Skip to content
2000
image of mRNA-Based Cancer Vaccines: A Review of the Current Scenario and Future Prospects

Abstract

Messenger RNA (mRNA) has gained increasing attention as a valuable tool to cure various human diseases, particularly malignant tumors. Such growing interest has been triggered largely by the phenomenal clinical success of mRNA vaccines developed using lipid nanoparticle (LNP) technology against COVID-19. mRNA may be used to produce cancer immunotherapies in numerous different ways, including cancer vaccines to induce or enhance immunity to tumor-specific antigens (TSAs) or tumor-associated antigens (TAAs). mRNA can also be used to adoptively transfer T-cells for the expression of antigen receptors, such as chimeric antigen receptors (CARs), therapeutic antibodies, and immunomodulatory proteins to re-engineer the tumor microenvironment. However, the therapeutic potential of mRNA-based cancer immunotherapy is not fully utilized due to a few limitations, such as mRNA instability, production of immunogenicity, and a lack of efficient delivery methods. This review provides an overview of the current advancements and future directions of mRNA-based cancer therapies, including various delivery routes and therapeutic platforms. It addresses the mechanistic basis of mRNA cancer vaccines, non-replicating and self-amplifying mRNA, as well as their clinical development, personalized vaccines, and applications of mRNA for encoding antigen receptors, antibodies, and immunomodulatory proteins. Moreover, the review addresses nanoparticle-based platforms, such as lipid nanoparticles (LNPs), polymeric nanoparticles, and peptide-based nanoparticles, all used to improve the therapeutic effectiveness of mRNA-based drugs by improving their targeted delivery to tissues. This review aims to provide insights into the use of state-of-the-art mRNA-based cancer immunotherapy.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665402963251022054441
2026-01-08
2026-01-21
Loading full text...

Full text loading...

References

  1. Vishweshwaraiah YL Dokholyan NV mRNA vaccines for cancer immunotherapy. Front. Immu. 2022 13 1029069 10.3389/fimmu.2022.1029069
    [Google Scholar]
  2. Igyártó B.Z. Qin Z. The mRNA-LNP vaccines – the good, the bad and the ugly? Front. Immunol. 2024 15 1336906 10.3389/fimmu.2024.1336906 38390323
    [Google Scholar]
  3. Ramachandran S. Satapathy S.R. Dutta T. Delivery strategies for mRNA vaccines. Pharmaceut. Med. 2022 36 1 11 20 10.1007/s40290‑021‑00417‑5 35094366
    [Google Scholar]
  4. Malacopol A.T. Holst P.J. Cancer vaccines: Recent insights and future directions. Int. J. Mol. Sci. 2024 25 20 11256 10.3390/ijms252011256 39457036
    [Google Scholar]
  5. Carvalho H.M.B. Fidalgo T.A.S. Acúrcio R.C. Matos A.I. Satchi-Fainaro R. Florindo H.F. Better, faster, stronger: Accelerating mRNA -Based immunotherapies with nanocarriers. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 6 2017 10.1002/wnan.2017 39537215
    [Google Scholar]
  6. Hald Albertsen C. Kulkarni J.A. Witzigmann D. Lind M. Petersson K. Simonsen J.B. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 2022 188 114416 10.1016/j.addr.2022.114416 35787388
    [Google Scholar]
  7. Zong Y. Lin Y. Wei T. Cheng Q. Lipid nanoparticle (LNP) enables mRNA delivery for cancer therapy. Adv. Mater. 2023 35 51 2303261 10.1002/adma.202303261 37196221
    [Google Scholar]
