Skip to content
2000
Volume 32, Issue 10
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

Liver cancer is the third leading cause of cancer-related death. Plant-derived therapeutics have played a significant role in preventing and treating many diseases, including cancers. The present study investigated the anticancer properties of protein fractions from the green leaf extract of () in the laboratory.

Methods

Protein fractions of leaf extract were separated using reversed-phase high-performance liquid chromatography (RP-HPLC). The cytotoxicity of protein fractions was studied by MTT and sulforhodamine B assays. The apoptotic cell death was examined using the alkaline comet assay, and redox-related indicators were assessed using the catalase enzyme activity assay, glutathione content, and nitric oxide release. The RBC hemagglutination test investigated the possible presence of ribosome-inactivating proteins (RIPs) in the most toxic protein fraction, and the LD of the protein fraction with the highest anticancer effects was determined. The amino acid sequence of fraction proteins was determined by the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) method.

Results

The results showed that protein fraction 8 had the highest toxicity in the HepG2 cell line, with an IC of 0.16 µg/mL. This fraction induced hemagglutination in red blood cells at concentrations higher than 65 µg/mL. The apoptosis was induced in the HepG2 cells following treatment with the concentrations of 0.08, 0.16, 0.32, and 0.64 µg/mL. Moreover, the redox potential of the treated cells was changed after treatment. The cytotoxicity investigation of this fraction in mice showed that it is not toxic for animals in concentrations up to 800 µg/kg, indicating its safety potential for pharmaceutical applications. The protein extract in the aforementioned fraction contained two proteins (22 and 53 kD) as determined by electrophoresis and sequencing methods.

Conclusion

The findings of this investigation demonstrated that the protein content of fraction 8 derived from leaf extract possesses anticancer activity in the HepG2 cell line. The two isolated proteins from this fraction are novel and have been reported for the first time. Further investigations should be performed to evaluate the treatment potential in / conditions.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665411024251015093155
2025-11-03
2026-02-13
Loading full text...

Full text loading...

References

  1. ReFaeyK. TripathiS. GrewalS.S. BhargavA.G. QuinonesD.J. ChaichanaK.L. AntwiS.O. CooperL.T. MeyerF.B. DroncaR.S. DiasioR.B. Quinones-HinojosaA. Cancer mortality rates increasing vs cardiovascular disease mortality decreasing in the world: Future implications.Mayo Clin. Proc. Innov. Qual. Outcomes20215364565310.1016/j.mayocpiqo.2021.05.005 34195556
    [Google Scholar]
  2. HousmanG. BylerS. HeerbothS. LapinskaK. LongacreM. SnyderN. SarkarS. Drug resistance in cancer: An overview.Cancers2014631769179210.3390/cancers6031769 25198391
    [Google Scholar]
  3. ChamaniE. A comparative in-vitro study between the interaction of aqueous extracts of Ephedra, Nepeta, and Hymenocrater with histone proteins. J. Birjand.Univ Med. Sci.2017243141
