WangD. YangZ. ChenH. Comprehensive Analysis of DMRT3 as a Potential Biomarker Associated with the Immune Infiltration in a Pan-Cancer Analysis and Validation in Lung Adenocarcinoma.Cancers (Basel)20221424622010.3390/cancers1424622036551704
    [Google Scholar]
  14. HanQ. CuiZ. WangQ. PangF. LiD. WangD. Upregulation of OTX2-AS1 is Associated With Immune Infiltration and Predicts Prognosis of Gastric Cancer.Technol. Cancer Res. Treat.20232210.1177/1533033823115409136740995
    [Google Scholar]
  15. LiangW. LuY. PanX. ZengY. ZhengW. LiY. NieY. LiD. WangD. Decreased Expression of a Novel lncRNA FAM181A-AS1 is Associated with Poor Prognosis and Immune Infiltration in Lung Adenocarcinoma.Pharm. Genomics Pers. Med.20221598599810.2147/PGPM.S38490136482943
    [Google Scholar]
  16. LyuG. Bioinformatic Analysis and Experimental Validation of HMGA2-AS1 as a Prognostic Biomarker Associated with Immune Infiltration in Gastric Cancer.Recent Patents Anticancer Drug Discov.202419Epub ahead of print10.2174/011574892828445924031807091438566377
    [Google Scholar]
  17. MiaoL. ChenB. JingL. ZengT. ChenY. TPD52 as a Potential Prognostic Biomarker and its Correlation with Immune Infiltrates in Uterine Corpus Endometrial Carcinoma: Bioinformatic Analysis and Experimental Verification.Recent Patents Anticancer Drug Discov.202419Epub ahead of print10.2174/011574892826744723110710153938305309
    [Google Scholar]
  18. LuX. JingL. LiuS. WangH. ChenB. miR-149-3p Is a Potential Prognosis Biomarker and Correlated with Immune Infiltrates in Uterine Corpus Endometrial Carcinoma.Int. J. Endocrinol.2022202211510.1155/2022/500612335719192
    [Google Scholar]
  19. LiuJ. LichtenbergT. HoadleyK.A. PoissonL.M. LazarA.J. CherniackA.D. KovatichA.J. BenzC.C. LevineD.A. LeeA.V. OmbergL. WolfD.M. ShriverC.D. ThorssonV. HuH. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbroE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. Angulo GonzalezA.M. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. StretchJ. SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. Mora PineroE.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics.Cell20181732400416.e1110.1016/j.cell.2018.02.05229625055
    [Google Scholar]
  20. AgarwalV. BellG.W. NamJ.W. BartelD.P. Predicting effective microRNA target sites in mammalian mRNAs.eLife20154e0500510.7554/eLife.0500526267216
    [Google Scholar]
  21. ChiangH.R. SchoenfeldL.W. RubyJ.G. AuyeungV.C. SpiesN. BaekD. JohnstonW.K. RussC. LuoS. BabiarzJ.E. BlellochR. SchrothG.P. NusbaumC. BartelD.P. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes.Genes Dev.20102410992100910.1101/gad.188471020413612
    [Google Scholar]
  22. LiuW. WangX. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data.Genome Biol.20192011810.1186/s13059‑019‑1629‑z30670076
    [Google Scholar]
  23. KrekA. GrünD. PoyM.N. WolfR. RosenbergL. EpsteinE.J. MacMenaminP. da PiedadeI. GunsalusK.C. StoffelM. RajewskyN. Combinatorial microRNA target predictions.Nat. Genet.200537549550010.1038/ng153615806104
    [Google Scholar]
  24. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: an R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  25. LiM. WangX. LiuJ. MaoX. LiD. WangZ. TangY. WuS. Identification of Core Prognosis-Related Candidate Genes in Chinese Gastric Cancer Population Based on Integrated Bioinformatics.BioMed Res. Int.2020202011410.1155/2020/885982633381592
    [Google Scholar]
  26. LyuG. LiD. XiongH. XiaoL. TongJ. NingC. WangP. LiS. Quantitative Proteomic Analyses Identify STO/BBX24 -Related Proteins Induced by UV-B.Int. J. Mol. Sci.2020217249610.3390/ijms2107249632260266
    [Google Scholar]
  27. YangY. GuX. LiZ. ZhengC. WangZ. ZhouM. ChenZ. LiM. LiD. XiangJ. Whole-exome sequencing of rectal cancer identifies locally recurrent mutations in the Wnt pathway.Aging (Albany NY)20211319232622328310.18632/aging.20361834642262
    [Google Scholar]
  28. LyuG. LiD. LiS. HuH. STO and GA negatively regulate UV-B-induced Arabidopsis root growth inhibition.Plant Signal. Behav.20191412167547110.1080/15592324.2019.167547131595819
    [Google Scholar]
  29. LiD.B. LyuG. JiangY. NiuH. WangX. YinJ. A RADISH (RAPHANUS SATIVUS L.) E3 UBIQUITIN LIGASE GENE RHA2b ENHANCES SEED DORMANCY AND TOLERANCE TO PREHARVEST SPROUTING IN TRANSGENIC WHEAT (TRITICUM AESTIVUM L.).Appl. Ecol. Environ. Res.2019176132731328810.15666/aeer/1706_1327313288
    [Google Scholar]
