Skip to content
2000
image of Deprotection Bases as an Alternative to the Traditional Bases Used in Solid-Phase Peptide Synthesis

Abstract

Background

The use of peptides in the pharmaceutical and cosmetic industries is attracting increasing attention. Most of the peptides currently marketed are obtained by chemical processes, most frequently solid-phase peptide synthesis (SPPS).

Objective

Although SPPS is efficient, it requires hazardous solvents, such as N,N-dimethylformamide, dichloromethane, and N-methylpyrrolidone, as well as the bases piperidine and 4-methylpiperidine in the deprotection step. This study presents two alternative reagents, 2-aminoethanol and 2-amino-2-methyl-1-propanol, for the removal of the fluorenyl-methyloxycarbonyl protecting group used in SPPS.

Methods

The traditional and alternative green SPPS using Fmoc protocol were employed.

Results

The synthesis of two peptides showed that the 2-aminoethanol and 2-amino-2-methyl-1-propanol are viable replacements for piperidine-derived reagents in peptide synthesis.

Discussion

The use of these reagents in SPPS afforded two peptides in high yield in an environmentally sustainable solvent.

Conclusion

The reagents are thus promising alternatives to piperidine derivatives, particularly 2-amino-2-methyl-1-propanol, in SPPS.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665421169251017073843
2025-11-04
2025-11-29
Loading full text...

Full text loading...