    [Google Scholar]
  4. ArzumanianV.A. KiselevaO.I. PoverennayaE.V. The curious case of the HepG2 cell line: 40 years of expertise.Int. J. Mol. Sci.202122231313510.3390/ijms222313135 34884942
    [Google Scholar]
  5. LuE. PerlewitzK.S. HaydenJ.B. HungA.Y. DoungY.C. DavisL.E. MansoorA. VettoJ.T. BillingsleyK.G. KaempfA. ParkB. RyanC.W. Epirubicin and ifosfamide with preoperative radiation for high-risk soft tissue sarcomas.Ann. Surg. Oncol.201825492092710.1245/s10434‑018‑6346‑4 29388122
    [Google Scholar]
  6. GaneshK. MassaguéJ. Targeting metastatic cancer.Nat. Med.2021271344410.1038/s41591‑020‑01195‑4 33442008
    [Google Scholar]
  7. VijayakumarS. DhakshanamoorthyR. BaskaranA. Sabari KrishnanB. MaddalyR. Drug resistance in human cancers — Mechanisms and implications.Life Sci.202435212290710.1016/j.lfs.2024.122907 39004273
    [Google Scholar]
  8. BarazzuolL. CoppesR.P. van LuijkP. Prevention and treatment of radiotherapy‐induced side effects.Mol. Oncol.20201471538155410.1002/1878‑0261.12750 32521079
    [Google Scholar]
  9. HalderK. Chemotherapy resistance in cancer: Mechanism and roadmap to evade exploring apoptosis. Int. J. Adv. Life.Sci. Res.202472174010.31632/ijalsr.2024.v07i02.003
    [Google Scholar]
  10. KinghornA.D. The role of pharmacognosy in modern medicine.Expert Opin. Pharmacother.200232777910.1517/14656566.3.2.77 11829721
    [Google Scholar]
  11. JenčaA. MillsD.K. GhasemiH. SaberianE. JenčaA. ForoodK.A.M. PetrášováA. JenčováJ. JabbariV.Z. Zare-ZardiniH. EbrahimifarM. Herbal therapies for cancer treatment: A review of phytotherapeutic efficacy.Biologics20241822925510.2147/BTT.S484068 39281032
    [Google Scholar]
  12. AtanasovA.G. ZotchevS.B. DirschV.M. OrhanI.E. BanachM. RollingerJ.M. BarrecaD. WeckwerthW. BauerR. BayerE.A. MajeedM. BishayeeA. BochkovV. BonnG.K. BraidyN. BucarF. CifuentesA. D’OnofrioG. BodkinM. DiederichM. Dinkova-KostovaA.T. EfferthT. El BairiK. ArkellsN. FanT-P. FiebichB.L. FreissmuthM. GeorgievM.I. GibbonsS. GodfreyK.M. GruberC.W. HeerJ. HuberL.A. IbanezE. KijjoaA. KissA.K. LuA. MaciasF.A. MillerM.J.S. MocanA. MüllerR. NicolettiF. PerryG. PittalàV. RastrelliL. RistowM. RussoG.L. SilvaA.S. SchusterD. SheridanH. Skalicka-WoźniakK. SkaltsounisL. Sobarzo-SánchezE. BredtD.S. StuppnerH. SuredaA. TzvetkovN.T. VaccaR.A. AggarwalB.B. BattinoM. GiampieriF. WinkM. WolfenderJ-L. XiaoJ. YeungA.W.K. LizardG. PoppM.A. HeinrichM. Berindan-NeagoeI. StadlerM. DagliaM. VerpoorteR. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  13. ZhangL. SongJ. KongL. YuanT. LiW. ZhangW. HouB. LuY. DuG. The strategies and techniques of drug discovery from natural products.Pharmacol. Ther.202021610768610.1016/j.pharmthera.2020.107686 32961262
    [Google Scholar]
  14. D’AmeliaV. DocimoT. CrocollC. RiganoM.M. Specialized metabolites and valuable molecules in crop and medicinal plants: The evolution of their use and strategies for their production.Genes202112693610.3390/genes12060936 34207427
    [Google Scholar]
  15. HosseinpourM. Introduction of dianthins: A new promising horizon toward continuous research on breast cancer bulldozing in Iran.Int. J. Med. Toxicol. Forensic Med.201993133140
    [Google Scholar]