  8. Alameh M.G. Tombácz I. Bettini E. Lederer K. Ndeupen S. Sittplangkoon C. Wilmore J.R. Gaudette B.T. Soliman O.Y. Pine M. Hicks P. Manzoni T.B. Knox J.J. Johnson J.L. Laczkó D. Muramatsu H. Davis B. Meng W. Rosenfeld A.M. Strohmeier S. Lin P.J.C. Mui B.L. Tam Y.K. Karikó K. Jacquet A. Krammer F. Bates P. Cancro M.P. Weissman D. Luning Prak E.T. Allman D. Igyártó B.Z. Locci M. Pardi N. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021 54 12 2877 2892.e7 10.1016/j.immuni.2021.11.001 34852217
    [Google Scholar]
  9. Teo S.P. Review of COVID-19 mRNA Vaccines: BNT162b2 and mRNA-1273. J. Pharm. Pract. 2022 35 6 947 951 10.1177/08971900211009650 33840294
    [Google Scholar]
  10. Noor R. Developmental status of the potential vaccines for the mitigation of the covid-19 pandemic and a focus on the effectiveness of the pfizer-biontech and moderna mRNA vaccines. Curr. Clin. Microbiol. Rep. 2021 8 3 178 185 10.1007/s40588‑021‑00162‑y 33686365
    [Google Scholar]
  11. Alesci A. Gitto M. Kotańska M. Lo Cascio P. Miller A. Nicosia N. Fumia A. Pergolizzi S. Immunogenicity, effectiveness, safety and psychological impact of COVID-19 mRNA vaccines. Hum. Immunol. 2022 83 11 755 767 10.1016/j.humimm.2022.08.004 35963787
    [Google Scholar]
  12. Lorentzen C.L. Haanen J.B. Met Ö. Svane I.M. Clinical advances and ongoing trials of mRNA vaccines for cancer treatment. Lancet Oncol. 2022 23 10 e450 e458 10.1016/S1470‑2045(22)00372‑2 36174631
    [Google Scholar]
  13. Beck J.D. Reidenbach D. Salomon N. Sahin U. Türeci Ö. Vormehr M. Kranz L.M. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 2021 20 1 69 10.1186/s12943‑021‑01348‑0 33858437
    [Google Scholar]
  14. Xu S. Yang K. Li R. Zhang L. mRNA vaccine era—mechanisms, drug platform and clinical prospection. Int. J. Mol. Sci. 2020 21 18 6582 10.3390/ijms21186582 32916818
    [Google Scholar]
  15. Li Y. Wang M. Peng X. Yang Y. Chen Q. Liu J. She Q. Tan J. Lou C. Liao Z. Li X. mRNA vaccine in cancer therapy: Current advance and future outlook. Clin. Transl. Med. 2023 13 8 1384 10.1002/ctm2.1384 37612832
    [Google Scholar]
  16. Wang Y. Zhang Z. Luo J. Han X. Wei Y. Wei X. mRNA vaccine: A potential therapeutic strategy. Mol. Cancer 2021 20 1 33 10.1186/s12943‑021‑01311‑z 33593376
    [Google Scholar]
  17. Ahmed S. Herschhorn A. mRNA-based HIV-1 vaccines. Clin. Microbiol. Rev. 2024 37 3 e00041-24 10.1128/cmr.00041‑24 39016564
    [Google Scholar]
  18. Bevers S. Kooijmans S.A.A. Van de Velde E. Evers M.J.W. Seghers S. Gitz-Francois J.J.J.M. van Kronenburg N.C.H. Fens M.H.A.M. Mastrobattista E. Hassler L. Sork H. Lehto T. Ahmed K.E. El Andaloussi S. Fiedler K. Breckpot K. Maes M. Van Hoorick D. Bastogne T. Schiffelers R.M. De Koker S. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 2022 30 9 3078 3094 10.1016/j.ymthe.2022.07.007 35821637
    [Google Scholar]
  19. Pinte L. Dima A. Draghici A. Caraghiulea M. Zamfir-Gradinaru I.A. Baicus C. Autoimmunity, a relevant exclusion criterion in the development of mRNA-based compounds: A systematic review of clinical trials registries. Autoimmun. Rev. 2024 23 12 103670 10.1016/j.autrev.2024.103670 39527992
    [Google Scholar]
  20. Blakney A.K. Ip S. Geall A.J. An update on self-amplifying mRNA vaccine development. Vaccines 2021 9 2 97 10.3390/vaccines9020097 33525396
    [Google Scholar]
  21. Schmidt C. Schnierle B.S. Self-amplifying RNA vaccine candidates: Alternative platforms for mRNA vaccine development. Pathogens 2023 12 1 138 10.3390/pathogens12010138 36678486
    [Google Scholar]
  22. Ramos da Silva J. Bitencourt Rodrigues K. Formoso Pelegrin G. Silva Sales N. Muramatsu H. de Oliveira Silva M. Porchia B.F.M.M. Moreno A.C.R. Aps L.R.M.M. Venceslau-Carvalho A.A. Tombácz I. Fotoran W.L. Karikó K. Lin P.J.C. Tam Y.K. de Oliveira Diniz M. Pardi N. de Souza Ferreira L.C. Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci. Transl. Med. 2023 15 686 eabn3464 10.1126/scitranslmed.abn3464 36867683