References

  1. Behrendt R. White P. Offer J. Advances in Fmoc solid‐phase peptide synthesis. J. Pept. Sci. 2016 22 1 4 27 10.1002/psc.2836 26785684
    [Google Scholar]
  2. de la Torre B.G. Albericio F. The pharmaceutical industry in 2023: An analysis of fda drug approvals from the perspective of molecules. Molecules 2024 29 3 585 10.3390/molecules29030585 38338330
    [Google Scholar]
  3. Vivenzio G. Scala M.C. Marino P. Manfra M. Campiglia P. Sala M. Dipropyleneglycol dimethylether, new green solvent for solid-phase peptide synthesis: Further challenges to improve sustainability in the development of therapeutic peptides. Pharmaceutics 2023 15 6 1773 10.3390/pharmaceutics15061773 37376220
    [Google Scholar]
  4. Cilli E.M. Oliveira E. Marchetto R. Nakaie C.R. Correlation between solvation of peptide-resins and solvent properties. J. Org. Chem. 1996 61 25 8992 9000 10.1021/jo9611632 11667883
    [Google Scholar]
  5. Lopez J. Beck J. Bucher C. Berthelmann A. Markos S. Eissler S. Missing link: Enabling loading of 2-chlorotrityl chloride resin in N -Butylpyrrolidinone as a green solvent. Org. Process Res. Dev. 2022 26 5 1450 1457 10.1021/acs.oprd.2c00052
    [Google Scholar]
  6. Wegner K. Barnes D. Manzor K. Jardine A. Moran D. Evaluation of greener solvents for solid-phase peptide synthesis. Green Chem. Lett. Rev. 2021 14 1 153 164 10.1080/17518253.2021.1877363
    [Google Scholar]
  7. Al Musaimi O. de la Torre B.G. Albericio F. Greening Fmoc/t Bu solid-phase peptide synthesis. Green Chem. 2020 22 4 996 1018 10.1039/C9GC03982A
    [Google Scholar]
  8. Jad Y.E. Acosta G.A. Govender T. Kruger H.G. El-Faham A. de la Torre B.G. Albericio F. Green solid-phase peptide synthesis 2. 2-Methyltetrahydrofuran and ethyl acetate for solid-phase peptide synthesis under green conditions. ACS Sustain. Chem.& Eng. 2016 4 12 6809 6814 10.1021/acssuschemeng.6b01765
    [Google Scholar]
  9. Martin V. Egelund P.H.G. Johansson H. Thordal Le Quement S. Wojcik F. Sejer Pedersen D. Greening the synthesis of peptide therapeutics: An industrial perspective. RSC Advances 2020 10 69 42457 42492 10.1039/D0RA07204D 35516773
    [Google Scholar]
  10. Datta S. Sood A. Torok M. Steps toward green peptide synthesis. Curr. Org. Synth. 2011 8 2 262 280 10.2174/157017911794697330
    [Google Scholar]
  11. Jad Y.E. Govender T. Kruger H.G. El-Faham A. de la Torre B.G. Albericio F. Green solid-phase peptide synthesis (GSPPS) 3. Green solvents for fmoc removal in peptide chemistry. Org. Process Res. Dev. 2017 21 3 365 369 10.1021/acs.oprd.6b00439
    [Google Scholar]
  12. Přibylka A. Pastorek M. Grepl M. Schütznerová E.P. The application of anisole in greener solid-phase peptide synthesis protocols – Compatibility with green bases in Fmoc removal and new green binary mixture for coupling. Tetrahedron 2021 99 132452 10.1016/j.tet.2021.132452
    [Google Scholar]
  13. Luna O. Gomez J. Cárdenas C. Albericio F. Marshall S. Guzmán F. Deprotection reagents in fmoc solid phase peptide synthesis: Moving away from piperidine? Molecules 2016 21 11 1542 10.3390/molecules21111542 27854291
    [Google Scholar]
  14. Mthembu S.N. Chakraborty A. Schönleber R. Albericio F. de la Torre B.G. Morpholine, a strong contender for Fmoc removal in solid-phase peptide synthesis. J. Pept. Sci. 2024 30 2 3538 10.1002/psc.3538
    [Google Scholar]
  15. Isidro-Llobet A. Álvarez M. Albericio F. Amino acid-protecting groups. Chem. Rev. 2009 109 6 2455 2504 10.1021/cr800323s 19364121
    [Google Scholar]
  16. Martelli G. Cantelmi P. Palladino C. Mattellone A. Corbisiero D. Fantoni T. Tolomelli A. Macis M. Ricci A. Cabri W. Ferrazzano L. Replacing piperidine in solid phase peptide synthesis: Effective Fmoc removal by alternative bases. Green Chem. 2021 23 20 8096 8107 10.1039/D1GC02634H
    [Google Scholar]
  17. Klaus Weissermel H-J.A. Charlet R. Lindley, stephen hawkins.M. In:Industrial Organic Chemistry. Hoboken, New Jersey Wiley Online Library 2003 10.1002/9783527619191
    [Google Scholar]
  18. Nielsen C.J. D’Anna B. Dye C. Graus M. Karl M. King S. Maguto M.M. Müller M. Schmidbauer N. Stenstrøm Y. Wisthaler A. Pedersen S. Atmospheric chemistry of 2-aminoethanol (MEA). Energy Procedia 2011 4 2245 2252 10.1016/j.egypro.2011.02.113
    [Google Scholar]
  19. Harris P.W.R. Yang S.H. Brimble M.A. An improved procedure for the preparation of aminomethyl polystyrene resin and its use in solid phase (peptide) synthesis. Tetrahedron Lett. 2011 52 45 6024 6026 10.1016/j.tetlet.2011.09.010
    [Google Scholar]
  20. An S. Huang X. Li N. Li Q. Qi T. Wang R. Wang L. Preventing crystallization at high concentrated 2-amino-2-methyl-1-propanol for energy-saving CO2 capture. Separ. Purif. Tech. 2024 330 125484 10.1016/j.seppur.2023.125484
    [Google Scholar]
  21. Anastas P.T. Warner J.C. Green Chemistry: Theory and Practice. United Kingdom Oxford University Press 2000 10.1093/oso/9780198506980.001.0001
    [Google Scholar]
  22. Gude M. Ryf J. White P.D. An accurate method for the quantitation of Fmoc-derivatized solid phase labelports. Lett. Pept. Sci. 2002 9 203 206
    [Google Scholar]
  23. Jad Y.E. Kumar A. El-Faham A. de la Torre B.G. Albericio F. Green transformation of solid-phase peptide synthesis. ACS Sustain. Chem.& Eng. 2019 7 4 3671 3683 10.1021/acssuschemeng.8b06520
    [Google Scholar]
  24. Jad Y.E. Acosta G.A. Khattab S.N. de la Torre B.G. Govender T. Kruger H.G. El-Faham A. Albericio F. 2-Methyltetrahydrofuran and cyclopentyl methyl ether for green solid-phase peptide synthesis. Amino Acids 2016 48 2 419 426 10.1007/s00726‑015‑2095‑x 26403847
    [Google Scholar]
  25. Ribeiro S.C.F. Schreier S. Nakaie C.R. Cilli E.M. Effect of temperature on peptide chain aggregation: An EPR study of model peptidyl-resins. Tetrahedron Lett. 2001 42 19 3243 3246 10.1016/S0040‑4039(01)00414‑2
    [Google Scholar]
  26. Varanda L.M. Miranda M.T.M. Solid‐phase peptide synthesis at elevated temperatures: A search for an optimized synthesis condition of unsulfated cholecystokinin‐12. J. Pept. Res. 1997 50 2 102 108 10.1111/j.1399‑3011.1997.tb01175.x 9273894
    [Google Scholar]
  27. Katekawa E. Arruda Brasil M.C.O. Princival C.R. Padovani G. Esteves-Pedro N.M. Mussi L. Effect of tripeptide-85 (EVF) on sebogenesis. Clin. Exp. Dermatol. Ther. 2024 9 223 10.29011/2575‑8268.100223
    [Google Scholar]
  28. Subirós-Funosas R. Prohens R. Barbas R. El-Faham A. Albericio F. Oxyma: An efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chemistry 2009 15 37 9394 9403 10.1002/chem.200900614 19575348
    [Google Scholar]
  29. Katekawa E. Princival C.R. Mussi L. Magalhães W.V. Compounds and cosmetic, dermocosmetic, cosmeceutical orpharmaceutical compositions for relaxing muscles, including the skeletal muscles of the face, for anti-aging cosmetic action, for reducing and/or smoothing expression lines and wrinkles and/or for antiperspirant action, uses and methods. BR Patent WO2024092334 A1 2024
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665421169251017073843
Loading
/content/journals/ppl/10.2174/0109298665421169251017073843
Loading

Data & Media loading...


  • Article Type:
    Rapid Communication
Keywords: aminoalcohol ; piperidine ; Deprotection reagent ; green solvent ; Fmoc ; solid-phase peptide synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test