  16. TirpeF. Gilabert-OriolR. Ribosome-inactivating proteins: An overview.Plant. Toxins. CarliniC.R. Ligabue-BraunR. GopalakrishnakoneP. DordrechtSpringer2015153182
    [Google Scholar]
  17. PoyD. TohidfarM. NasrollahzadehM.S. Investigate the inhibitory effects of plant secondary metabolites compared with standard drugs on Mpro protease and spike glycoprotein SARS-CoV-2 by Molecular Docking.Cell. Mol. Res.2020334421438
    [Google Scholar]
  18. HajinourmohammadiA. ZarganJ. JafaryH. EbrahimiF. Cytotoxic and apoptotic effects of the Adenium obesum extract on the hepatocellular carcinoma cell line (HepG2).Gene Rep.20243510190710.1016/j.genrep.2024.101907
    [Google Scholar]
  19. HossainM.A. A review on Adenium obesum: A potential endemic medicinal plant in Oman.Beni. Suef Univ. J. Basic Appl. Sci.20187455956310.1016/j.bjbas.2018.06.008
    [Google Scholar]
  20. HossainM.A. Al-MusalamiA.H.S. AkhtarM.S. SaidS. A comparison of the antimicrobial effectiveness of different polarities crude extracts from the leaves of Adenium obesum used in Omani traditional medicine for the treatment of microbial infections.Asian Pac. J. Trop. Dis.20144S934S93710.1016/S2222‑1808(14)60761‑1
    [Google Scholar]
  21. TolaA.J. MissihounT.D. Ammonium sulfate-based prefractionation improved proteome coverage and detection of carbonylated proteins in Arabidopsis thaliana leaf extract.Planta202325736210.1007/s00425‑023‑04083‑6 36808312
    [Google Scholar]
  22. KhurshidY. SyedB. SimjeeS.U. BegO. AhmedA. Antiproliferative and apoptotic effects of proteins from black seeds (Nigella sativa) on human breast MCF-7 cancer cell line.BMC Complement Med. Ther.2020201510.1186/s12906‑019‑2804‑1 32020890
    [Google Scholar]
  23. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  24. HastutiD. SurantoS. SetyonoP. Variation of morphology, karyotype and protein band pattern of Adenium (Adenium obesum) varieties.Nusantara Biosci200912788310.13057/nusbiosci/n010205
    [Google Scholar]
  25. HerreraM. FernándezJ. VargasM. VillaltaM. SeguraÁ. LeónG. AnguloY. PaivaO. MatainahoT. JensenS.D. WinkelK.D. CalveteJ.J. WilliamsD.J. GutiérrezJ.M. Comparative proteomic analysis of the venom of the taipan snake, Oxyuranus scutellatus, from Papua New Guinea and Australia: Role of neurotoxic and procoagulant effects in venom toxicity.J. Proteomics20127572128214010.1016/j.jprot.2012.01.006 22266484
    [Google Scholar]
  26. SilvaG.M.S. CostaJ.S. FreireJ.O. SantosL.S. BonomoR.C.F. Artichoke leaf extracts: Proteolytic activity, coagulant and HPLC analysis.Cienc. Agrotec.202145e00172110.1590/1413‑7054202145001721
    [Google Scholar]
  27. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  28. EghdamiA. SalehiM. BabakhaniM. Determination of physicochemical properties of capsaicin and cytotoxic effect of capsicum extract in breast cancer (MCF7) cell line.Int. J. Biosci.201448262268
    [Google Scholar]
  29. VajrabhayaL. KorsuwannawongS. Cytotoxicity evaluation of a Thai herb using tetrazolium (MTT) and sulforhodamine B (SRB) assays.J. Anal. Sci. Technol.2018911510.1186/s40543‑018‑0146‑0
    [Google Scholar]