    [Google Scholar]
  23. Bhattacharya M. Sharma A.R. Ghosh P. Patra P. Patra B.C. Lee S.S. Chakraborty C. Bioengineering of novel non-replicating mRNA (NRM) and self-amplifying mRNA (SAM) vaccine candidates against SARS-CoV-2 using immunoinformatics approach. Mol. Biotechnol. 2022 64 5 510 525 10.1007/s12033‑021‑00432‑6 34981440
    [Google Scholar]
  24. Khehra N. Padda I. Jaferi U. Atwal H. Narain S. Parmar M.S. Tozinameran (BNT162b2) vaccine: The journey from preclinical research to clinical trials and authorization. AAPS PharmSciTech 2021 22 5 172 10.1208/s12249‑021‑02058‑y 34100150
    [Google Scholar]
  25. Pourseif M.M. Masoudi-Sobhanzadeh Y. Azari E. Parvizpour S. Barar J. Ansari R. Omidi Y. Self-amplifying mRNA vaccines: Mode of action, design, development and optimization. Drug Discov. Today 2022 27 11 103341 10.1016/j.drudis.2022.103341 35988718
    [Google Scholar]
  26. Sayour E.J. Boczkowski D. Mitchell D.A. Nair S.K. Cancer mRNA vaccines: Clinical advances and future opportunities. Nat. Rev. Clin. Oncol. 2024 21 7 489 500 10.1038/s41571‑024‑00902‑1 38760500
    [Google Scholar]
  27. Yaremenko A.V. Khan M.M. Zhen X. Tang Y. Tao W. Clinical advances of mRNA vaccines for cancer immunotherapy. Med (N. Y.) 2025 6 1 100562 10.1016/j.medj.2024.11.015 39798545
    [Google Scholar]
  28. Szabó G.T. Mahiny A.J. Vlatkovic I. COVID-19 mRNA vaccines: Platforms and current developments. Mol. Ther. 2022 30 5 1850 1868 10.1016/j.ymthe.2022.02.016 35189345
    [Google Scholar]
  29. Cafri G. Gartner J.J. Zaks T. Hopson K. Levin N. Paria B.C. Parkhurst M.R. Yossef R. Lowery F.J. Jafferji M.S. Prickett T.D. Goff S.L. McGowan C.T. Seitter S. Shindorf M.L. Parikh A. Chatani P.D. Robbins P.F. Rosenberg S.A. mRNA vaccine–induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J. Clin. Invest. 2020 130 11 5976 5988 10.1172/JCI134915 33016924
    [Google Scholar]
  30. Di Cosimo S. Lupo-Stanghellini M.T. Costantini M. Mantegazza R. Ciceri F. Salvarani C. Zinzani P.L. Mantovani A. Ciliberto G. Uccelli A. Baldanti F. Apolone G. Delcuratolo S. Morrone A. Locatelli F. Agrati C. Silvestris N. Safety of third dose of COVID-19 vaccination in frail patients: Results from the prospective Italian VAX4FRAIL study. Front. Oncol. 2022 12 1002168 10.3389/fonc.2022.1002168 36338743
    [Google Scholar]
  31. Benteyn D. Heirman C. Bonehill A. Thielemans K. Breckpot K. mRNA-based dendritic cell vaccines. Expert Rev. Vaccines 2015 14 2 161 176 10.1586/14760584.2014.957684 25196947
    [Google Scholar]
  32. Bialkowski L. Van der Jeught K. Renmans D. van Weijnen A. Heirman C. Keyaerts M. Breckpot K. Thielemans K. Adjuvant-enhanced mRNA vaccines. Methods Mol. Biol. 2017 1499 179 191 10.1007/978‑1‑4939‑6481‑9_11 27987150
    [Google Scholar]
  33. Gilboa E. Boczkowski D. Nair S.K. The Quest for mRNA Vaccines. Nucleic Acid Ther. 2022 32 6 449 456 10.1089/nat.2021.0103 36346283
    [Google Scholar]
  34. Das R. Ge X. Fei F. Parvanian S. Weissleder R. Garris C.S. Lipid nanoparticle-mRNA engineered dendritic cell based adoptive cell therapy enhances cancer immune response. Small Methods 2025 9 1 2400633 10.1002/smtd.202400633 39039995
    [Google Scholar]
  35. Van Gulck E. Vlieghe E. Vekemans M. Van Tendeloo V.F.I. Van De Velde A. Smits E. Anguille S. Cools N. Goossens H. Mertens L. De Haes W. Wong J. Florence E. Vanham G. Berneman Z.N. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 2012 26 4 F1 F12 10.1097/QAD.0b013e32834f33e8 22156965