  30. LiD.B. LyuG. JiangY. NiuH. WangX. YinJ. Effects of exogenous RsRHA2b gene on key enzyme activities and expression of related genes in grain the filling stage of wheat (Triticum aestivum L.).Appl. Ecol. Environ. Res.2019176150731508610.15666/aeer/1706_1507315086
    [Google Scholar]
  31. LuX. LiG. LiuS. WangH. ChenB. MiR-585-3p suppresses tumor proliferation and migration by directly targeting CAPN9 in high grade serous ovarian cancer.J. Ovarian Res.20211419010.1186/s13048‑021‑00841‑w34238324
    [Google Scholar]
  32. HuangH. XuQ. ZhangY. ZhouY. MaK. LuoY. miR-628-5p is a Potential Novel Prognosis Biomarker, Associated with Immune Infiltration in Bladder Urothelial Carcinoma.Curr. Pharm. Des.202329312477248810.2174/011381612825462123101706292337916623
    [Google Scholar]
  33. WeiH. WangJ. XuZ. LuY. WuX. ZhuoC. TanC. TangQ. PuJ. miR‐584‐5p regulates hepatocellular carcinoma cell migration and invasion through targeting KCNE2.Mol. Genet. Genomic Med.201976e70210.1002/mgg3.70231044566
    [Google Scholar]
  34. KidaY KozonoS SudoH KondouS KawauchiJ OchiyaT Kit, device, and method for detecting lung cancer.U.S. Patent 202301934022023
  35. BédardELR RoaW Method for detecting lung cancer using microrna expression and metabolomics.U.S. Patent 202302875142023
  36. PavelA.B. CampbellJ.D. LenburgM.E. SpiraA.E. Methods relating to lung cancer.U.S. Patent 202302559982023
  37. ZouR. SuD. ChengH. YingL. ZhouL. A peripheral blood mirna marker for diagnosis of non-small cell lung cancer.U.S. Patent 202302875042023
    [Google Scholar]
  38. SudoH. NobumasaH. KozonoS. KondouS. KawauchiJ. OchiaiA. Lung cancer detection kit or device, and detection method.U.S. Patent 202401838752024
    [Google Scholar]
  39. LiuC. QinQ. CongH. Research Progress on the Relationship Between Mitochondrial Deoxyguanosine Kinase and Apoptosis and Autophagy in Lung Adenocarcinoma Cells.Cancer Insight202211810.58567/ci01010004
    [Google Scholar]
  40. SmolleE. LekoP. Stacher-PriehseE. BrcicL. El-HeliebiA. HofmannL. QuehenbergerF. HrzenjakA. PopperH.H. OlschewskiH. LeithnerK. Distribution and prognostic significance of gluconeogenesis and glycolysis in lung cancer.Mol. Oncol.202014112853286710.1002/1878‑0261.1278032777161
    [Google Scholar]
  41. LiC.H. ChanM.H. ChangY.C. The role of fructose 1,6-bisphosphate-mediated glycolysis/gluconeogenesis genes in cancer prognosis.Aging20221473233325810.18632/aging.20401035404841
    [Google Scholar]
  42. ChangW. LiH. WuC. ZhongL. ZhuT. ChangZ. OuW. WangS. Identification of an amino acid metabolism-related gene signature for predicting prognosis in lung adenocarcinoma.Genes20221312229510.3390/genes1312229536553562
    [Google Scholar]
  43. XiaoW. GengW. ZhouM. XuJ. WangS. HuangQ. SunY. LiY. YangG. JinY. POU6F1 cooperates with RORA to suppress the proliferation of lung adenocarcinoma by downregulating HIF1A signaling pathway.Cell Death Dis.202213542710.1038/s41419‑022‑04857‑y35504868
    [Google Scholar]
  44. HeL. EndressJ. ChoS. LiZ. ZhengY. AsaraJ.M. BlenisJ. Suppression of nuclear GSK3 signaling promotes serine/one-carbon metabolism and confers metabolic vulnerability in lung cancer cells.Sci. Adv.2022820eabm878610.1126/sciadv.abm878635594343
    [Google Scholar]
  45. LiH.J. KeF.Y. LinC.C. LuM.Y. KuoY.H. WangY.P. LiangK.H. LinS.C. ChangY.H. ChenH.Y. YangP.C. WuH.C. ENO1 promotes lung cancer metastasis via HGFR and WNT signaling–driven epithelial-to-mesenchymal transition.Cancer Res.202181154094410910.1158/0008‑5472.CAN‑20‑354334145039
    [Google Scholar]
  46. SunL. SuoC. ZhangT. ShenS. GuX. QiuS. ZhangP. WeiH. MaW. YanR. ChenR. JiaW. CaoJ. ZhangH. GaoP. ENO1 promotes liver carcinogenesis through YAP1-dependent arachidonic acid metabolism.Nat. Chem. Biol.202319121492150310.1038/s41589‑023‑01391‑637500770
    [Google Scholar]
  47. ChenF.T. ZhongF.K. Kinesin Family Member 18A (KIF18A) contributes to the proliferation, migration, and invasion of lung adenocarcinoma cells in vitro and in vivo.Dis. Markers201920191910.1155/2019/638368531772692
    [Google Scholar]
  48. YongJ. HuangL. ChenG. LuoX. ChenH. WangL. High expression of Stabilin-2 predicts poor prognosis in non-small-cell lung cancer.Bioengineered20211213426343310.1080/21655979.2021.194310934227915
    [Google Scholar]
/content/journals/pra/10.2174/0115748928344326240927071620
Loading
/content/journals/pra/10.2174/0115748928344326240927071620
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test