  30. AlikhaniK.H. BidmeshkipourA. ZarganJ. Cytotoxic and apoptotic induction effects of the venom of Iranian scorpion (Odontobuthus bidentatus) in the Hepatocellular carcinoma cell line (HepG2).Int. J. Pept. Res. Ther.20202642475248410.1007/s10989‑020‑10029‑3
    [Google Scholar]
  31. CollinsA.R. The comet assay for DNA damage and repair: Principles, applications, and limitations.Mol. Biotechnol.200426324926110.1385/MB:26:3:249 15004294
    [Google Scholar]
  32. KamranM.R. ZarganJ. alikhani, H.K.; Hajinoormohamadi, A. The Comparative cytotoxic effects of Apis mellifera crude venom on MCF-7 Breast Cancer cell line in 2D and 3D cell cultures.Int. J. Pept. Res. Ther.20202641819182810.1007/s10989‑019‑09979‑0
    [Google Scholar]
  33. ZarganJ. SajadM. UmarS. NaimeM. AliS. KhanH.A. Scorpion (Androctonus crassicauda) venom limits growth of transformed cells (SH-SY5Y and MCF-7) by cytotoxicity and cell cycle arrest.Exp. Mol. Pathol.201191144745410.1016/j.yexmp.2011.04.008 21536027
    [Google Scholar]
  34. UzdenskyA.B. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins.Apoptosis2019249-1068770210.1007/s10495‑019‑01556‑6 31256300
    [Google Scholar]
  35. KangT.B. YooY.C. LeeK.H. YoonH.S. HerE. KimJ.B. SongS.K. Korean mistletoe lectin (KML-IIU) and its subchains induce nitric oxide (NO) production in murine macrophage cells.J. Biomed. Sci.200815219720410.1007/s11373‑007‑9210‑2 17940853
    [Google Scholar]
  36. OsadebeP.O. OkoyeF.B.C. Anti-inflammatory effects of crude methanolic extract and fractions of Alchornea cordifolia leaves.J. Ethnopharmacol.2003891192410.1016/S0378‑8741(03)00195‑8 14522428
    [Google Scholar]
  37. MelesD. MustofaI. WurlinaW. DonovaC. HidayantiE. SuwasantiN. RosyadaZ. KhairullahA. AkintundeA. MustofaR. PutraS. AhmadR. WasitoW. RaissaR. Acute toxicity effects of ethylene glycol on lethal dose 50 (LD50), urine production, and histopathology change renal tubule cell in mice.Open Vet. J.202414123539355110.5455/OVJ.2024.v14.i12.36 39927377
    [Google Scholar]
  38. GunasV. MaievskyiO. RakshaN. VovkT. SavchukO. ShchypanskyiS. GunasI. Study of the acute toxicity of scorpion Leiurus macroctenus venom in rats.Sci. World J.202420241974609210.1155/2024/9746092 39050385
    [Google Scholar]
  39. DemmaJ. Gebre-MariamT. AsresK. ErgetieW. EngidaworkE. Toxicological study on Glinus lotoides: A traditionally used taenicidal herb in Ethiopia.J. Ethnopharmacol.2007111345145710.1016/j.jep.2006.12.017 17210235
    [Google Scholar]
  40. KumarnsitE. KeawpradubN. NuankaewW. Acute and long-term effects of alkaloid extract of Mitragyna speciosa on food and water intake and body weight in rats.Fitoterapia200677533934510.1016/j.fitote.2006.04.006 16781828
    [Google Scholar]
  41. MukindaJ.T. SyceJ.A. Acute and chronic toxicity of the aqueous extract of Artemisia afra in rodents.J. Ethnopharmacol.2007112113814410.1016/j.jep.2007.02.011 17367969
    [Google Scholar]
  42. ObiciS. OtoboneF.J. SelaV.R.S. IshidaK. SilvaJ.C. NakamuraC.V. CortezD.A.G. AudiE.A. Preliminary toxicity study of dichloromethane extract of Kielmeyera coriacea stems in mice and rats.J. Ethnopharmacol.2008115113113910.1016/j.jep.2007.09.013 17997061
    [Google Scholar]
  43. ShevchenkoA. TomasH. HavliJ. OlsenJ.V. MannM. In-gel digestion for mass spectrometric characterization of proteins and proteomes.Nat. Protoc.2006162856286010.1038/nprot.2006.468 17406544