    [Google Scholar]
  36. Pardi N. Hogan M.J. Porter F.W. Weissman D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 2018 17 4 261 279 10.1038/nrd.2017.243 29326426
    [Google Scholar]
  37. Pardi N. Hogan M.J. Weissman D. Recent advances in mRNA vaccine technology. Curr. Opin. Immunol. 2020 65 14 20 10.1016/j.coi.2020.01.008 32244193
    [Google Scholar]
  38. Hou X. Zaks T. Langer R. Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021 6 12 1078 1094 10.1038/s41578‑021‑00358‑0 34394960
    [Google Scholar]
  39. Miao L. Zhang Y. Huang L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 2021 20 1 41 10.1186/s12943‑021‑01335‑5 33632261
    [Google Scholar]
  40. Cao Q. Fang H. Tian H. mRNA vaccines contribute to innate and adaptive immunity to enhance immune response in vivo. Biomaterials 2024 310 122628 10.1016/j.biomaterials.2024.122628 38820767
    [Google Scholar]
  41. Rojas LA Sethna Z Soares KC Olcese C Pang N Patterson E Lihm J Ceglia N Guasp P Chu A Yu R Chandra AK Waters T Ruan J Amisaki M Zebboudj A Odgerel Z Payne G Derhovanessian E Müller F Rhee I Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023 618 7963 144 150 10.1038/s41586‑023‑06063‑y
    [Google Scholar]
  42. Li X. You J. Hong L. Liu W. Guo P. Hao X. Neoantigen cancer vaccines: A new star on the horizon. Cancer Biol. Med. 2023 21 4 1 38 10.20892/j.issn.2095‑3941.2023.0395 38164734
    [Google Scholar]
  43. Berraondo P. Cuesta R. Sanmamed M.F. Melero I. Immunogenicity and efficacy of personalized adjuvant mRNA cancer vaccines. Cancer Discov. 2024 14 11 2021 2024 10.1158/2159‑8290.CD‑24‑1196 39485256
    [Google Scholar]
  44. Hussain A. Fareed A. Personalized medicine in pancreatic cancer: Harnessing the potential of mRNA vaccines. J. Genet. Eng. Biotechnol. 2025 23 1 100469 10.1016/j.jgeb.2025.100469 40074443
    [Google Scholar]
  45. Mei Y. Wang X. RNA modification in mRNA cancer vaccines. Clin. Exp. Med. 2023 23 6 1917 1931 10.1007/s10238‑023‑01020‑5 36788153
    [Google Scholar]
  46. Shemesh C.S. Hsu J.C. Hosseini I. Shen B.Q. Rotte A. Twomey P. Girish S. Wu B. Personalized cancer vaccines: Clinical landscape, challenges, and opportunities. Mol. Ther. 2021 29 2 555 570 10.1016/j.ymthe.2020.09.038 33038322
    [Google Scholar]
  47. Huang X. Zhang G. Tang T.Y. Gao X. Liang T.B. Personalized pancreatic cancer therapy: From the perspective of mRNA vaccine. Mil. Med. Res. 2022 9 1 53 10.1186/s40779‑022‑00416‑w 36224645
    [Google Scholar]
  48. Kowalski P.S. Rudra A. Miao L. Anderson D.G. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol. Ther. 2019 27 4 710 728 10.1016/j.ymthe.2019.02.012 30846391
    [Google Scholar]
  49. Chen R. Wang S.K. Belk J.A. Amaya L. Li Z. Cardenas A. Abe B.T. Chen C.K. Wender P.A. Chang H.Y. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 2023 41 2 262 272 10.1038/s41587‑022‑01393‑0 35851375
    [Google Scholar]
  50. Wang C. Zhang Y. Dong Y. Lipid nanoparticle–mRNA formulations for therapeutic applications. Acc. Chem. Res. 2021 54 23 4283 4293 10.1021/acs.accounts.1c00550 34793124
    [Google Scholar]
