Skip to content
2000
image of Prolyl 4-Hydroxylase Beta Peptide Promotes Invasion, Migration, and Epithelial-Mesenchymal Transition through Activation of the Claudin-1/ AMPK/TGF-β1 Pathway in Bladder Cancer Cells

Abstract

Introduction

Prolyl 4-hydroxylase beta peptide (P4HB) is a novel diagnostic and prognostic marker associated with cancer progression and clinical outcomes, and it is upregulated in multiple types of cancer cells. However, the influence and potential mechanisms of P4HB on the migration, invasion, and epithelial-mesenchymal transition (EMT) of bladder cancer cells remain unclear. This study aims to clarify the role of P4HB in the migration, invasion, and EMT of bladder cancer cells and to explore its potential mechanism related to the Claudin-1/AMPK/TGF-β1 pathway.

Methods

The mRNA and protein expression levels of P4HB were examined in human ureteral epithelial cells (SV-HUC-1) and five bladder cancer cell lines (J82, T24, 5637, UM-UC-3, and RT4). Stable cell lines with P4HB overexpression and knockdown were constructed, and the effects of P4HB on migration, invasion, EMT, and the expression of EMT-related genes in bladder cancer cells were analyzed using wound healing assays, Transwell invasion assays, cellular morphology observations, real-time quantitative PCR, in-cell western blotting, western blotting, and enzyme-linked immunosorbent assays. Furthermore, Claudin-1 siRNA was transfected into P4HB-overexpressing cells to investigate its potential role in P4HB-induced invasion and EMT in bladder cancer cells.

Results

P4HB mRNA and protein expressions were significantly upregulated in human bladder cancer cell lines compared to those in ureteral epithelial cells. Cell migration, invasion, and EMT were significantly promoted in P4HB-overexpressing stable bladder cancer cells and suppressed in P4HB-knockdown cells. Furthermore, interference with P4HB downregulated EMT-related Claudin-1 mRNA and protein expressions and regulated the expression of downstream genes and proteins of Claudin-1. Moreover, interference of Claudin-1 with its siRNA significantly reversed the invasion and EMT induced by P4HB-overexpression, however, the effect of Claudin-1 siRNA was revised by TGF-β1 agonist and AMPK inhibitor.

Conclusion

P4HB promoted migration, invasion, and EMT of bladder cancer cells by activating the Claudin-1/AMPK/TGF-β1-related pathway.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665418763251124051527
2026-01-22
2026-01-29
Loading full text...

Full text loading...