    [Google Scholar]
  44. WangX. WangD. SunY. YangQ. ChangL. WangL. MengX. HuangQ. JinX. TongZ. Comprehensive proteomics analysis of laticifer latex reveals new insights into ethylene stimulation of natural rubber production.Sci. Rep.2015511377810.1038/srep13778 26348427
    [Google Scholar]
  45. NassifA.B. TalibM.A. NasirQ. AfadarY. ElgendyO. Breast cancer detection using artificial intelligence techniques: A systematic literature review.Artif. Intell. Med.202212710227610.1016/j.artmed.2022.102276 35430037
    [Google Scholar]
  46. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  47. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  48. BuranratB. MairuaeN. KanchanarachW. Cytotoxic and antimigratory effects of Cratoxy formosum extract against HepG2 liver cancer cells.Biomed. Rep.20176444144810.3892/br.2017.871 28413643
    [Google Scholar]
  49. ShahbaziY. Antibacterial and antioxidant properties of methanolic extracts of apple (Malus pumila), grape (Vitis vinifera), pomegranate (Punica granatum L.) and common fig (Ficus carica L.) fruits.Ulum-i Daruyi201723430831510.15171/PS.2017.45
    [Google Scholar]
  50. HossainM.A. Al-AbriT.H.A. Al-MusalamiA.H.S. AkhtarM.S. SaidS. Evaluation of different extraction methods on antimicrobial potency of Adenium obesum stem against food borne pathogenic bacterial strains in Oman.Asian Pac. J. Trop. Dis.20144S985S98910.1016/S2222‑1808(14)60770‑2
    [Google Scholar]
  51. Yahya Al RashdiR.S. HossainM.A. Jaroof Al ToubyS.S. Antioxidant and antibacterial activities of leaves crude extracts of Adenium obesum grown in Oman national botanical garden.Adv. Biomark Sci. Technol2021381410.1016/j.abst.2021.09.001
    [Google Scholar]
  52. AlshehriA. AhmadA. TiwariR.K. AhmadI. AlkhathamiA.G. AlshahraniM.Y. AsiriM.A. AlmeleebiaT.M. SaeedM. YadavD.K. AnsariI.A. In vitro evaluation of antioxidant, anticancer, and anti-inflammatory activities of ethanolic leaf extract of Adenium obesum.Front. Pharmacol.20221384753410.3389/fphar.2022.847534 35928278
    [Google Scholar]
  53. AlzandiA.A. TaherE.A. Al-SagheerN.A. Al-KhulaidiA.W. AziziM. NaguibD.M. Phytochemical components, antioxidant and anticancer activity of 18 major medicinal plants in Albaha region, Saudi Arabia.Biocatal. Agric. Biotechnol.20213410202010.1016/j.bcab.2021.102020
    [Google Scholar]
  54. AliA.Q. FarahM.A. Abou-TarboushF.M. Al-AnaziK.M. AliM.A. LeeJ. HailanW.A.Q. MahmoudA.H. Cytogenotoxic effects of Adenium obesum seeds extracts on breast cancer cells.Saudi J. Biol. Sci.201926354755310.1016/j.sjbs.2018.12.014 30899170
    [Google Scholar]
  55. GurungA.B. AliM.A. LeeJ. Al-HemaidF. FarahM.A. Al-AnaziK.M. Molecular docking elucidates the plausible mechanisms underlying the anticancer properties of acetyldigitoxigenin from Adenium obesum.Saudi J. Biol. Sci.20202771907191110.1016/j.sjbs.2020.04.020 32565713
    [Google Scholar]
  56. KoseO. BéalD. MotellierS. PelissierN. Collin-FaureV. BlosiM. BengalliR. CostaA. FurxhiI. ManteccaP. CarriereM. Physicochemical transformations of silver nanoparticles in the oro-gastrointestinal tract mildly affect their toxicity to intestinal cells in vitro: An AOP-oriented testing approach.Toxics202311319910.3390/toxics11030199 36976964