  51. Schiffner T. Phung I. Ray R. Irimia A. Tian M. Swanson O. Lee J.H. Lee C.C.D. Marina-Zárate E. Cho S.Y. Huang J. Ozorowski G. Skog P.D. Serra A.M. Rantalainen K. Allen J.D. Baboo S. Rodriguez O.L. Himansu S. Zhou J. Hurtado J. Flynn C.T. McKenney K. Havenar-Daughton C. Saha S. Shields K. Schultze S. Smith M.L. Liang C.H. Toy L. Pecetta S. Lin Y.C. Willis J.R. Sesterhenn F. Kulp D.W. Hu X. Cottrell C.A. Zhou X. Ruiz J. Wang X. Nair U. Kirsch K.H. Cheng H.L. Davis J. Kalyuzhniy O. Liguori A. Diedrich J.K. Ngo J.T. Lewis V. Phelps N. Tingle R.D. Spencer S. Georgeson E. Adachi Y. Kubitz M. Eskandarzadeh S. Elsliger M.A. Amara R.R. Landais E. Briney B. Burton D.R. Carnathan D.G. Silvestri G. Watson C.T. Yates J.R. III Paulson J.C. Crispin M. Grigoryan G. Ward A.B. Sok D. Alt F.W. Wilson I.A. Batista F.D. Crotty S. Schief W.R. Vaccination induces broadly neutralizing antibody precursors to HIV gp41. Nat. Immunol. 2024 25 6 1073 1082 10.1038/s41590‑024‑01833‑w 38816615
    [Google Scholar]
  52. Willis J.R. Berndsen Z.T. Ma K.M. Steichen J.M. Schiffner T. Landais E. Liguori A. Kalyuzhniy O. Allen J.D. Baboo S. Omorodion O. Diedrich J.K. Hu X. Georgeson E. Phelps N. Eskandarzadeh S. Groschel B. Kubitz M. Adachi Y. Mullin T.M. Alavi N.B. Falcone S. Himansu S. Carfi A. Wilson I.A. Yates J.R. III Paulson J.C. Crispin M. Ward A.B. Schief W.R. Human immunoglobulin repertoire analysis guides design of vaccine priming immunogens targeting HIV V2-apex broadly neutralizing antibody precursors. Immunity 2022 55 11 2149 2167.e9 10.1016/j.immuni.2022.09.001 36179689
    [Google Scholar]
  53. Wu J. Wu W. Zhou B. Li B. Chimeric antigen receptor therapy meets mRNA technology. Trends Biotechnol. 2024 42 2 228 240 10.1016/j.tibtech.2023.08.005 37741706
    [Google Scholar]
  54. Wang J. Zhang Y. Jia Y. Xing H. Xu F. Xia B. Lai W. Yuan Y. Li X. Shan S. Chen J. Guo W. Zhang J. Zheng A. Li J. Gong N. Liang X.J. Targeting vaccines to dendritic cells by mimicking the processing and presentation of antigens in xenotransplant rejection. Nat. Biomed. Eng. 2025 9 2 201 214 10.1038/s41551‑025‑01343‑6 39948171
    [Google Scholar]
  55. Tse S.W. McKinney K. Walker W. Nguyen M. Iacovelli J. Small C. Hopson K. Zaks T. Huang E. mRNA-encoded, constitutively active STINGV155M is a potent genetic adjuvant of antigen-specific CD8+ T cell response. Mol. Ther. 2021 29 7 2227 2238 10.1016/j.ymthe.2021.03.002 33677092
    [Google Scholar]
  56. Rybakova Y. Kowalski P.S. Huang Y. Gonzalez J.T. Heartlein M.W. DeRosa F. Delcassian D. Anderson D.G. mRNA delivery for therapeutic anti-her2 antibody expression in vivo. Mol. Ther. 2019 27 8 1415 1423 10.1016/j.ymthe.2019.05.012 31160223
    [Google Scholar]
  57. Wagner A. Jasinska J. Tomosel E. Zielinski C.C. Wiedermann U. Absent antibody production following COVID19 vaccination with mRNA in patients under immunosuppressive treatments. Vaccine 2021 39 51 7375 7378 10.1016/j.vaccine.2021.10.068 34785100
    [Google Scholar]
  58. Karikó K. Developing mRNA for Therapy. Keio J. Med. 2022 71 1 31 10.2302/kjm.71‑001‑ABST 35342149
    [Google Scholar]
  59. Metzloff A.E. Padilla M.S. Gong N. Billingsley M.M. Han X. Merolle M. Mai D. Figueroa-Espada C.G. Thatte A.S. Haley R.M. Mukalel A.J. Hamilton A.G. Alameh M.G. Weissman D. Sheppard N.C. June C.H. Mitchell M.J. Antigen presenting cell mimetic lipid nanoparticles for rapid mRNA car T cell cancer immunotherapy. Adv. Mater. 2024 36 26 2313226 10.1002/adma.202313226 38419362
    [Google Scholar]
  60. Zhu Q. Yu C. Chen Y. Luo W. Li M. Zou J. Xiao F. An S. Saiding Q. Tao W. Kong N. Xie T. Dual mRNA nanoparticles strategy for enhanced pancreatic cancer treatment and β-elemene combination therapy. Proc. Natl. Acad. Sci. USA 2025 122 11 2418306122 10.1073/pnas.2418306122 40067898
    [Google Scholar]
  61. Jatczak-Pawlik I. Gorzkiewicz M. Studzian M. Zinke R. Appelhans D. Klajnert-Maculewicz B. Pułaski Ł. Nanoparticles for directed immunomodulation: Mannose-functionalized glycodendrimers induce interleukin-8 in myeloid cell lines. Biomacromolecules 2021 22 8 3396 3407 10.1021/acs.biomac.1c00476 34286584
