Skip to content
2000
image of Reviewing the Context of Molecular Modeling to Enhance the Application of Machine Learning Technologies for Safer Bioinformatics

There is no abstract available.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665423917251023055837
2026-01-23
2026-01-29
Loading full text...

Full text loading...

References

  1. Gund P. Andose J.D. Rhodes J.B. Smith G.M. Three-dimensional molecular modeling and drug design. Science 1980 208 4451 1425 1431 10.1126/science.6104357 6104357
    [Google Scholar]
  2. Karplus M. Dynamics of proteins. Adv. Biophys. 1984 18 165 190 10.1016/0065‑227X(84)90011‑X 6100468
    [Google Scholar]
  3. Lin Z. Akin H. Rao R. Hie B. Zhu Z. Lu W. Smetanin N. Verkuil R. Kabeli O. Shmueli Y. dos Santos Costa A. Fazel-Zarandi M. Sercu T. Candido S. Rives A. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 2023 379 6637 1123 1130 10.1126/science.ade2574 36927031
    [Google Scholar]
  4. Chen L. Li Q. Nasif K.F.A. Xie Y. Deng B. Niu S. Pouriyeh S. Dai Z. Chen J. Xie C.Y. AI-driven deep learning techniques in protein structure prediction. Int. J. Mol. Sci. 2024 25 15 8426 10.3390/ijms25158426 39125995
    [Google Scholar]
  5. Ramos M.V. Moreira R.A. Oliveira J.T.A. Cavada B.S. Rougé P. The carbohydrate-binding specificity and molecular modelling of Canavalia maritima and Dioclea grandiflora lectins. Mem Inst Oswaldo Cruz 1996 91 6 761 766 10.1590/S0074‑02761996000600021 9283661
    [Google Scholar]
  6. Rougé P. Barre A. Causse H. Chatelain C. Porthé G. Arcelin and α-amylase inhibitor from the seeds of common bean (Phaseolus vulgaris L.) are truncated lectins. Biochem. Syst. Ecol. 1993 21 6-7 695 703 10.1016/0305‑1978(93)90074‑2
    [Google Scholar]
  7. Thompson J.D. Higgins D.G. Gibson T.J. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 22 22 4673 4680 10.1093/nar/22.22.4673 7984417
    [Google Scholar]
  8. Rougé P. Varloot L. Structural homologies between leguminosae lectins as revealed by the hydrophobic cluster analysis (HCA) method. Biochem. Syst. Ecol. 1990 18 6 419 427 10.1016/0305‑1978(90)90087‑V
    [Google Scholar]
  9. Ramos MV Freitas LBN Bezerra EA Morais FS Lima JPMS Souza PFN Carvalho CPS; Freitas, CDT Structural analysis revealed the interaction of cardenolides from Calotropis procera with Na+/K+ ATPases from herbivores. Protein Pept. Lett. 2022 29 1 89 101 10.2174/0929866528666211207111011
    [Google Scholar]
  10. Wu X. Li W. Tu H. Big data and artificial intelligence in cancer research. Trends Cancer 2024 10 2 147 160 10.1016/j.trecan.2023.10.006 37977902
    [Google Scholar]
  11. Morais F.S. Canuto K.M. Ribeiro P.R.V. Silva A.B. Pessoa O.D.L. Freitas C.D.T. Alencar N.M.N. Oliveira A.C. Ramos M.V. Chemical profiling of secondary metabolites from Himatanthus drasticus (Mart.) Plumel latex with inhibitory action against the enzymes α-amylase and α-glucosidase: In vitro and in silico assays. J. Ethnopharmacol. 2020 253 112644 10.1016/j.jep.2020.112644 32058007
    [Google Scholar]
  12. Nalina V. Prabhu D. Sahayarayan J.J. Vidhyavathi R. Advancements in AI for computational biology and bioinformatics: A comprehensive review. Methods Mol. Biol. 2025 2952 87 105 10.1007/978‑1‑0716‑4690‑8_6 40553329
    [Google Scholar]
  13. Goodford P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 1985 28 7 849 857 10.1021/jm00145a002 3892003
    [Google Scholar]
  14. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  15. Jänes J. Beltrao P. Deep learning for protein structure prediction and design—progress and applications. Mol. Syst. Biol. 2024 20 3 162 169 10.1038/s44320‑024‑00016‑x 38291232
    [Google Scholar]
  16. Wang Z. Zhao Y. Zhang L. Emerging trends and hot topics in the application of multi-omics in drug discovery: A bibliometric and visualized study. Curr. Pharm. Anal. 2024 21 1 20 32 10.1016/j.cpan.2024.12.001
    [Google Scholar]
  17. Chen J. Lin A. Luo P. Advancing pharmaceutical research: A comprehensive review of cutting-edge tools and technologies. Curr. Pharm. Anal. 2024 21 1 1 19 10.1016/j.cpan.2024.11.001
    [Google Scholar]
  18. Karati D Kumar D Molecular insight into the apoptotic mechanism of cancer cells: An explicative review. Curr. Mol. Pharm. 2024 e18761429273223. 10.2174/0118761429273223231124072223
    [Google Scholar]
  19. Zhu Y. Hu Y. Yang C. Huang S. Wen J. Huang W. Xiao S. Progress of angiogenesis signal pathway and antiangiogenic drugs in nasopharyngeal carcinoma. Curr. Mol. Pharmacol. 2024 17 e18761429290933 10.2174/0118761429290933240408071812 38644719
    [Google Scholar]
  20. Zhang Z. Ou C. Cho Y. Akiyama Y. Ovchinnikov S. Artificial intelligence methods for protein folding and design. Curr. Opin. Struct. Biol. 2025 93 103066 10.1016/j.sbi.2025.103066 40505455
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665423917251023055837
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test