    [Google Scholar]
  57. FarahM.A. AliM.A. ChenS.M. LiY. Al-HemaidF.M. Abou-TarboushF.M. Al-AnaziK.M. LeeJ. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species.Colloids Surf. B Biointerfaces201614115816910.1016/j.colsurfb.2016.01.027 26852099
    [Google Scholar]
  58. FinocchiettoP.V. FrancoM.C. HolodS. GonzalezA.S. ConversoD.P. ArciuchV.G.A. SerraM.P. PoderosoJ.J. CarrerasM.C. Mitochondrial nitric oxide synthase: A masterpiece of metabolic adaptation, cell growth, transformation, and death.Exp. Biol. Med.200923491020102810.3181/0902‑MR‑81 19546350
    [Google Scholar]
  59. LeonelliM. TorrãoA.S. BrittoL.R.G. Unconventional neurotransmitters, neurodegeneration and neuroprotection.Braz. J. Med. Biol. Res.2009421687510.1590/S0100‑879X2009000100011 19219299
    [Google Scholar]
  60. LiaudetL. VassalliG. PacherP. Role of peroxynitrite in the redox regulation of cell signal transduction pathways.Front. Biosci.200914124809481410.2741/3569
    [Google Scholar]
  61. ZarganJ. UmarS. SajadM. NaimeM. AliS. KhanH.A. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7).Toxicol. In Vitro20112581748175610.1016/j.tiv.2011.09.002 21945044
    [Google Scholar]
  62. TafaniM. SansoneL. LimanaF. ArcangeliT. De SantisE. PoleseM. FiniM. RussoM.A. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression.Oxid. Med. Cell. Longev.201620161390714710.1155/2016/3907147 26798421
    [Google Scholar]
  63. KhamesiS.M. Salehi BaroughM. ZarganJ. ShayestehM. BanaeeN. Haji NoormohammadiA. Keshavarz AlikhaniH. MousaviM. Evaluation of anticancer and cytotoxic effects of genistein on PC3 prostate cell line under three-dimensional culture medium.Iran. Biomed. J.202226538038810.52547/ibj.3711 36403104
    [Google Scholar]
  64. GlorieuxC. ZamockyM. SandovalJ.M. VerraxJ. CalderonP.B. Regulation of catalase expression in healthy and cancerous cells.Free Radic. Biol. Med.201587849710.1016/j.freeradbiomed.2015.06.017 26117330
    [Google Scholar]
  65. Rezaei-MoshaeiM. DehestaniA. BandehaghA. Pakdin-PariziA. GolkarM. Heidari-JapelaghiR. Recombinant pebulin protein, a type 2 ribosome-inactivating protein isolated from dwarf elder (Sambucus ebulus L.) shows anticancer and antifungal activities in vitro.Int. J. Biol. Macromol.202117435236110.1016/j.ijbiomac.2021.01.129 33497693
    [Google Scholar]
  66. IglesiasR. RussoR. LandiN. VallettaM. ChamberyA. Di MaroA. BolognesiA. FerrerasJ.M. CitoresL. Structure and biological properties of ribosome-inactivating proteins and lectins from elder (Sambucus nigra L.) leaves.Toxins202214961110.3390/toxins14090611 36136551
    [Google Scholar]
  67. GautamA.K. Biochemical and functional properties of a lectin purified from the seeds of Cicer arietinum L.3 Biotech20188627210.1007/s13205‑018‑1272‑5
    [Google Scholar]
  68. QureshiI.A. DashP. SrivastavaP.S. KoundalK.R. Purification and characterization of an N ‐acetyl‐ d ‐galactosamine‐specific lectin from seeds of chickpea (Cicer arietinum L.).Phytochem. Anal.200617535035610.1002/pca.925 17019937
    [Google Scholar]
  69. SharmaU. KatreU.V. SureshC.G. Crystal structure of a plant albumin from Cicer arietinum (chickpea) possessing hemopexin fold and hemagglutination activity.Planta201524151061107310.1007/s00425‑014‑2236‑6 25559942