    [Google Scholar]
  62. Neshat S.Y. Chan C.H.R. Harris J. Zmily O.M. Est-Witte S. Karlsson J. Shannon S.R. Jain M. Doloff J.C. Green J.J. Tzeng S.Y. Polymeric nanoparticle gel for intracellular mRNA delivery and immunological reprogramming of tumors. Biomaterials 2023 300 122185 10.1016/j.biomaterials.2023.122185 37290232
    [Google Scholar]
  63. Zhang S. Zhang Q. Li C. Xing N. Zhou P. Jiao Y. A zinc-modified Anemarrhena asphodeloides polysaccharide complex enhances immune activity via the NF-κB and MAPK signaling pathways. Int. J. Biol. Macromol. 2023 249 126017 10.1016/j.ijbiomac.2023.126017 37517752
    [Google Scholar]
  64. Tian X. Ai J. Tian X. Wei X. cGAS-STING pathway agonists are promising vaccine adjuvants. Med. Res. Rev. 2024 44 4 1768 1799 10.1002/med.22016 38323921
    [Google Scholar]
  65. Yu X. Cai L. Yao J. Li C. Wang X. Agonists and inhibitors of the cGAS-STING pathway. Molecules 2024 29 13 3121 10.3390/molecules29133121 38999073
    [Google Scholar]
  66. Chen P. Paraiso W.K.D. Cabral H. Revitalizing cytokine-based cancer immunotherapy through advanced delivery systems. Macromol. Biosci. 2023 23 12 2300275 10.1002/mabi.202300275 37565723
    [Google Scholar]
  67. Bohmer M. Xue Y. Jankovic K. Dong Y. Advances in engineering and delivery strategies for cytokine immunotherapy. Expert Opin. Drug Deliv. 2023 20 5 579 595 10.1080/17425247.2023.2208344 37104673
    [Google Scholar]
  68. Di Trani C.A. Cirella A. Arrizabalaga L. Fernandez-Sendin M. Bella A. Aranda F. Melero I. Berraondo P. Overcoming the limitations of cytokines to improve cancer therapy. Int. Rev. Cell Mol. Biol. 2022 369 107 141 10.1016/bs.ircmb.2022.05.002 35777862
    [Google Scholar]
  69. Wang R. Kubiatowicz L.J. Zhang R. Bao L. Fang R.H. Zhang L. Nanoparticle approaches for manipulating cytokine delivery and neutralization. Front. Immunol. 2025 16 1592795 10.3389/fimmu.2025.1592795 40557148
    [Google Scholar]
  70. Liu M. Hu S. Yan N. Popowski K.D. Cheng K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 2024 19 4 565 575 10.1038/s41565‑023‑01580‑3 38212521
    [Google Scholar]
  71. Mariuzza R.A. Agnihotri P. Orban J. The structural basis of T-cell receptor (TCR) activation: An enduring enigma. J. Biol. Chem. 2020 295 4 914 925 10.1016/S0021‑9258(17)49904‑2 31848223
    [Google Scholar]
  72. Joshi K. Milighetti M. Chain B.M. Application of T cell receptor (TCR) repertoire analysis for the advancement of cancer immunotherapy. Curr. Opin. Immunol. 2022 74 1 8 10.1016/j.coi.2021.07.006 34454284
    [Google Scholar]
  73. Fu Y. Lin Q. Zhang Z. Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm. Sin. B 2020 10 3 414 433 10.1016/j.apsb.2019.08.010 32140389
    [Google Scholar]
  74. Warwas K.M. Meyer M. Gonçalves M. Moldenhauer G. Bulbuc N. Knabe S. Luckner-Minden C. Ziegelmeier C. Heussel C.P. Zörnig I. Jäger D. Momburg F. Co-stimulatory bispecific antibodies induce enhanced T cell activation and tumor cell killing in breast cancer models. Front. Immunol. 2021 12 719116 10.3389/fimmu.2021.719116 34484225
    [Google Scholar]
  75. Cacan E. Epigenetic-mediated immune suppression of positive co-stimulatory molecules in chemoresistant ovarian cancer cells. Cell Biol. Int. 2017 41 3 328 339 10.1002/cbin.10729 28074529
    [Google Scholar]
  76. Kiaie S.H. Majidi Zolbanin N. Ahmadi A. Bagherifar R. Valizadeh H. Kashanchi F. Jafari R. Recent advances in mRNA-LNP therapeutics: Immunological and pharmacological aspects. J. Nanobiotechnology 2022 20 1 276 10.1186/s12951‑022‑01478‑7 35701851
