Skip to content
2000
Volume 32, Issue 3
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

Gastric cancer has emerged as one of the major diseases threatening human health. Our previous studies indicated that the anti-cancer bioactive peptide (ACBP) inhibits the initiation and progression of gastric cancer through apoptosis and cell cycle arrest, yet the mechanisms remain unclear. To elucidate the relationships between the effects of ACBP and the levels of cell differentiation, as well as the functional mechanisms of ACBP, we conducted a study using three human gastric cancer cell lines: NCI-N87, MGC-803, and another unspecified line.

Methods

We investigated the impact of ACBP on the survival and morphology of these cancer cell lines, examined apoptosis and cell cycle progression, and detected the expression of TP53, TP63, and TP73 in cancer cells, as well as the expression of Bax, PUMA, and Mcl-1 in a xenograft mouse model. ACBP inhibited the proliferation of all three cancer cell lines in a dose-dependent manner, similar to the positive control and 5-fluorouracil (5-FU). The effect of ACBP correlated with the degree of differentiation of the cancer cells; the lower the differentiation degree, the stronger the inhibitory effect.

Results

After ACBP treatment, the expression of TP53, TP63, and TP73 increased in all cell lines. In the xenograft mouse model, ACBP inhibited the growth of MGC-803 cells . The apoptotic-related genes Bax and PUMA were upregulated, while Mcl-1 was downregulated. ACBP inhibited tumor cell growth by inducing apoptosis through the TP53 signaling cascade, upregulating TP53, TP63, and TP73 and their downstream apoptosis-promoting genes Bax and PUMA while downregulating the anti-apoptotic gene Mcl-1.

Conclusion

Notably, after ACBP treatment, Mcl-1 expression was significantly reduced in the tumor tissue of the xenograft model, indicating that ACBP induced apoptosis through the TP53 signaling cascade. This project provides a scientific basis for exploring the antitumor mechanism of ACBP in gastric cancer therapy.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665350654250111144722
2025-02-10
2025-06-13
Loading full text...

Full text loading...