    [Google Scholar]
  70. VeerappanA. MiyazakiS. KadarkaraisamyM. RanganathanD. Acute and subacute toxicity studies of Aegle marmelos Corr., An Indian medicinal plant.Phytomedicine2007142-320921510.1016/j.phymed.2006.05.004 16860551
    [Google Scholar]
  71. AbalakaS.E. FatihuM.Y. IbrahimN.D.G. AmbaliS.F. Haematotoxicity of ethanol extract of Adenium obesum (Forssk) Roem & Schult stem bark in Wistar rats.Trop. J. Pharm. Res.201413111883188710.4314/tjpr.v13i11.16
    [Google Scholar]
  72. AkariH. BourS. KaoS. AdachiA. StrebelK. The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor kappaB-dependent expression of antiapoptotic factors.J. Exp. Med.200119491299131210.1084/jem.194.9.1299 11696595
    [Google Scholar]
  73. ZoccalK.F. BitencourtC.S. SecattoA. SorgiC.A. BordonK.C.F. SampaioS.V. ArantesE.C. FaccioliL.H. Tityus serrulatus venom and toxins Ts1, Ts2 and Ts6 induce macrophage activation and production of immune mediators.Toxicon2011577-81101110810.1016/j.toxicon.2011.04.017 21549737
    [Google Scholar]
  74. ChoiH. LeeD. KimY. NguyenH.Q. HanS. KimJ. Effects of matrices and additives on multiple charge formation of proteins in maldi–ms analysis.J. Am. Soc. Mass Spectrom.20193071174117810.1007/s13361‑019‑02213‑7 31044356
    [Google Scholar]
  75. LeeJ. HongJ. KimT. KimJ. Optimization in detecting multiply-charged protein ions using MALDI TOF-MS.Mass Spectrom. Lett.201341212310.5478/MSL.2013.4.1.21
    [Google Scholar]
  76. PatilA.A. Ly LạiT.K. WangC-W. ChenG-F. DuB-X. ChiangC-K. PengW-P. Generation of multiply charged ions from homogeneous MALDI microcrystals.Int. J. Mass Spectrom.202146211653910.1016/j.ijms.2021.116539
    [Google Scholar]
  77. GaoL. MaW. ChenJ. WangK. LiJ. WangS. BekesF. AppelsR. YanY. Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS.J. Agric. Food Chem.20105852777278610.1021/jf903363z 20146422
    [Google Scholar]
  78. CummingD.A. Pathways and functions of mammalian protein glycosylation.New Compr Biochem.20033843345510.1016/S0167‑7306(03)38026‑3
    [Google Scholar]
  79. RassolianM. ChassG.A. SetiadiD.H. CsizmadiaI.G. Asparagine—ab initio structural analyses.J. Mol. Struct. THEOCHEM2003666-66727327810.1016/j.theochem.2003.08.032
    [Google Scholar]
  80. BauseE. LeglerG. The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N -glycosylation step during glycoprotein biosynthesis.Biochem. J.1981195363964410.1042/bj1950639 7316978
    [Google Scholar]
  81. PageA.P. MaizelsR.M. Biosynthesis and glycosylation of serine/threonine-rich secreted proteins from Toxocara canis larvae.Parasitology1992105229730810.1017/S0031182000074229 1454427
    [Google Scholar]
  82. WangG. de JongR.N. van den BremerE.T.J. ParrenP.W.H.I. HeckA.J.R. Enhancing accuracy in molecular weight determination of highly heterogeneously glycosylated proteins by native tandem mass spectrometry.Anal. Chem.20178994793479710.1021/acs.analchem.6b05129 28383250
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665411024251015093155
Loading
/content/journals/ppl/10.2174/0109298665411024251015093155
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test