    [Google Scholar]
  77. Yang L. Gong L. Wang P. Zhao X. Zhao F. Zhang Z. Li Y. Huang W. Recent advances in lipid nanoparticles for delivery of mRNA. Pharmaceutics 2022 14 12 2682 10.3390/pharmaceutics14122682 36559175
    [Google Scholar]
  78. Sahin U. Karikó K. Türeci Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 2014 13 10 759 780 10.1038/nrd4278 25233993
    [Google Scholar]
  79. Zhang Y. Sun C. Wang C. Jankovic K.E. Dong Y. Lipids and lipid derivatives for rna delivery. Chem. Rev. 2021 121 20 12181 12277 10.1021/acs.chemrev.1c00244 34279087
    [Google Scholar]
  80. Li X. Qi J. Wang J. Hu W. Zhou W. Wang Y. Li T. Nanoparticle technology for mRNA: Delivery strategy, clinical application and developmental landscape. Theranostics 2024 14 2 738 760 10.7150/thno.84291 38169577
    [Google Scholar]
  81. Hajiaghapour Asr M. Dayani F. Saedi Segherloo F. Kamedi A. Neill A.O. MacLoughlin R. Doroudian M. Lipid nanoparticles as promising carriers for mRNA vaccines for viral lung infections. Pharmaceutics 2023 15 4 1127 10.3390/pharmaceutics15041127 37111613
    [Google Scholar]
  82. Liu Y. Huang Y. He G. Guo C. Dong J. Wu L. Development of mRNA lipid nanoparticles: Targeting and therapeutic aspects. Int. J. Mol. Sci. 2024 25 18 10166 10.3390/ijms251810166 39337651
    [Google Scholar]
  83. Tenchov R. Bird R. Curtze A.E. Zhou Q. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021 15 11 16982 17015 10.1021/acsnano.1c04996 34181394
    [Google Scholar]
  84. Kalita T. Dezfouli S.A. Pandey L.M. Uludag H. siRNA functionalized lipid nanoparticles (LNPs) in management of diseases. Pharmaceutics 2022 14 11 2520 10.3390/pharmaceutics14112520 36432711
    [Google Scholar]
  85. Bader J. Brigger F. Leroux J.C. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv. Drug Deliv. Rev. 2024 215 115461 10.1016/j.addr.2024.115461 39490384
    [Google Scholar]
  86. Gambaro R. Rivero Berti I. Limeres M.J. Huck-Iriart C. Svensson M. Fraude S. Pretsch L. Si S. Lieberwirth I. Gehring S. Cacicedo M. Islan G.A. Optimizing mRNA-loaded lipid nanoparticles as a potential tool for protein-replacement therapy. Pharmaceutics 2024 16 6 771 10.3390/pharmaceutics16060771 38931892
    [Google Scholar]
  87. Yang D. Song C.Q. The delivery of ABE mRNA to the adult murine liver by lipid nanoparticles (LNPs). Methods Mol. Biol. 2023 2606 159 170 10.1007/978‑1‑0716‑2879‑9_12 36592314
    [Google Scholar]
  88. Sarode A. Patel P. Vargas-Montoya N. Allawzi A. Zhilin-Roth A. Karmakar S. Boeglin L. Deng H. Karve S. DeRosa F. Inhalable dry powder product (DPP) of mRNA lipid nanoparticles (LNPs) for pulmonary delivery. Drug Deliv. Transl. Res. 2024 14 2 360 372 10.1007/s13346‑023‑01402‑y 37526881
    [Google Scholar]
  89. Kong W. Wei Y. Dong Z. Liu W. Zhao J. Huang Y. Yang J. Wu W. He H. Qi J. Role of size, surface charge, and PEGylated lipids of lipid nanoparticles (LNPs) on intramuscular delivery of mRNA. J. Nanobiotechnology 2024 22 1 553 10.1186/s12951‑024‑02812‑x 39261807
    [Google Scholar]
  90. Eygeris Y. Gupta M. Kim J. Sahay G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 2022 55 1 2 12 10.1021/acs.accounts.1c00544 34850635
    [Google Scholar]
  91. Lang S. Zhu Y. Tan Z. Zhang Y. Liang R. Ren J. Li P. Pan F. Cai L. Chen Y.H. Cancer immunotherapy by silencing transcription factor c-Rel using peptide-based nanoparticles. Front. Immunol. 2025 16 1554496 10.3389/fimmu.2025.1554496 40134427
    [Google Scholar]