References

  1. ChenC. JustoM. GangiA. Hyperthermic intraperitoneal chemotherapy for gastric cancer: A narrative review.Chin. Clin. Oncol.20231266810.21037/cco‑23‑9038195075
    [Google Scholar]
  2. FurukawaK. HatakeyamaK. TerashimaM. NagashimaT. UrakamiK. OhshimaK. NotsuA. SuginoT. YagiT. FujiyaK. KamiyaS. HikageM. TanizawaY. BandoE. KanaiY. AkiyamaY. YamaguchiK. Molecular classification of gastric cancer predicts survival in patients undergoing radical gastrectomy based on project HOPE.Gastric Cancer202225113814810.1007/s10120‑021‑01242‑034476642
    [Google Scholar]
  3. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  4. KimY.H. KimJ.H. KimH. KimH. LeeY.C. LeeS.K. ShinS.K. ParkJ.C. ChungH.S. ParkJ.J. YounY.H. ParkH. NohS.H. ChoiS.H. Is the recent WHO histological classification for gastric cancer helpful for application to endoscopic resection?Gastric Cancer201619386987510.1007/s10120‑015‑0538‑426324820
    [Google Scholar]
  5. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  6. CuiR. HeJ. MeiR. de FromentelC.C. Martel-PlancheG. TaniereP. HainautP. WITHDRAWN: Expression of p53, p63, and p73 isoforms in squamous cell carcinoma and adenocarcinoma of esophagus.Biochem. Biophys. Res. Commun.2005336133934510.1016/j.bbrc.2005.08.08416126170
    [Google Scholar]
  7. WangJ. PursellN.W. SamsonM.E.S. AtoyanR. MaA.W. SelmiA. XuW. CaiX. VoiM. SavagnerP. LaiC.J. Potential advantages of CUDC-101, a multitargeted HDAC, EGFR, and HER2 inhibitor, in treating drug resistance and preventing cancer cell migration and invasion.Mol. Cancer Ther.201312692593610.1158/1535‑7163.MCT‑12‑104523536719
    [Google Scholar]
  8. YuL. YangL. AnW. SuX. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells.J. Cell. Biochem.2014115469771110.1002/jcb.2471124214799
    [Google Scholar]
  9. YanagisawaM. YorozuK. KurasawaM. NakanoK. FurugakiK. YamashitaY. MoriK. Fujimoto-OuchiK. Bevacizumab improves the delivery and efficacy of paclitaxel.Anticancer Drugs201021768769410.1097/CAD.0b013e32833b759820559127
    [Google Scholar]
  10. LiX. WuH. OuyangX. ZhangB. SuX. New bioactive peptide reduces the toxicity of chemotherapy drugs and increases drug sensitivity.Oncol. Rep.201738112914010.3892/or.2017.567428560442
    [Google Scholar]
  11. SuL. XuG. ShenJ. TuoY. ZhangX. JiaS. ChenZ. SuX. Anticancer bioactive peptide suppresses human gastric cancer growth through modulation of apoptosis and the cell cycle.Oncol. Rep.20102313919956858
    [Google Scholar]
  12. ZhangL. SuX. Bioactive peptide inhibits acute myeloid leukemia cell proliferation by downregulating ALKBH5-mediated m6A demethylation of EIF4EBP1 and MLST8 mRNA.Cell Oncol.202245335536510.1007/s13402‑022‑00666‑935579750
    [Google Scholar]
  13. LiX. XiaL. OuyangX. SuyilaQ. SuL. SuX. Bioactive peptides sensitize cells to anticancer effects of oxaliplatin in human colorectal cancer xenografts in nude mice.Protein Pept. Lett.201926751252210.2174/092986652666619040512495530950338
    [Google Scholar]
  14. ChernousovA.F. EgorovA.V. ChernousovF.A. LevkinV.V. VychuzhaninD.V. KharlovN.S. StepanovS.N. The use of Octreotide-depo for the pancreatitis’ prophylaxis after radical surgery of gastric cancer with lymphadenectomy.Khirurgiia (Mosk.)201220128394322968556
    [Google Scholar]
  15. ShenQ. WangH. ZhangL. TP63 functions as a tumor suppressor regulated by GAS5/miR-221-3p signaling axis in human non-small cell lung cancer cells.Cancer Manag. Res.20231521723110.2147/CMAR.S38778136873253
    [Google Scholar]
  16. XuY. LiX. SuX. iTRAQ-based proteomics analysis of the therapeutic effects of combined anticancer bioactive peptides and oxaliplatin on gastric cancer cells.Oncol. Rep.202043120121731746436
    [Google Scholar]
  17. TongX. ZhuangZ. WangX. YangX. BaiL. SuL. WeiP. SuX. ACBP suppresses the proliferation, migration, and invasion of colorectal cancer via targeting Wnt/beta-catenin signaling pathway.Biomed. Pharmacother.202113711120910.1016/j.biopha.2020.11120933581651
    [Google Scholar]
  18. SuL. ShiY. YanM. XiY. SuX. Anticancer bioactive peptides suppress human colorectal tumor cell growth and induce apoptosis via modulating the PARP-p53-Mcl-1 signaling pathway.Acta Pharmacol. Sin.201536121514151910.1038/aps.2015.8026592508
    [Google Scholar]
  19. WangY.F. YanM.R. JiaS.Q. LiuG.R. SuX.L. Influence of the PCNA and Caspase-8 expression of anti-cancer bioactive peptide on experimental gastric cancer.Acta Acad. Med. Nei. Mongol.20093169
    [Google Scholar]
  20. SuX. DongC. ZhangJ. SuL. WangX. CuiH. ChenZ. Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer.Cell Biosci.201441710.1186/2045‑3701‑4‑724507386
    [Google Scholar]
  21. JiaS.Q. WangW.L. SuX.L. Inhibitory effect of anti-cancer bioactive peptide on the proliferation of human breast cancer cell line nm231.Chin Med Biotechnol20072270276
    [Google Scholar]
  22. WenZ. SuX. Influence of p53 and Bcl-2 expression of anti-cancer bioactive peptide on experimental gastric cancer.Med. Recapitulate20111715571559
    [Google Scholar]
  23. HuD. HuangJ.W. HuS.P. WangB. GaoL.Y. Expression and significance of the P53, P63 and P73 proteins in osteosarcoma.Chin. J. Bone Joint200434750
    [Google Scholar]
  24. ArcolinoF.O. RibeiroD.L. GobboM.G. TabogaS.R. GóesR.M. Proliferation and apoptotic rates and increased frequency of p63-positive cells in the prostate acinar epithelium of alloxan-induced diabetic rats.Int. J. Exp. Pathol.201091214415410.1111/j.1365‑2613.2009.00696.x20041964
    [Google Scholar]
  25. KaufmannO. FietzeE. MengsJ. DietelM. Value of p63 and cytokeratin 5/6 as immunohistochemical markers for the differential diagnosis of poorly differentiated and undifferentiated carcinomas.Am. J. Clin. Pathol.2001116682383010.1309/21TW‑2NDG‑JRK4‑PFJX11764070
    [Google Scholar]
  26. MorenoJ. BahmadH. AljamalA. DelgadoR. SalamiA. GuillotC. Castellano-SánchezA. MedinaA. SriganeshanV. Prognostic significance of p53 and p63 in diffuse large b-cell lymphoma: A single-institution experience.Curr. Oncol.20233021314133110.3390/curroncol3002010236826063
    [Google Scholar]
  27. SchmaleH. BambergerC. A novel protein with strong homology to the tumor suppressor p53.Oncogene199715111363136710.1038/sj.onc.12015009315105
    [Google Scholar]
  28. RabowZ. LaubachK. KongX. ShenT. MohibiS. ZhangJ. FiehnO. ChenX. p73α1, an isoform of the p73 tumor suppressor, modulates lipid metabolism and cancer cell growth via stearoyl-coa desaturase-1.Cells20221116251610.3390/cells1116251636010592
    [Google Scholar]
  29. FoightG.W Locating herpesvirus Bcl-2 homologs in the specificity landscape of anti-apoptotic Bcl-2 proteins.Mol. Biol.20154271524682490
    [Google Scholar]
  30. ZhangJ. HuangK. O’NeillK.L. PangX. LuoX. Bax/Bak activation in the absence of Bid, Bim, Puma, and p53.Cell Death Dis.201676e226610.1038/cddis.2016.16727310874
    [Google Scholar]
  31. LiuZ. DingY. YeN. WildC. ChenH. ZhouJ. Direct activation of bax protein for cancer therapy.Med. Res. Rev.201636231334110.1002/med.2137926395559
    [Google Scholar]
  32. DaiH. PangY.P. Evaluation of the BH3-only protein puma as a direct Bak activator.Biol Chem.20152891899910.1371/journal.pone.012664526030884
    [Google Scholar]
  33. PapaianniE. El MaadidiS. SchejtmanA. Phylogenetically distant viruses use the same BH3-only protein puma to trigger Bax/Bak-dependent apoptosis of infected mouse and human cells.PLoS One2014106e012664510.3390/cells302041824814761
    [Google Scholar]
  34. MojsaB. LassotI. DesagherS. Mcl-1 ubiquitination: Unique regulation of an essential survival protein.Cells20143241843710.3390/cells302041824814761
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665350654250111144722
Loading
/content/journals/ppl/10.2174/0109298665350654250111144722
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test