References

  1. Siegel R.L. Kratzer T.B. Giaquinto A.N. Sung H. Jemal A. Cancer statistics, 2025. CA Cancer J. Clin. 2025 75 1 10 45 10.3322/caac.21871 39817679
    [Google Scholar]
  2. Kiri S. Ryba T. Cancer, metastasis, and the epigenome. Mol. Cancer 2024 23 1 154 10.1186/s12943‑024‑02069‑w 39095874
    [Google Scholar]
  3. Wu P. Xiang T. Wang J. Lv R. Ma S. Yuan L. Wu G. Che X. Identification of immunization-related new prognostic biomarkers for papillary renal cell carcinoma by integrated bioinformatics analysis. BMC Med. Genomics 2021 14 1 241 10.1186/s12920‑021‑01092‑w 34620162
    [Google Scholar]
  4. Dong Y. Wu X. Xu C. Hameed Y. Abdel-Maksoud M.A. Almanaa T.N. Kotob M.H. Al-Qahtani W.H. Mahmoud A.M. Cho W.C. Li C. Prognostic model development and molecular subtypes identification in bladder urothelial cancer by oxidative stress signatures. Aging 2024 16 3 2591 2616 10.18632/aging.205499 38305808
    [Google Scholar]
  5. Zhang L. Li Y. Xie T. Sun K. Huang X. Xiong W. Liu R. Potential role of P4HB in the tumor microenvironment and its clinical prognostic value: A comprehensive pan-cancer analysis and experimental validation with a focus on KIRC. Cancer Cell Int. 2025 25 1 1 10.1186/s12935‑024‑03575‑z 39754183
    [Google Scholar]
  6. Yuan Z. Jing H. Deng Y. Liu M. Jiang T. Jin X. Lin W. Liu Y. Yin J. P4HB maintains Wnt-dependent stemness in glioblastoma stem cells as a precision therapeutic target and serum marker. Oncogenesis 2024 13 1 42 10.1038/s41389‑024‑00541‑2 39580454
    [Google Scholar]
  7. Liu X. Ren B. Fang Y. Ren J. Wang X. Gu M. Zhou F. Xiao R. Luo X. You L. Zhao Y. Comprehensive analysis of bulk and single-cell transcriptomic data reveals a novel signature associated with endoplasmic reticulum stress, lipid metabolism, and liver metastasis in pancreatic cancer. J. Transl. Med. 2024 22 1 393 10.1186/s12967‑024‑05158‑y 38685045
    [Google Scholar]
  8. Xu Y. Sun X. Liu G. Li H. Yu M. Zhu Y. Integration of multi-omics and clinical treatment data reveals bladder cancer therapeutic vulnerability gene combinations and prognostic risks. Front. Immunol. 2024 14 1301157 10.3389/fimmu.2023.1301157 38299148
    [Google Scholar]
  9. Feng D. Li L. Li D. Wu R. Zhu W. Wang J. Ye L. Han P. Prolyl 4-hydroxylase subunit beta (P4HB) could serve as a prognostic and radiosensitivity biomarker for prostate cancer patients. Eur. J. Med. Res. 2023 28 1 245 10.1186/s40001‑023‑01215‑2 37480146
    [Google Scholar]
  10. Dai C. Li Q. Wang L. Zhang J. Yang S. Zhang X. Long Noncoding LINC00115 facilitates cell growth and inhibits apoptosis by regulating the miR-4701-5p/P4HB axis in bladder cancer. Tohoku J. Exp. Med. 2025 265 2 69 81 10.1620/tjem.2024.J075 39111879
    [Google Scholar]
  11. Zhou C. Li A.H. Liu S. Sun H. Identification of an 11-autophagy-related-gene signature as promising prognostic biomarker for bladder cancer patients. Biology 2021 10 5 375 10.3390/biology10050375 33925460
    [Google Scholar]
  12. Song X. Rao H. Huang C. Huang M. Ma Y. Xin J. Hou J. Hu Z. He L. Pan F. Yang L. Guo Z. P4HB, a novel succinated protein, is essential for fumarate-induced cancer metastasis. Int. J. Biol. Macromol. 2025 311 Pt 3 143885 10.1016/j.ijbiomac.2025.143885 40318732
    [Google Scholar]
  13. McConkey D.J. Choi W. Marquis L. Martin F. Williams M.B. Shah J. Svatek R. Das A. Adam L. Kamat A. Siefker-Radtke A. Dinney C. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev. 2009 28 3-4 335 344 10.1007/s10555‑009‑9194‑7 20012924
    [Google Scholar]
  14. Li Z. Li J. Cao Q. Shen T. Wang Y. He H. Tong M. Transcription factor TCF7L1 targeting HSPB6 is involved in EMT and PI3K/AKT/mTOR pathways in bladder cancer. J. Biol. Chem. 2025 301 1 108024 10.1016/j.jbc.2024.108024 39608715
    [Google Scholar]
  15. Zhang Y. Gong S. He W. Yuan J. Dong D. Zhang J. Wang H. Chen B. Melatonin serves as a novel treatment in bladder fibrosis through TGF-β1/Smad and EMT. PLoS One 2024 19 3 0295104 10.1371/journal.pone.0295104 38478501
    [Google Scholar]
  16. Krebs A.M. Mitschke J. Lasierra Losada M. Schmalhofer O. Boerries M. Busch H. Boettcher M. Mougiakakos D. Reichardt W. Bronsert P. Brunton V.G. Pilarsky C. Winkler T.H. Brabletz S. Stemmler M.P. Brabletz T. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 2017 19 5 518 529 10.1038/ncb3513 28414315