  92. Liu Z. Wang X. Zhu X. Zhang T. He Z. Wu Z. Liu M. Li K. Wei Y. Liu H. Lu J. Lu Q. Zhu P. Wang Y. Chen Z. Enhancing antigen presentation in cancer stem cells via peptide-based nanoparticles for effective immunotherapy. J. Control. Release 2025 385 114001 10.1016/j.jconrel.2025.114001 40623596
    [Google Scholar]
  93. Estapé Senti M. García del Valle L. Schiffelers R.M. mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Adv. Drug Deliv. Rev. 2024 206 115190 10.1016/j.addr.2024.115190 38307296
    [Google Scholar]
  94. Liu Y. Yao L. Cao W. Liu Y. Zhai W. Wu Y. Wang B. Gou S. Qin Y. Qi Y. Chen Z. Gao Y. Dendritic cell targeting peptide-based nanovaccines for enhanced cancer immunotherapy. ACS Appl. Bio Mater. 2019 2 3 1241 1254 10.1021/acsabm.8b00811 35021373
    [Google Scholar]
  95. Wang Q. Dong Z. Lou F. Yin Y. Zhang J. Wen H. Lu T. Wang Y. Phenylboronic ester-modified polymeric nanoparticles for promoting TRP2 peptide antigen delivery in cancer immunotherapy. Drug Deliv. 2022 29 1 2029 2043 10.1080/10717544.2022.2086941 35766157
    [Google Scholar]
  96. Zhao Z. Fetse J. Mamani U.F. Guo Y. Li Y. Patel P. Liu Y. Lin C.Y. Li Y. Mustafa B. Cheng K. Development of a peptide-based tumor-activated checkpoint inhibitor for cancer immunotherapy. Acta Biomater. 2025 193 484 497 10.1016/j.actbio.2024.12.051 39716541
    [Google Scholar]
  97. Weber J.S. Carlino M.S. Khattak A. Meniawy T. Ansstas G. Taylor M.H. Kim K.B. McKean M. Long G.V. Sullivan R.J. Faries M. Tran T.T. Cowey C.L. Pecora A. Shaheen M. Segar J. Medina T. Atkinson V. Gibney G.T. Luke J.J. Thomas S. Buchbinder E.I. Healy J.A. Huang M. Morrissey M. Feldman I. Sehgal V. Robert-Tissot C. Hou P. Zhu L. Brown M. Aanur P. Meehan R.S. Zaks T. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): A randomised, phase 2b study. Lancet 2024 403 10427 632 644 10.1016/S0140‑6736(23)02268‑7 38246194
    [Google Scholar]
  98. Xiao W. Ren L. Chen Z. Fang L.T. Zhao Y. Lack J. Guan M. Zhu B. Jaeger E. Kerrigan L. Blomquist T.M. Hung T. Sultan M. Idler K. Lu C. Scherer A. Kusko R. Moos M. Xiao C. Sherry S.T. Abaan O.D. Chen W. Chen X. Nordlund J. Liljedahl U. Maestro R. Polano M. Drabek J. Vojta P. Kõks S. Reimann E. Madala B.S. Mercer T. Miller C. Jacob H. Truong T. Moshrefi A. Natarajan A. Granat A. Schroth G.P. Kalamegham R. Peters E. Petitjean V. Walton A. Shen T.W. Talsania K. Vera C.J. Langenbach K. de Mars M. Hipp J.A. Willey J.C. Wang J. Shetty J. Kriga Y. Raziuddin A. Tran B. Zheng Y. Yu Y. Cam M. Jailwala P. Nguyen C. Meerzaman D. Chen Q. Yan C. Ernest B. Mehra U. Jensen R.V. Jones W. Li J.L. Papas B.N. Pirooznia M. Chen Y.C. Seifuddin F. Li Z. Liu X. Resch W. Wang J. Wu L. Yavas G. Miles C. Ning B. Tong W. Mason C.E. Donaldson E. Lababidi S. Staudt L.M. Tezak Z. Hong H. Wang C. Shi L. Toward best practice in cancer mutation detection with whole-genome and whole-exome sequencing. Nat. Biotechnol. 2021 39 9 1141 1150 10.1038/s41587‑021‑00994‑5 34504346
    [Google Scholar]
  99. Gong Z. Hu W. Zhou C. Guo J. Yang L. Wang B. Recent advances and perspectives on the development of circular RNA cancer vaccines. NPJ Vaccines 2025 10 1 41 10.1038/s41541‑025‑01097‑x 40025038
    [Google Scholar]
  100. Yu H. Wen Y. Yu W. Lu L. Yang Y. Liu C. Hu Z. Fang Z. Huang S. Optimized circular RNA vaccines for superior cancer immunotherapy. Theranostics 2025 15 4 1420 1438 10.7150/thno.104698 39816687
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665402963251022054441
Loading
/content/journals/ppl/10.2174/0109298665402963251022054441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test