Skip to content
2000
image of Customizing Proteins: Reassigning Functionality of Proteins via Incorporation of Unnatural Amino Acids

Abstract

The natural horizon of the genetic code has expanded to incorporate amino acids, such as selenocysteine and pyrrolysine. Researchers have incorporated unnatural amino acids (UAAs) into target proteins, demonstrating increased protein functionality depending on their choice and target. The primary challenge in protein engineering is identifying novel antimicrobial short peptides effective against ESKAPE pathogens ( and ), which are categorized as multidrug-resistant (MDR). UAAs can be preferentially incorporated into short peptides to display therapeutic activity, potentially leading to next-generation targeted therapeutics. In purview of this, we have curated and summarized the applicability of genetic incorporations of UAAs in antimicrobial short peptides with a special emphasis on the importance of green synthesis. The approach affirmed a reduction in the toxicity of peptide drugs, making it biocompatible. This is an efficient protocol to develop novel antimicrobial short peptides catering to precision medications, particularly against MDR pathogens, as a sustainable pharmaceutical approach.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665417414251007054305
2025-10-21
2025-11-29
Loading full text...

Full text loading...

References

  1. Ayyadurai N. Rameshkumar N. Soundrarajan N. Edwardraja S. Park H. Lee S. Yoo T.H. Yoon S-G. Importance of expression system in the production of unnatural recombinant proteins in Escherichia coli. Biotechnol. Bioprocess Eng.; BBE 2009 14 2 257 265 10.1007/s12257‑009‑0009‑z
    [Google Scholar]
  2. Wang X. Yang X. Wang Q. Meng D. Unnatural amino acids: Promising implications for the development of new antimicrobial peptides. Crit. Rev. Microbiol. 2023 49 2 231 255 10.1080/1040841X.2022.2047008 35254957
    [Google Scholar]
  3. Chen X. Han J. Cai X. Wang S. Antimicrobial peptides: Sustainable application informed by evolutionary constraints. Biotechnol. Adv. 2022 60 108012 10.1016/j.biotechadv.2022.108012 35752270
    [Google Scholar]
  4. Adhikari A. Bhattarai B.R. Aryal A. Thapa N. Kc P. Maharjan S. Chanda P.B. Regmi B.P. Parajuli N. Reprogramming natural proteins using unnatural amino acids. RSC Advances 2021 11 60 38126 38145 10.1039/D1RA06322J
    [Google Scholar]
  5. Dhanam S. Rameshkumar N. Krishnan M. Nagarajan K. Comparative assessment of bacteriocin and bacteriocin capped nanoparticles in mice model. Mater. Lett. 2022 313 131740 10.1016/j.matlet.2022.131740
    [Google Scholar]
  6. Hazam P.K. Cheng C.C. Lin W.C. Hsieh C.Y. Hsu P.H. Chen Y.R. Li C.C. Hsueh P.R. Chen J.Y. Strategic modification of low-activity natural antimicrobial peptides confers antibacterial potential in vitro and in vivo. Eur. J. Med. Chem. 2023 249 115131 10.1016/j.ejmech.2023.115131
    [Google Scholar]
  7. Lu J. Xu H. Xia J. Ma J. Xu J. Li Y. Feng J. D- and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front. Microbiol. 2020 11 563030 563030 10.3389/fmicb.2020.563030 33281761
    [Google Scholar]
  8. Wang C. Garlick S. Zloh M. Deep learning for novel antimicrobial peptide design. Biomolecules 2021 11 3 471 10.3390/biom11030471
    [Google Scholar]
  9. Ranbhor R. Kumar A. Tendulkar A. Patel K. Ramakrishnan V. Durani S. IDeAS: Automated design tool for hetero-chiral protein folds. Phys. Biol. 2018 15 6 066005 10.1088/1478‑3975/aacdc3
    [Google Scholar]
  10. Oikawa Y. Uzawa T. Berenger F. Minagawa N. Yumoto A. Takaku H. Tamura R. Ito Y. Tsuda K. GPepT: A foundation language model for peptidomimetics incorporating noncanonical amino acids. ACS Med. Chem. Lett. 2025 16 8 1670 1675 10.1021/acsmedchemlett.5c00375 40832546
    [Google Scholar]
  11. Huda P. Humphries J. Fletcher N.L. Howard C.B. Thurecht K.J. Bell C.A. Click-on antibody fragments for customisable targeted nanomedicines – site-specific tetrazine and azide functionalisation through non-canonical amino acid incorporation. Chem. Methods 2024 4 2 e202300036 10.1002/cmtd.202300036
    [Google Scholar]
  12. Shandell M.A. Tan Z. Cornish V.W. Genetic code expansion: A brief history and perspective. Biochemistry 2021 60 46 3455 3469 10.1021/acs.biochem.1c00286 34196546
    [Google Scholar]
  13. Singh S. Kaul G. Shukla M. Akhir A. Tripathi S. Gupta A. Bormon R. Nair N.N. Chopra S. Verma S. Linear antimicrobial peptide, containing a diindolyl methane unnatural amino acid, potentiates gentamicin against methicillin-resistant Staphylococcus aureus. Drug Dev. Res. 2025 86 2 e70070 10.1002/ddr.70070 40025838
    [Google Scholar]
  14. Selvakumar E. Rameshkumar N. Lee S.G. Lee S.J. Park H.S. In vivo production of functional single-chain Fv fragment with an N-terminal-specific bio-orthogonal reactive group. ChemBioChem 2010 11 4 498 501 10.1002/cbic.200900685 20127780
    [Google Scholar]
  15. Sampath G. Chen Y-Y. Rameshkumar N. Krishnan M. Nagarajan K. Shyu D.J.H. Biologically synthesized silver nanoparticles and their diverse applications. Nanomaterials 2022 12 18 3126 10.3390/nano12183126
    [Google Scholar]
  16. Ngo P.H.T. Ishida S. Busogi B.B. Do H. Ledesma M.A. Kar S. Ellington A. Changes in coding and efficiency through modular modifications to a one pot PURE system for in vitro transcription and translation. ACS Synth. Biol. 2023 12 12 3771 3777 10.1021/acssynbio.3c00461 38050859
    [Google Scholar]
  17. Rubin S.J.S. Qvit N. Backbone-cyclized peptides: A critical review. Curr. Top. Med. Chem. 2018 18 7 526 555 10.2174/1568026618666180518092333 29773062
    [Google Scholar]
  18. Dubey S.K. Parab S. Dabholkar N. Agrawal M. Singhvi G. Alexander A. Bapat R.A. Kesharwani P. Oral peptide delivery: Challenges and the way ahead. Drug Discov. Today 2021 26 4 931 950 10.1016/j.drudis.2021.01.001 33444788
    [Google Scholar]
  19. Talapko J. Meštrović T. Juzbašić M. Tomas M. Erić S. Horvat Aleksijević L. Bekić S. Schwarz D. Matić S. Neuberg M. Škrlec I. Antimicrobial peptides—mechanisms of action, antimicrobial effects and clinical applications. Antibiotics 2022 11 10 1417 10.3390/antibiotics11101417
    [Google Scholar]
  20. Park H. Jin H. Kim D. Lee J. Cell-free systems: Ideal platforms for accelerating the discovery and production of peptide-based antibiotics. Int. J. Mol. Sci. 2024 25 16 9109 10.3390/ijms25169109
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665417414251007054305
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test