    [Google Scholar]
  17. Bustamante A. Baritaki S. Zaravinos A. Bonavida B. Relationship of signaling pathways between RKIP expression and the inhibition of EMT-inducing transcription factors SNAIL1/2, TWIST1/2 and ZEB1/2. Cancers 2024 16 18 3180 10.3390/cancers16183180 39335152
    [Google Scholar]
  18. Loh C.Y. Chai J. Tang T. Wong W. Sethi G. Shanmugam M. Chong P. Looi C. The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells 2019 8 10 1118 10.3390/cells8101118 31547193
    [Google Scholar]
  19. Zhang P. Liu M. Zhang S. Lu C. Zu Q. Liang Y. Cui Z. Liu J. Wang Y. Bu C. Cytokeratin 17 activates AKT signaling to induce epithelial-mesenchymal transition and promote bladder cancer progression. BMC Urol. 2025 25 1 77 10.1186/s12894‑025‑01760‑4 40189507
    [Google Scholar]
  20. Augusciak-Duma A. Stepien K.L. Lesiak M. Gutmajster E. Fus-Kujawa A. Botor M. Sieron A.L. Expression gradient of metalloproteinases and their inhibitors from proximal to distal segments of abdominal aortic aneurysm. J. Appl. Genet. 2021 62 3 499 506 10.1007/s13353‑021‑00642‑3 34091862
    [Google Scholar]
  21. Ramesh V. Brabletz T. Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer 2020 6 11 942 950 10.1016/j.trecan.2020.06.005 32680650
    [Google Scholar]
  22. Mattern J. Roghi C.S. Hurtz M. Knäuper V. Edwards D.R. Poghosyan Z. ADAM15 mediates upregulation of Claudin-1 expression in breast cancer cells. Sci. Rep. 2019 9 1 12540 10.1038/s41598‑019‑49021‑3 31467400
    [Google Scholar]
  23. Sheng W. Tang J. Cao R. Shi X. Ma Y. Dong M. Numb-PRRL promotes TGF-β1- and EGF-induced epithelial-to-mesenchymal transition in pancreatic cancer. Cell Death Dis. 2022 13 2 173 10.1038/s41419‑022‑04609‑y 35197444
    [Google Scholar]
  24. Ping Q. Wang C. Cheng X. Zhong Y. Yan R. Yang M. Shi Y. Li X. Li X. Huang W. Wang L. Bi X. Hu L. Yang Y. Wang Y. Gong R. Tan J. Li R. Li H. Li J. Wang W. Li R. TGF-β1 dominates stromal fibroblast-mediated EMT via the FAP/VCAN axis in bladder cancer cells. J. Transl. Med. 2023 21 1 475 10.1186/s12967‑023‑04303‑3 37461061
    [Google Scholar]
  25. Zou F. Zhang G. Mei G. Zhang H. Xie M. Dan M. CTEN-induced TGF-β1 expression facilitates EMT and enhances paclitaxel resistance in bladder cancer cells. Am. J. Transl. Res. 2024 16 7 3248 3258 10.62347/QWAK3951 39114729
    [Google Scholar]
  26. Yang N. Gao J. Hou R. Xu X. Yang N. Huang S. Grape seed Proanthocyanidins inhibit migration and invasion of bladder cancer cells by reversing EMT through suppression of TGF-beta signaling pathway. Oxid. Med. Cell. Longev. 2021 2021 1 5564312 10.1155/2021/5564312 34354794
    [Google Scholar]
  27. Zhao R. Ning X. Lu H. Xu W. Ma J. Cheng J. Ma R. XTP8 promotes ovarian cancer progression by activating AKT/AMPK/mTOR pathway to regulate EMT. Cell Biochem. Biophys. 2024 82 2 945 957 10.1007/s12013‑024‑01246‑4 38717641
    [Google Scholar]
  28. Sun L. Cao J. Chen K. Cheng L. Zhou C. Yan B. Qian W. Li J. Duan W. Ma J. Qi D. Wu E. Wang Z. Liu Q. Ma Q. Xu Q. Betulinic acid inhibits stemness and EMT of pancreatic cancer cells via activation of AMPK signaling. Int. J. Oncol. 2018 54 1 98 110 10.3892/ijo.2018.4604 30365057
    [Google Scholar]
  29. Dong Y. Hu H. Zhang X. Zhang Y. Sun X. Wang H. Kan W. Tan M. Shi H. Zang Y. Li J. Phosphorylation of PHF2 by AMPK releases the repressive H3K9me2 and inhibits cancer metastasis. Signal Transduct. Target. Ther. 2023 8 1 95 10.1038/s41392‑022‑01302‑6 36872368
    [Google Scholar]
  30. Chang J.W. Seo S.T. Im, M.A.; Won, H.R.; Liu, L.; Oh, C.; Jin, Y.L.; Piao, Y.; Kim, H.J.; Kim, J.T.; Jung, S.N.; Koo, B.S. Claudin-1 mediates progression by regulating EMT through AMPK/TGF-β signaling in head and neck squamous cell carcinoma. Transl. Res. 2022 247 58 78 10.1016/j.trsl.2022.04.003 35462077
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665418763251124051527
Loading
/content/journals/ppl/10.2174/0109298665418763251124051527
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: TGF-β1 ; EMT ; P4HB ; AMPK ; Claudin-1 ; bladder cancer cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test